
Experimenting with Means to Store and Monitor

IoT based Measurement Results for Energy

Saving

M. Saari *, J. Grönman*, J. Soini *, P. Rantanen, and T. Mäkinen*
* Tampere University/Faculty of Information Technology and Communication Sciences, Pori, Finland

Mika.saari@tuni.fi

Abstract - Nowadays, energy consumption and especially

energy saving are important issues. The news of global

warming has increased the need to save energy in many areas

of our living community. Therefore, several research projects

on various aspects have been established. This study is part

of our ongoing project with the purpose of developing a

means of reducing energy consumption in houses and

apartments. In particular, the project aims to find ways to

increase energy savings without compromising comfortable

living. This requires the constant measuring of living

conditions, which produces a huge amount of data that has to

be monitored continuously and stored for later analysis. In

this paper, we report our experiments to select appropriate

tools for storing, monitoring, and visualizing data on living

conditions. In our test arrangements, the data is gathered by

IoT sensors in real locations. Different types of database

systems and dashboard software have been used in the trials.

Each of these is discussed from the IoT data processing

perspective and is presented with examples of gathered data.

Finally, we present the toolset that we considered a suitable

choice for our context.

Keywords - Internet of Things; IoT; database;

visualization; sensors

I. INTRODUCTION

The news of global warming has increased people’s
awareness of energy consumption and energy saving.
These important issues should influence our everyday
decisions. The Internet of Things (IoT) has introduced a lot
of tools to measure the environment and its state. In the
academic world, several research projects from different
aspects of energy consumption and energy saving have
been established. We are focusing on this issue in our
ongoing KIEMI (“Vähemmällä Enemmän – Kohti
Kiinteistöjen Energiaminimiä”, or “Less is More: Towards
Energy Minimum of Properties” in English) project. The
aim of the project is to develop proof-of-concept
demonstrations and prototype applications that illustrate
how cost-effective, open, and modular solutions could be
utilized to improve the energy efficiency of existing, older
buildings. [1]

The developed prototypes were placed in indoor spaces
with the purpose of collecting environmental data, such as
temperature and humidity. At the beginning of the project
it became clear that the project partners were also interested
in knowing the quality of the indoor air, for example the

CO2 and VOC (volatile organic compound) content. This
kind of continuous measuring of living conditions produces
a huge amount of data. The data must be stored for later
analysis. In this research we report on our experiments to
select appropriate tools for storing, monitoring, and
visualizing the data.

The structure of this paper is as follows: In Section II,
we review the related research. In Section III, we introduce
three use cases for storing IoT data. In Section IV, we
include a discussion and suggestions for future research on
the topic and finally, Section VI summarizes the study.

II. RELATED RESEARCH

This section introduces the related studies in this
research area.

In Finland, one of the major sources of energy
consumption is housing. In fact, the heating of residential
buildings accounts for up to 68% of housing energy
consumption. Obviously, the main reason for this is our
northern geographical location. This background of energy
saving in the area of real estate and housing was handled in
our earlier study [1]. In addition, the introduced prototype
systems [2] were developed during the KIEMI project.

The prototype systems introduced in this study were
developed for testing purposes using cost-effective, open,
and modular solutions. Therefore, the prototype developing
process could be called rapid prototyping. This kind of
prototyping and the prototypes developed were handled in
more detail in an earlier research paper [1].

 In the IoT context dealt with in this paper, the collected
stream of data is potentially useful for a large number of
applications. The data coming from each connected device
can be seen as collections of time series.

A time series can be specified as a sequential set of data
points, typically measured over successive time periods.
The mathematical definition is a set of vectors x(t),t = 0,1,
2,... where t represents the time elapsed. The variable x(t)
is treated as a random variable. The measurements taken
during an event in a time series are arranged in
chronological order. [3] [4]

There are several options for storing time series. Namiot
[5] provides a survey of several data persistence options for
time series data. He discusses a couple of traditional

relational databases as well as many NoSQL solutions.
Bader et al. [6] performed a survey and comparison of open
source time series databases (TSDB). Their systematic
search yielded a total of 83 TSDBs, which were compared
using 27 criteria.

Di Martino et al. [7] compare the performance of three
different types of database systems in processing time
series data: the document database MongoDB, the column
family database Cassandra, and the time series database
InfluxDB. Musa et al. [8] conducted a performance
comparison of InfluxDB and an object-relational database,
PostgreSQL. Ramesh et al. [9] present data modeling
schemas for Cassandra and MongoDB to store time series
data. Rinaldi et al. [4] investigate how the data model used
affects the performance of database queries, using
InfluxDB in their evaluation.

III. TESTED DATABASES AND VISUALIZATION

This section presents three different use cases: RuuviTAG

[10] with a time series database, a data gathering system

with a cloud based document database, and an embedded

relational database prototype system. The proposed ways

to structure data are presented at the end of the section.

A. Time series database

A time series database is commonly used in IoT related
systems. This section goes through a time series data table
schema, the open source time series database InfluxDB,
and finally data visualization with time series databases.

1) Time series databases
Time series data is the order of the values of a variable

(e.g., temperature) at regular or set intervals (e.g., hourly).
Thus, it is a sequence of discrete time data. For example,
time-stamped information such as log files and IoT sensor
measurements can be regarded as time series data. The
measurements that make up the time series are organized
on a timeline that reveals information about the underlying
patterns. Organized data is important because there is a
relationship between time and measurements and changing
the order can change the meaning of the data. An example
of a time series would be hourly temperature measurements
at a specific weather station etc. [4]

During the rise of IoT technologies, a new trend in data
storage has also emerged in the form of time series
databases. A time series database (TSDB) is a database
used specifically to manage and store values of variables
that change over time. Time series data can be process
measurements, triggers and alarms, system and application
metrics, or revenue flows. They occur in all aspects of life,
so the need to monitor, follow, process, and connect with
them is enough. However, because the values of the
variables are constantly changing, the database must meet
specific requirements in order to process such a large
amount of data. The write speed must be considerably high
in order to track the large amount of data that is sent to the
server every second or even milliseconds. In addition, the
TSDB should have high capacity and potential scalability,
as the amount of data increases rapidly over time. In
addition, it provides quick access to real-time analytics,
which is mostly used in trending machine learning
applications. [4]

A TSDB can be designed using a standard SQL-based
relational database, such as MySQL or PostgreSQL.
Recently, NoSQL solutions have had success in designing
TSDBs instead of relational databases. NoSQL databases
have some advantages over relational databases: they are
schema-free, with a simple DB design (no relational model
is required); simple horizontal DB scaling in server
clusters; easy support for availability. NoSQL databases
use different data structures. Such an approach can benefit
from the flexibility to represent the data and quick access
to the data stored in the database, although this last point
depends on the application and the structure of the data. [4]

The most effective TSDB at this time is InfluxDB [11].

2) InfluxDB
InfluxDB is an open source TSDB developed by Influx

Data. It is written in the Go programming language
developed by Google and is optimized to handle large write
and read transactions. InfluxDB is intended for use in any
application involving large amounts of time-stamped data.
Examples of similar uses include DevOps monitoring, IoT
sensor data, and real-time analysis. A time series database
is, as its name implies, a database for storing time-stamped
data, in which the data is stored and indexed according to
the timestamp. In InfluxDB, data is stored in databases that
contain measurements. It is possible to define retention
policies for these databases. Retention instructions tell the
database how long data will be retained and how many
copies of that data will be retained in the cluster. The
measurements contained in the databases can be compared
to the tables in SQL-based databases, because at the
conceptual level they are very similar to each other. [12]

Database data is processed using the Influx query
language. The syntax of the language is expediently very
similar to the SQL query language so that users that have
experience with other SQL query languages can easily
adopt its use. Database searches are performed using the
SELECT statement, and it is possible to use other
refinement criteria in addition to it, such as GROUP BY,
INTO, or WHERE. The language also includes other useful
functions for retrieving information. One database consists
of at least two mandatory fields: a timestamp and a field.
The timestamp is stored in the time column for each data
point in the format RFC3339 and there can be only one for
each data point. The field consists of a key value pair,

Figure 1. Open-Source sensing solution.

where the column name acts as a key (Field Key) and the
corresponding data points as values (Field Value). The keys
are stored as strings, while values can be stored as either
strings, truth value variables, or as floats or integers. The
database can also contain tags. According to the fields, the
tags consist of a key-value pair, where the column name
acts as a key (Tag Key) and the corresponding data points
as values (Tag Value). All tags are stored as strings.
Although tags are not mandatory, their use is desirable
mainly because, like fields, the columns are not indexed.
As a result, database searches for tags are faster and are
ideal for storing frequently retrieved data. All of the above
together form a point. The point is thus in practice one line
in the same series with the same timestamp. [12]

3) Data visualization
Data visualization is the presentation of data and data in

the form of graphical components such as graphs, charts,
histograms, gauges, geographic maps, etc. Data
visualization helps users understand the meaning,
structures, and correlation of data by displaying raw data
more comprehensibly.

Grafana is a general-purpose open source visualization
tool developed by Grafana Labs. It makes it possible to
create different dashboards that allow time-stamped data to
be visualized. Grafana runs as a web application and
officially supports eight different data sources including
Elasticsearch and InfluxDB, among others. Since version
3.0, Grafana has been able to install other data sources as
plugins, but they are not officially supported. Dashboards
play a key role in Grafana. A single dashboard is in practice
an organized collection of different panels that together
form a visual representation of the data collected. There can
be one or more dashboards and it is possible to import or

export them from the system as JSON documents.
Panels are individual components that visualize data from
a desired source, for example in the form of a graph. Each
panel includes a Query Editor with slightly different
functionality depending on the data source used. The Query
Editor makes it easier to retrieve data from the data source
used, and any changes you make to it in the panel Query
are immediately reflected. Like dashboards, panels can be
imported or exported from the system as JSON documents.
[13]

Grönman et al. [14] present a low-cost and flexible
solution for environmental sensing. The implementation is
based on open-source components. The solution utilizes an
ROS (Robot Operating System), RuuviTag sensor, and
Raspberry Pi 3 computer to achieve a low-cost solution. By
implementing a pilot project, they concretized the potential
of their approach to environmental sensing. Potential
application areas of this solution include the microclimate
control of greenhouses and warehouses; for example,
robots can also be used in environments where it is unsafe
for humans to enter. Compact robots may also reach places
that are inaccessible to humans. The robotics solution can
utilize the information transmitted by IoT devices and
sensors. RuuviTag is connected via Bluetooth to the
Raspberry Pi and the collected data is transferred to the
TSDB database. The stored data can be visualized by the
visualization software.

In this case, they decided to choose three main software
programs to take care of the functionality of the sensing
solution. On the software level, the solution has three
important programs: RuuviCollector, InfluxDB, and
Grafana. First, the RuuviTag is switched to “RAW” mode,
which means data comes straight from the sensor and no

Figure 2. Example of a Grafana dashboard layout with charts.

modification is made on the way. RuuviCollector uses a
Raspberry Pi 3 computer with built-in Bluetooth to listen to
the data coming from RuuviTag. RuuviCollector needs to
parse the data into the correct format and then puts the data
in the InfluxDB database. When the sensor data is stored in
InfluxDB, then the connection between Grafana and the
database needs to be made. Then Grafana simply reads the
database and the user can create dashboards to visualize the
data. The software and hardware connections are shown in
Fig. 1.

Fig. 2. shows the Grafana user interface in the browser

window. The user interface is designed to work in a web

browser and can also be accessed from public or private

networks. Information content can be displayed on the user

interface. Fig. 2. also shows the RuuviTag measurements

of temperature, humidity, pressure, acceleration x,

acceleration y, acceleration z, battery voltage, RSSI, and

counts of measurements per hour.

B. Document database

In this section, one developed prototype measurement
system is presented. A document database test environment
was installed and tested in a real environment, a detached
house. The focus was to test the data flow and usability
from the sensors to a cloud database service. In addition,
during the test, a mobile application was developed to
inform the user.

The document database was tested in a detached house
where the main heating system is a fossil fuel (wood) fired
water heater. The heating is managed by the resident and
the wood burning is not automated. The house has central
heating with water circulation, which is automated. The
water circulation power depends on the outside
temperature. The measurement system is illustrated in Fig.
3.

Figure 3. Heating system with measurement system.

The measurement system consists of sensors. The data
from the temperature sensors is collected with an Arduino,
a single board microcontroller that can handle several types
of sensors. The Arduino is connected to the Raspberry Pi,
which is small single-board computer (SBC) with a Linux
Operating system (OS). The SBC can handle several
Arduinos with wired or wireless connections. In the
presented case we used a wired connection, but if a wireless
connection is used the Arduino is able to work for long
periods powered by battery.

The Raspberry Pi is commonly used in rapid prototype
test cases due to its ease of use. The Raspberry Pi and the
peripherals are off-the-shelf devices, which are low-cost
and easily available. In this scenario, the Raspberry Pi was
connected to the Internet with a WiFi connection. This
connection is needed because the collected data is sent to

the Google Firebase Realtime Database. The data includes
a timestamp with date and time, and two temperature sensor
values.

In the usage test, the measurement system collected 4.3
MB of data during about 10 months. The data was collected
once every ten minutes and the database included over 40
thousand datapoints.

The data in the database could be handled in several
ways. The Firebase Realtime database provides an interface
for reading, modifying, and saving data. In this example
case, the data was used with the TempApp mobile
application. The TempApp is an Android application and is
coded for testing purposes. The main idea was to test the
data usage possibilities. The basic functionality of the
TempApp application is to retrieve data on a mobile device
and show it to the user.

The software framework of the measurement prototype
consists of several software components. Fig 4. lists the
software used with the devices.

Figure 4. Hardware with software components.

The software in Raspberry Pi has several tasks:
importData.py gets data provided by Arduino and sends the
data to the database. Gui.py was developed for testing
purposes to show that the data collected is acceptable. This
was necessary during application development. Raspberry
Pi runs with Linux OS and therefore the remote
management capabilities provided by Linux were utilized.
A remote desktop is one useful tool for the testing phase.
Raspberry Pi also stores the data in a file, which can be
retrieved easily. Fig 5. shows a bar graph of about one week
of data.

Remote Linu software

import ata py

 ui py

 atastoring

Authentication

TempApp

 oftware for collecting data

Figure 5. Collected data from measurement prototype.

The database handles data storing and offers the
necessary interfaces for using the data. Furthermore,
Firebase provides the authentication services that were
utilized in the Firebase connections with Raspberry Pi and
the TempApp mobile application. The mobile phone runs
the TempApp software, the main purpose of which was to
provide the user with information.

C. Relational database

In one of our experiments [2], we used the embedded
relational database, SQLite, for persistent time-series data.
The aim of the study was to test cost-effective, off-the-shelf
components for measuring indoor air quality. In one of the
cases, a sensor system was installed in an apartment
building used for eldercare. In this section, we present a
simplified schema of the database of the experiment and
discuss corresponding schemas for document and time
series databases, especially for MongoDB and InfluxDB.

Table 1 shows an excerpt of the data collected by the
sensor system. The structure of the data follows the
following relational schema - tables and their columns,
primary keys (PK), alternate keys (AK), and foreign keys
(FK):

sensor_nodes: {node_idPK, description}
sensor_data: {data_idPK, timestampAK, eco2, humidity, pressure,

temperature, node_idFK}
Table 1. Excerpt of data captured by the sensors in the experiment.

ECO2 Humidity Pressure Temp. (oC) Timestamp

541 57.96 1007.44 23.54 2019-09-12
T12:00:37.000+0000

600 57.88 1007.50 23.55 2019-09-12
T12:03:57.000+0000

646 57.82 1007.82 23.57 2019-09-12
T12:07:17.000+0000

The conceptual representation of the data is shown in
Figure 6. There are two entity types, Sensor Node and
Sensor Data. Sensor Node has two attributes, ID and
Description, of which the second one is key. The key
attribute of Sensor Data is Timestamp. The other four
attributes represent the information collected at the
timestamp, ECO2 (CO2 level), Humidity, Pressure, and
Temperature. In the conceptual representation, the foreign
key column of the relational schema has been replaced with
the relationship type, collects. The primary key column of
the sensor_data table is a surrogate key and therefore it has
been omitted.

A record in a traditional relational database is a row,
whose counterpart in MongoDB is a document. The
structure of the document is composed of field and value
pairs, being similar to JSON objects. The values of fields
may include other documents, arrays, and arrays of
documents.

From the conceptual schema in Fig. 6, we can derive
different kind of schemas for the MongoDB document
database. One of them is similar to the relational schema
shown earlier:

sensor_node: {node_id, description}
sensor_data: {timestamp, eco2, humidity, pressure, temperature,

node_id}

Like the rows in relational databases, the documents
following the structure above are flat: the values of fields
are simple – no documents or arrays. The associations
between the documents are implemented by storing the key
field of the sensor_node document in the sensor_data
document, which corresponds to the principle in relational
data structures.

Another way to structure data is to use only one type of
document:

sensor_node: {
 node_id, description,
 sensor_data: [{

timestamp, eco2, humidity, pressure, temperature}]
}

The document stores information on both the sensor
nodes and the data they collect. The sensor_data is now a
field of the sensor_node document. The field is an array of

Figure 6. Conceptual schema of the database using prototype system.

documents based on the data collected by a sensor node.
Alternatively, the information about the sensor node could
be included in the sensor_data document as follows:

sensor_data: {
 timestamp, eco2, humidity, pressure, temperature,
 sensor_node: {node_id, description}
}

The InfluxDB time series database stores
measurements, which are containers of time, a field set, and
an optional tag set. Time contains timestamps, and the field
sets and tag sets are collections of key-value pairs. The
value of a field can be of string, float, integer, or Boolean
type, while a tag value can only be string type. Unlike
fields, tags are indexed. [8]

sensor_data: {
 time,
 field_set: {eco2, humidity, pressure, temperature},
 tag_set: {sensor_node}
}

Converting the relational structure of our experiment
for a time series database is relatively straightforward, as
shown above. As in the corresponding relational schema,
the data structure contains time. The data collected by the
system forms the field set. The data is classified based on
the sensor nodes, which represent tags.

IV. DISCUSSION AND CONCLUSION

The “best choice” depends on several factors: data size,
frequency of data saving, and usage of collected data.
Therefore, each use case needs a different kind of data
storage system. The previous section presented suitable
ways to store data in our use cases.

The study points out several possibilities for future
research: How to define a general data structure for storing
data? This issue is touched on in the conclusion of use
cases. Furthermore, the study raises a question about a
technical issue: How to manage databases–cloud based or
in one’s own managed servers?

The study is part of our ongoing project, the purpose of
which is to develop a means of reducing energy
consumption in houses and apartments. The presented
practical cases focus on the continuous measuring of living
conditions, which produces a large amount of data. The
data has to be monitored continuously and stored for later
analysis.

The study has introduced three different use cases of
storing and handling IoT data. Appropriate tools for
storing, monitoring, and visualizing the data of living
conditions have been presented. In our test arrangements,
the data was gathered by IoT sensors in real locations.

Different types of database systems and dashboard
software were used in the trials. As the conclusion of our

study, we found the time series database with the general-
purpose visualization tool for a suitable toolset for this kind
of context.

ACKNOWLEDGMENT

This work is part of the KIEMI project and has been
funded by the European Regional Development Fund and
the Regional Council of Satakunta.

REFERENCES

[1] M. Saari, P. Sillberg, J. Grönman, M. Kuusisto, P. Rantanen, H.

Jaakkola and J. Henno, “Reducing energy consumption with IoT
prototyping”, Acta Polytechnica Hungarica, Volume 16, Issue
Number 9, 2019.

[2] P Rantanen and M aari, “Towards the utilization of cost-effective
off-the-shelf devices for achieving energy savings in existing
buildings”, Proceedings of 2020 IEEE 10th International
Conference on Intelligent Systems (IS20), Varna, Bulgaria, 26-28
June 2020. submitted.

[3] R Adhikari and R K Agrawal, “An Introductory tudy on Time
 eries Modeling and Forecasting,” arXiv Prepr arXiv1302 6613,
vol. 1302.6613, pp. 1–68, Feb. 2013.

[4] S. Rinaldi, F. Bonafini, P. Ferrari, A. Flammini, E. Sisinni, and D.
Bianchini, “Impact of ata Model on Performance of Time Series
 atabase for Internet of Things Applications,” in 2019 IEEE
International Instrumentation and Measurement Technology
Conference (I2MTC), 2019, pp. 1–6.

[5] Namiot, “Time series databases,” Data Analytics and
Management in Data Intensive Domains (DAMDID/RCDL2015),
vol. 1536, pp. 132–137, 2015.

[6] A Bader, O Kopp, and M Falkenthal, “ urvey and comparison of
open source time series databases,” Lecture Notes Informatics
(LNI), Gesellschaft fur Informatik, vol. 266, pp. 249–268, 2017.

[7] S. Di Martino, L. Fiadone, A. Peron, V. N. Vitale, and A.
Riccabone, “Industrial Internet of Things: Persistence for Time
 eries with No QL atabases,” Proceedings - 2019 IEEE 28th
International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE 2019, pp. 340–345, 2019.

[8] E Musa, elač, M Šilić, and K Vladimir, “Comparison of
Relational and Time-Series Databases for Real-Time Massive
 atasets,” in 2019 42th International Convention on Information
and Communication Technology, Electronics and Microelectronics
(MIPRO), 2019, pp. 1065–1070.

[9] D. Ramesh, A inha, and ingh, “ ata modelling for discrete
time series data using Cassandra and Mongo B,” in 2016 3rd
International Conference on Recent Advances in Information
Technology (RAIT), 2016, pp. 598–601.

[10] Ruuvitag, retrieved May 12, 2020, from
https://ruuvi.com/files/ruuvitag-tech-spec-2019-7.pdf

[11] DB-Engines Ranking of Time Series DBMS, retrieved May 12,
2020, from https://db-engines.com/en/ranking/time+series+dbms

[12] InfluxDB 1.8 documentation, retrieved May 12, 2020, from
https://docs.influxdata.com/influxdb/v1.8/

[13] Grafana, retrieved May 12, 2020, from
https://grafana.com/grafana/.

[14] J. Grönman, M. Saari, J. Vihervaara and J. Viljanen, “An Open-
Source Solution for Mobile Robot Based Environmental ensing”
in 2020 43th International Convention on Information and
Communication Technology, Electronics and Microelectronics
(MIPRO), 2020, submitted.

