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ABSTRACT
Background. Software engineering is one of the engineering fields
with the highest inflow of junior engineers. Tools that utilize source
code analysis to provide feedback on internal software quality, i.e.
Technical Debt (TD), are valuable to junior developers who can
learn and improve their coding skills with minimal consultations
with senior colleagues. Objective. We aim at understating which
SonarQube TD items junior developers prioritize during the refac-
toring and how long they take to refactor them. Method. We de-
signed a case study with replicated design and we conducted it with
185 junior developers in two countries, that developed 23 projects
with different programming languages and architectures. Results.
Junior developers focus homogeneously on different types of TD
items. Moreover, they can refactor items in a fraction of the esti-
mated time, never spending more than 50% of the time estimated
by SonarQube. Conclusion. Junior Developers appreciate the usage
of SonarQube and considered as a useful tool. Companies might
ask junior developers to quickly clean their code.
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1 INTRODUCTION
Software engineering is one of the engineering fields with the
highest inflow of junior engineers1. The disproportion of junior and
senior developers is increasing fast, and it puts a significant stress
on thementoring and tutoring process. Under such conditions, tools
that provide feedback on internal software quality through source
code analysis—automated static analysis tools (ASAT)—are valuable
to junior developers who can learn and improve their coding skills
with minimal consultations with senior colleagues.

1https://evansdata.com/
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The popularity of such tools, to measure software quality detect-
ing potential issues in the code, is rapidly increasing [17, 18]. Among
the existing static analysis tools, SonarQube has been adopted by
more than 100K organizations2 including nearly more than 15K
public open-source projects.3

One of the aspects of software quality is commonly depicted with
technical debit (TD) metaphor [3]. TD contextualizes the problem
of outstanding software development tasks (e.g. tests planned but
not executed, pending code refactoring, etc.) as a kind of debt that
brings a short-term benefit to the project that may have to be paid
later in terms of increased effort or rework (e.g. a poorly designed
class tends to be more difficult and costly to maintain than if it
had been implemented using good object-oriented practices) [3].
Some empirical investigations indicate that junior developers are
less familiar with the concept of TD than their more experienced
colleagues [19].

SonarQube was one of the first ASAT tools to provide estimates
of the accumulated TD in source code, i.e. needed effort to remediate
issues that according to SonarQube’s rules represent violations of
good practices.

In this work, we aim to understand how long junior developers
take to fix TD items. For this purpose, we designed and conducted a
multiple case study with replicated design [29] involving 185 fourth-
year graduate and master students with programming experience
comparable to junior developers.

The contributions of this paper can be summarized as follows:
• Analysis of the diffuseness of TD items introduced by junior
developers

• Identification of the type of TD items commonly refactored
by junior developers

• Analysis of the time spent for removing TD Items
• Comparison of the actual and estimated TD Items refactoring
time

The remainder of this paper is structured as follows: Section 2 de-
scribes the empirical study design. Section 3 presents and discusses
results. Section 4 identifies the threats to validity of this work and
Section 5 reports on related work. At the end, Section 6 draws the
conclusion and highlights the future works.

2 THE CASE STUDY
In this section, we describe the empirical study designed according
to the guidelines proposed by Runeson and Höst [22].

2.1 Goal and Research Questions
We formalized the goal of this study as follows:

2https://www.sonarqube.org
3https://sonarcloud.io/explore/projects
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Analyze TD items
for the purpose of evaluating
with respect to their remediation time
from the point of view of junior developers
in the context of software development process

Based on the above-mentioned goal, we formulated the following
Research Questions (RQ𝑠 ):
RQ1 What TD items are introduced by junior developers?
RQ2 Which TD items are commonly refactored by junior develop-
ers?
RQ3 How long do junior developers spend to refactor TD items?
RQ4 What is the remediation time accuracy?

In RQ1 we aim at assessing what TD items junior developers are
more prone to introduce in software systems during the develop-
ment process. If TD items introduced are poorly diffused, the study
might be not worthwhile. We focus on which TD items are mostly
refactored for first, considering TD types defined by SonarQube
(Bugs, Code Smells, and Security Vulnerabilities) and the severity
level assigned to each TD item (RQ2).

Furthermore, we aim at investigating how long junior developer
spends time to refactor the TD items identified thruRQ3. Moreover,
we aim to measure the accuracy of the remediation time spent to
refactor each TD item (RQ4).

We hypothesize that junior developers fix TD items with less
TD estimated and with a lower severity level assigned by the tools
(H1 - RQ3). Moreover, we hypothesize that junior developers are
more accurate fixing TD items with less debt estimated and with a
lower severity level assigned by the tools (H1 - RQ4).

2.2 Study Design
In order to achieve our goal and to answer to our RQ𝑠 , we designed
a multiple case study with a replication design [29] executing one
replication Tampere University (Replication 1) and executing an-
other replication in University of Novi Sad (Replication 2).

In each Replication, we investigated the TD introduced by junior
developers together with its related refactoring and remediation
time.

Each replication has to create teams composed to 4-8 members
that will develop a software project for three months. After 1.5
months, the projects will be analyzed with SonarQube to detect TD
items. Developers are then required to refactor the code to fix TD
items detected by SonarQube. The motivation to select Sonarqube
and more details on its levels are available in the online appendix
included in the replication package4. At the end of the project, we
analyze the diffuseness of TD items introduced by developers (RQ1),
the refactoring made by developers (RQ2-RQ3) and its accuracy
(RQ4).

In order to allow our study to be replicated, we have published
the complete raw data in the replication package4.

2.3 Case and Subject Selection
Case Selection. We selected participants for the two replications
from two University courses. Participants need to be master or
fourth-year students with experience in software development.

4 https://figshare.com/s/f5d0a0a3ee0a6b23468e

More than half of the participants need to have at least two years
of full-time industrial experience as software developer. The course
needs to develop a software project in the duration of three months
and enable to develop the same project in teams. The courses need
to use the same version of SonarQube, and collect data for this
study using the same protocol. Courses are free to select the project
topic independently.

Based on these requirements we identified two master courses:
one master course at the Tampere University (Finalnd) and one
master course at the University of Novi Sad (Serbia). The reason for
selecting courses in different countries and with different instruc-
tors was to increase the generality of the results. Indeed, results will
be more generalizable if cross-case conclusions are comparable.

Projects and Participant Selection. In this Section, we describe the
projects and participants selection for both replications. The project
assignment was mandatory for the course. The first members of the
teams were picked by instructors, afterward each picked member
was instructed to pick one next member from remaining students
until the groups are formed. As a part of QA activities, students
were instructed to use SonarQube (community Version 7.4 (build
18908) - more details about the adopted tool are reported in the
online appendix included in the replication package4). SonarQube
server was set-up and administered by course instructors.

Replication 1. The research was done in the context of a soft-
ware engineering university course with 133 second-year master
students at Tampere University.

The project assignments included the development of a tool to
analyze all the commits of any Git-based projects with the three
static analysis tools and export the results in a csv file. Performance
and efficiency were considered the most important non-functional
requirements. Students were organized in teams composed of 4-5
persons. Each team developed the same project.

The 133 students were organized in six groups of sizes from 4 to
6 members, for a total of 26 groups. For completing the assignments
students were given two months (from the beginning of February
2019 until the end of April 2019), during this period they had regular
weekly meetings with teaching staff.

Replication 2. The research was done in the context of a soft-
ware engineering course with 52 fourth-year bachelor students at
the University of Novi Sad.

The project assignments included a high-level specification of
an e-commerce system and instructions for the development pro-
cess. Students were expected to further refine given requirements
specification, and to design and implement a solution using con-
cepts of domain-driven design [7] and microservices [20]. Students
were organized in teams, each team was responsible for a set of
microservices—a system module. Students were given training on
how to design microservice-based systems and how to develop
microservices in .NET technology.

The 52 students were organized in 7 teams of sizes from 6 to 8
members. For completing the assignments students were given 3
months (from December 2018 until March 2019), during this period
they had regular bi-weekly meetings with teaching staff.

https://figshare.com/s/f5d0a0a3ee0a6b23468e
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2.4 Data Collection
Student teams that successfully completed the development phase
of the project assignment were given an excel file with the lists of
open issues that need to be fixed, plus two columns for collecting
needed time (effort) to fix an issue alongside with status of the fix.
Students were asked to resolve as many issues as they can, and
report back spent effort and status of issue fixes. Upon receiving
reports, SonarQube analysis is performed on committed code by
instructors to validate reported issue fixes.

2.5 Data Analysis
We applied three accuracy evaluation criteria: RE (Relative Error),
MMRE (Mean Magnitude Relative Error), MdMRE (Median Magni-
tude Relative Error). The usage of different indicators allows us to
obtain a more complete picture of accuracy.

Good estimations are characterized by a small value of
Mean(RE) [5]. However, it can happen that large positive values
of RE𝑖 are balanced by large negative values of RE𝑖 . When this
happens, a small value of Mean(RE) may not imply good estima-
tions [5]. Positive values of Mean(RE) indicate that, on average, the
remediation time that SonarQube suggests is underestimated, while
negative values indicate overestimation. Moreover, the lower the
𝑀𝑑𝑀𝑅𝐸 value is, the better SonarQube’s estimations are.

3 RESULTS
As for Replication 1, we collected data from 26 projects. However,
only 11 projects provided valid data (containing the estimated and
the actual effort to fix all the TD items), while for Replication 2 all
of 6 projects provided valid data. The complete results are available
in the replication package 4.

3.1 TD items introduced (RQ1)
Replication 1. The 11 projects violated 107 Sonarqube TD items
4,081 times mainly of type Code Smells (90%). Considering the
severity level, 38% of the TD items were Minor, 47% Major, and 11%
Critical.

In the analyzed project, only 35 TD items were violated more
than 20 times, of which eight TD items were violated more than
100 times. Among these 35 TD items, 30 were Code Smells (CS),
three were Bugs, and two were Vulnerability (Vuln.). Considering
the severity assigned by SonarQube 18 were Major, 10 Minor, 5
Critical, Critical, and Blocker 1 respectively.

Replication 2. The 6 projects violated 63 SonarQube TD items 497
times. Considering the severity level, 55% were Major, 32% Minor,
4.2% Critical, and 0.4% Blocker.

In the analyzed project, only 12 TD items were violated more
than 10 times, of which 7 TD items were violated more than 30
times. Note that we report results only for the TD items violated
more than 20 times in all the projects. Among these 12 TD items, 9
were Major, 3 Minor as severity assigned by SonarQube.

Cross-case considerations. Both replications introduced different
types of TD Items. Code Smells were the most diffused ones, while
security vulnerabilities were very rarely introduced.

Finding 1. Junior developers tend to incur more code smells
over other TD types.

Since the amount of TD items introduced by junior developers
is significant, we can proceed with the analysis of the remaining
RQ𝑠 .

3.2 TD items commonly refactored (RQ2)
Replication 1. Considering the TD items violated by developers, out
of 4,081 recurrences, 63% was fixed, while the remaining 37% is still
open (Table 1). Moreover, among the TD items violated more than
20 times, five of them are fixed in more than 70% of the cases. For
three of the 11 projects (prj. #15, prj. #22 and prj. #26) developers
did not fix any TD items, while for one project (proj. #10) they fixed
all the violated TD items.

Replication 2. Developers fixed all the TD items in their projects.
Considering the different analyzed projects, developers spent less
the same time to fix the same issues compared with the time esti-
mated by SonarQube. Only in some isolated cases (TD items: 1473,
1651, and 1768) the actual fixing time was higher than the estimated
one. For example, TD item 1473 was fixed 56 times, and only in
3 cases belong to the same group the time was near the double
(Table 2). All the detailed information is available in the replication
package 4.

Cross-case considerations. Developers fixed most of the TD items.
While Replication 2 fixed all the introduced TD items, in Replication
1 developers fixed more than 80% of them, mainly focusing on Code
Smells. It is interesting to note that Replication 1 fixed all the TD
Items classified as Info, even if they did not account for the TD
remediation time calculated by SonarQube, as they considered their
presence as potentially harmful.

Finding 2. Junior developers tend to refactor more code
smells over other TD types.

3.3 TD items refactoring time (RQ3)
Replication 1. All the teams dedicated 164 hours (9,856.13 minutes)
in total to refactoring activities, with an average of 40 minutes per
TD item. 9 projects spent a minimum of 1 minute and a maximum
of 2.7 minutes. Two projects (prj. 15 and prj. 18) spent more time to
refactor (more than 10 minutes per TD items) even if they were not
the most infected ones (93 TD items and 112 TD items respectively).
On the contrary, the two projects infected by the highest number
of TD items (more than 1,600 TD items), spent the same time to
refactor the code. The project (prj. 10) were developers spent less
time to refactor (1 minute) did not close any TD items in the code.

Considering Type and Severity, Bug, Code Smells, and Vulner-
ability are fixed in the same proportion (60 %), while looking at
Severity, developers fixed mostly low-level TD items (Info) (88 %)
and near 60 % of the other ones. It is important to note that junior
developers fixed even if the did not account as TD.

Replication 2. All the junior developer groups dedicated 20 hours
(1,217 minutes) in total to refactoring activities within average
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Table 1: Refactoring and Fixing Time grouped by Type and Severity (Replication 1) (RQ1-RQ4)

TD Items Diffuseness Refactoring Accuracy
(RQ1) (RQ2) (RQ3) (RQ4)
#TD introd.
items

#TD fixed
items

%TD fixed
items

overall
ref.time

TD fix. time
(min)

%TD fix. time
(min)

Mean(RE) MmRE MdMRE

Type
Bug 122 78 64 % 264 172 65 % -403% 525% 495%
CS 3703 2323 63 % 8906 6669 75 % -167.6% 456% 435%
Vuln. 1256 162 13 % 6686 504 8 % -1256% 629% 650%

Severity

Block. 58 30 52 % 113 66 58 % -374% 436% 445%
Crit. 465 266 57 % 856 559 65 % -493% 472% 452%
Maj. 1945 1245 64 % 5443 4222 78 % -1898% 581% 584%
Min. 1557 973 62 % 3343 2405 72 % -1528% 378% 339%
Info 56 49 88 % 104 93 89 % -198% 318% 225%

Table 2: Refactoring and Fixing Time grouped by Type and Severity (Replication 2) (RQ1-RQ4)

TD Items Diffuseness Refactoring Accuracy
(RQ1) (RQ2) (RQ3) (RQ4)
#TD introd.
items

#TD fixed
items

%TD fixed
items

overall
ref.time

TD fix. time
(min)

%TD fix. time
(min)

Mean(RE) MmRE MdMRE

Type
Bug 10 10 100% 15 15 100% -76% 78% 78%
CS 475 475 100% 1,225 1,225 100% -56% 70% 69%
Vuln. 3 3 100% 3 3 100% -80% 80% 80%

Severity

Block. 2 2 100% 2 2 100% 70% 70% 70%
Crit. 21 21 100% 93 93 100% -63% 69% 68%
Maj. 312 312 100% 674 674 100% -64% 63% 63%
Min. 153 153 100% 473 473 100% -53% 76% 75%

17.363 minutes per TD item. All the TD items introduced in the
projects, differently than in Replication 1, were fixed.

Finding 3. Junior developers focus equally on all TD items,
independently from the severity and type assigned by Sonar-
Qube

3.4 Remediation time accuracy (RQ4)
The Remediation time for the vast majority of TD items was lower
than the estimated one in both replications (Table 1 and Table 2).

In Replication 1, only in 19 TD items, out the 104 fixed (18%),
the actual time was higher than the estimated one. On average,
the actual remediation time was at least half than the estimated
one, while in some cases, even 20 times lower. In Replication 2, only
in case of a TD Item (TD Item id=1868), and only in a very few
instances (18%), developers took longer than expected to fix it.

No noticeable differences emerge between different types of TD
items of different severity levels.

The lower remediation time spent by junior developers might
be due to their low experience or to the overestimation of the
SonarQube remediation time. Developers might have fixed them
with a very quick and non-clean solution. We can speculate that
senior developers, even if they are expected to be faster to code,
might invest more time reasoning on the reasons of the TD Items,
and might take longer to think of better solutions to avoid the
problems. However, no other TD Items were introduced after the
fixing of the previous ones. Therefore, we can assume that they
accurately refactored the code.

Finding 4. Junior developers spend no more than 50% of the
SonarQube estimated remediation time to fix TD Items, in
several cases the remediation time is 20 times lower than the
estimated one.

4 THREATS TO VALIDITY
Construct Validity. We adopted the default set of collected measures
considered by the sonarQube model since practitioners are reluc-
tant to customize the built-in quality gate and mostly rely on the
standard set of rules [28]. Also, we have tried as well as possible
to replicate the conditions adopted by practitioners that use this
tool, although we are aware that the detection accuracy of some
rules may not be precise. Moreover, developers selected the TD
items they had to fix to reach the quality gate without adopting
any particular prioritization model [11].

Some developers of the considered projects might use SonarQube
during software development and thus might remove some TD
items while leaving others. This might affect the validity of the
results on the diffuseness of TD items. In particular, the presence of
TD items (or the presence of some TD items) in some projects might
be underestimated. This threat is shared with past work [23, 24]
that studied the diffuseness of TD items detected by SonarQube.
Therefore, we foster researchers to study the diffuseness of TD
items over time so as to understand whether, or not, some TD items
are more fixed than others. Our work, besides adding evidence on
the diffuseness of TD items, poses the basis for this future research
direction.

The participants formedmutually-exclusive teams, each of which
worked on a single project. This means that a variation in the results
among the projects could be due to the teams, rather than to the
projects themselves. Although we gather initial empirical evidence
on SonarQube’s remediation time, we believe that replications in
which more participants are assigned the same TD items in the
same projects are needed to strengthen the validity of our results.

Internal Validity. We filtered data and removed all of the data
that was not relevant or complete for effort estimation. Some is-
sues detected by SonarQube were duplicated, reporting the issue
violated in the same class and in the same position but with differ-
ent resolution times. We are aware of this, but we did not remove
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such issues from the analysis since we wanted to report the results
without modifying the output provided by the tool.

We filtered data and removed all data that were not relevant or
complete for effort estimation. Some issues detected by SonarQube
were duplicated, reporting the issue violated in the same class and in
the same position but with different resolution times. We are aware
of this, but we did not remove such issues when performing the
analyses since we wanted to report the results without modifying
the output provided by the tool. There might be a learning effect
that makes actual remediation time to decrease when a participant
fixes several TD items that belong to the same coding rule. Although
such an effect should be present in an actual scenario (the more an
actual developer fixes TD belonging to given coding rules, the less
the spent remediation time should be), it might have some effect
on the obtained results.

External Validity. We analyzed a relatively large number of het-
erogeneous projects. However, we are aware that other projects
might lead to slightly different results.

That is to say that our conclusions might not hold when con-
sidering a sample of TD items different from ours. For example,
we cannot be sure that the overestimation we found for TD items
whose effort level is trivial, easy, or medium is confirmed for TD
items whose effort level is sizeable, high, or complex. While we
gather initial empirical evidence on the SonarQube’s remediation
time, we highlight the need for further studies focusing, in particu-
lar, on a sample of TD items different from ours. The participants
in our study where last-year undergraduate students that can be
considered novice developers. However, we are aware that the re-
sults could be biased by the selection of participants belonging to a
set of developers more trained and with more experience in quality
assessment tools. However, we believe that senior developers could
increase the overestimation of the remediation time, due to their ex-
perience. Using students as a proxy for junior developers is subject
to great debate in the software engineering community [8, 9].

Reliability. We used standard Python packages to perform all
statistical analyses since they ease the replication of the results and
increase confidence in their quality.

5 RELATEDWORK
Considering TD at level code, the estimation has been evaluated
from the general point of view of approaches and strategies [10, 25,
30], and how to measure it, especially considering SonarQube [6,
24, 27]. Another aspect evaluated is the financial aspect of TD [2].

The main works are related to defining approaches that quantify
TD in terms of cost to fix technical issues and the interest [21],
or that conceptualize the relationship between cost and benefit to
improve software quality and help decision-making process during
maintenance activities [25].

Another model estimates TD, in particular defect, through the
product evolution [1], based on the maintenance cost increases
over time due to the code degradation. Another study focused on
automated identification of TD comparing this with the human-
provided by developers. Results showed a little overlapping between
the two estimation [30], while the usage of the tools can help the
defect identification [30].

The largest percentage of TD repayment is created by a small
subset of issue types [6], and the most frequently introduced TD
items are related to low-level coding issues [24]. Only a few works
investigated TD estimation based on SonarQube rules, consider-
ing the change- and fault-proneness [12, 16, 27]. Previous research
highlights that developers are not completely sure about the rules’
usefulness [28], [26] provided by SonarQube. Moreover, develop-
ers refactor their code according to the high severity level of the
identified violations [28] to reduce the risk of faults [26].

These developers’ concerns are confirmed also in another
study [12] that examined the fault-proneness of SonarQube vi-
olations, in order to identify which are actually fault-prone and
to assess the fault-prediction model accuracy. Based on an empir-
ical study on 21 well-known mature open-source projects from
Apache Software Foundations (ASF), results confirmed that among
the 202 SonarQube violations, only 26 have low fault-proneness
and violations classified as ”bugs” hardly never led to a failure.

Moreover, analyzing the different types and severity of the Sonar-
Qube TD items assigned, no significant difference between the clean
and infected classes was found [16]. Considering the three different
types (Bugs, Code Smells and Vulnerabilities), results showed small
effect on change-proneness and no effect on fault-proneness [16].

Considering the fault-proneness, there is no significant differ-
ence. Among the TD items that SonarQube claims to increase the
fault-proneness (classified as Bug), only one out of 36 has a very
limited effect. The others never led to failure, and on the contrary
resulted to slightly increase the change-proneness [16].

Considering the change-proneness, classes infected by Sonar-
Qube violations are more change-proneness than clean classes (not
affected by SonarQube violations) [16, 27]. Moreover, the fault-
prediction model accuracy was compared with the accuracy if only
the 26 violations are considered in the model itself. The accuracy of
the current model is extremely low (AUC 50.94%), while the other
model is more accurate (AUC 83%).

SonarQube TD prediction was also investigated in order to un-
derstand whether its calculated TD could be derived from the other
metrics that SonarQube measured and not involved in the compu-
tation. Unfortunately, the current software metrics do not predict
TD, and that TD does not seem to have a large impact on the lead
time to add functionalities and fix bugs [14].

Another study [24] compared the effort needed by developers
to repay TD with the SonarQube estimation. The analysis showed
that SonarQube remediation time is generally overestimated com-
pared to the actual time for patching TD items. The most accurate
estimations are related to Code Smells, while the least accurate to
Bugs.

In recent works [4, 23], the authors analyzed the accuracy of
the remediation time estimation associated with TD items, so as
to understand the deviation from the prediction, and help compa-
nies, but also SonarQube, to better estimate the actual TD. They
designed and conducted a case study 1) asking 65 novice developers
to remove TD items from fifteen open-source Java projects, and
2) comparing the effort developers needed to remediate TD items
with the estimation proposed by SonarQube. The results point out
that the remediation time is generally overestimated by the tool
as compared to the actual time for remediating TD items, and that
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the most accurate estimations relate to code smells, while the least
accurate concern bugs.

In the original study, each team autonomously is chosen, among
the TD items identified by SonarQube, which ones had to be fixed
to achieve the target values of TD established for the project. In
our work, developers should try to fix all the TD items detected by
SonarQube.

6 CONCLUSION
In this paper, we present a case study replicated at two universities
in two different countries to investigate: (i) the diffuseness of TD
items introduced by junior developers, (ii) the TD items commonly
refactored by junior developers and (iii) the time commonly spent
for refactoring them. Moreover, we also compare the time spent for
refactoring TD items (remediation time) with the one estimated by
SonarQube and how critical junior developers perceive them.

Results show that developers consistently introduce TD items
of different types and severity, with a predominance of TD Items
of type "Code Smells" and a very rare introduction of security vul-
nerabilities. However, when junior developers are asked to refactor
TD items, to improve the quality of the code, they address them all,
without considering the severities and types.

Another unexpected result was the very low remediation
time that our developers took to remove TD items. In previous
works [23], remediation time resulted to be overestimated only up
to a very low amount, while in this work the remediation time is
always overestimated at least by 100%, with some cases that range
up to 20 times more. The reasons might be different participants.
Differently than in Saarimaki et al. [23], here we only considered
students as participants, but with at least two years of full-time
professional experience, while in the previous work, students had
no professional experience.

On the basis of these findings, we speculate that software compa-
nies can be encouraged to adopt SonarQube because of its support
in reducing technical debt and they might employ Junior devel-
opers to refactor and clean the code efficiently. However, as also
recommended by SonarQube, the quality model must be carefully
customized by the companies, considering which rules should be
included and the related severity based on each context.

There are several future directions for the research presented in
this paper. First, we will replicate this study non-academic context,
with a different cohort and on larger projects, with different static
analysis tools [15], and in different projects [13]. Second, we will
better investigate the perceived severity of each rule, so as to un-
derstand if there is common agreement on the classification, or if it
is completely context-dependent.
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