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Abstract - Nowadays, energy consumption and especially 

energy saving are important issues. The news of global 

warming has increased the need to save energy in many areas 

of our living community. Therefore, several research projects 

on various aspects have been established. This study is part 

of our ongoing project with the purpose of developing a 

means of reducing energy consumption in houses and 

apartments. In particular, the project aims to find ways to 

increase energy savings without compromising comfortable 

living. This requires the constant measuring of living 

conditions, which produces a huge amount of data that has to 

be monitored continuously and stored for later analysis. In 

this paper, we report our experiments to select appropriate 

tools for storing, monitoring, and visualizing data on living 

conditions. In our test arrangements, the data is gathered by 

IoT sensors in real locations. Different types of database 

systems and dashboard software have been used in the trials. 

Each of these is discussed from the IoT data processing 

perspective and is presented with examples of gathered data. 

Finally, we present the toolset that we considered a suitable 

choice for our context.  

Keywords - Internet of Things; IoT; database; 

visualization; sensors 

I. INTRODUCTION 

The news of global warming has increased people’s 
awareness of energy consumption and energy saving. 
These important issues should influence our everyday 
decisions. The Internet of Things (IoT) has introduced a lot 
of tools to measure the environment and its state. In the 
academic world, several research projects from different 
aspects of energy consumption and energy saving have 
been established. We are focusing on this issue in our 
ongoing KIEMI (“Vähemmällä Enemmän – Kohti 
Kiinteistöjen Energiaminimiä”, or “Less is More: Towards 
Energy Minimum of Properties” in English) project. The 
aim of the project is to develop proof-of-concept 
demonstrations and prototype applications that illustrate 
how cost-effective, open, and modular solutions could be 
utilized to improve the energy efficiency of existing, older 
buildings. [1] 

The developed prototypes were placed in indoor spaces 
with the purpose of collecting environmental data, such as 
temperature and humidity. At the beginning of the project 
it became clear that the project partners were also interested 
in knowing the quality of the indoor air, for example the 

CO2 and VOC (volatile organic compound) content. This 
kind of continuous measuring of living conditions produces 
a huge amount of data. The data must be stored for later 
analysis. In this research we report on our experiments to 
select appropriate tools for storing, monitoring, and 
visualizing the data.  

The structure of this paper is as follows: In Section II, 
we review the related research. In Section III, we introduce 
three use cases for storing IoT data. In Section IV, we 
include a discussion and suggestions for future research on 
the topic and finally, Section VI summarizes the study. 

II. RELATED RESEARCH 

This section introduces the related studies in this 
research area.  

In Finland, one of the major sources of energy 
consumption is housing. In fact, the heating of residential 
buildings accounts for up to 68% of housing energy 
consumption. Obviously, the main reason for this is our 
northern geographical location. This background of energy 
saving in the area of real estate and housing was handled in 
our earlier study [1]. In addition, the introduced prototype 
systems [2] were developed during the KIEMI project. 

The prototype systems introduced in this study were 
developed for testing purposes using cost-effective, open, 
and modular solutions. Therefore, the prototype developing 
process could be called rapid prototyping. This kind of 
prototyping and the prototypes developed were handled in 
more detail in an earlier research paper [1].   

  In the IoT context dealt with in this paper, the collected 
stream of data is potentially useful for a large number of 
applications. The data coming from each connected device 
can be seen as collections of time series. 

A time series can be specified as a sequential set of data 
points, typically measured over successive time periods. 
The mathematical definition is a set of vectors x(t),t = 0,1, 
2,... where t represents the time elapsed. The variable x(t) 
is treated as a random variable. The measurements taken 
during an event in a time series are arranged in 
chronological order. [3] [4]  

There are several options for storing time series. Namiot 
[5] provides a survey of several data persistence options for 
time series data. He discusses a couple of traditional 



relational databases as well as many NoSQL solutions. 
Bader et al. [6] performed a survey and comparison of open 
source time series databases (TSDB). Their systematic 
search yielded a total of 83 TSDBs, which were compared 
using 27 criteria.  

Di Martino et al. [7] compare the performance of three 
different types of database systems in processing time 
series data: the document database MongoDB, the column 
family database Cassandra, and the time series database 
InfluxDB. Musa et al. [8] conducted a performance 
comparison of InfluxDB and an object-relational database, 
PostgreSQL. Ramesh et al. [9] present data modeling 
schemas for Cassandra and MongoDB to store time series 
data. Rinaldi et al. [4] investigate how the data model used 
affects the performance of database queries, using 
InfluxDB in their evaluation. 

III. TESTED DATABASES AND VISUALIZATION 

This section presents three different use cases: RuuviTAG 

[10] with a time series database, a data gathering system 

with a cloud based document database, and an embedded 

relational database prototype system. The proposed ways 

to structure data are presented at the end of the section. 

A. Time series database 

A time series database is commonly used in IoT related 
systems. This section goes through a time series data table 
schema, the open source time series database InfluxDB, 
and finally data visualization with time series databases. 

1) Time series databases 
Time series data is the order of the values of a variable 

(e.g., temperature) at regular or set intervals (e.g., hourly). 
Thus, it is a sequence of discrete time data. For example, 
time-stamped information such as log files and IoT sensor 
measurements can be regarded as time series data. The 
measurements that make up the time series are organized 
on a timeline that reveals information about the underlying 
patterns. Organized data is important because there is a 
relationship between time and measurements and changing 
the order can change the meaning of the data. An example 
of a time series would be hourly temperature measurements 
at a specific weather station etc. [4] 

During the rise of IoT technologies, a new trend in data 
storage has also emerged in the form of time series 
databases. A time series database (TSDB) is a database 
used specifically to manage and store values of variables 
that change over time. Time series data can be process 
measurements, triggers and alarms, system and application 
metrics, or revenue flows. They occur in all aspects of life, 
so the need to monitor, follow, process, and connect with 
them is enough. However, because the values of the 
variables are constantly changing, the database must meet 
specific requirements in order to process such a large 
amount of data. The write speed must be considerably high 
in order to track the large amount of data that is sent to the 
server every second or even milliseconds. In addition, the 
TSDB should have high capacity and potential scalability, 
as the amount of data increases rapidly over time. In 
addition, it provides quick access to real-time analytics, 
which is mostly used in trending machine learning 
applications. [4] 

A TSDB can be designed using a standard SQL-based 
relational database, such as MySQL or PostgreSQL. 
Recently, NoSQL solutions have had success in designing 
TSDBs instead of relational databases. NoSQL databases 
have some advantages over relational databases: they are 
schema-free, with a simple DB design (no relational model 
is required); simple horizontal DB scaling in server 
clusters; easy support for availability. NoSQL databases 
use different data structures. Such an approach can benefit 
from the flexibility to represent the data and quick access 
to the data stored in the database, although this last point 
depends on the application and the structure of the data. [4]  

The most effective TSDB at this time is InfluxDB [11]. 

2) InfluxDB 
InfluxDB is an open source TSDB developed by Influx 

Data. It is written in the Go programming language 
developed by Google and is optimized to handle large write 
and read transactions. InfluxDB is intended for use in any 
application involving large amounts of time-stamped data. 
Examples of similar uses include DevOps monitoring, IoT 
sensor data, and real-time analysis. A time series database 
is, as its name implies, a database for storing time-stamped 
data, in which the data is stored and indexed according to 
the timestamp. In InfluxDB, data is stored in databases that 
contain measurements. It is possible to define retention 
policies for these databases. Retention instructions tell the 
database how long data will be retained and how many 
copies of that data will be retained in the cluster. The 
measurements contained in the databases can be compared 
to the tables in SQL-based databases, because at the 
conceptual level they are very similar to each other. [12] 

Database data is processed using the Influx query 
language. The syntax of the language is expediently very 
similar to the SQL query language so that users that have 
experience with other SQL query languages can easily 
adopt its use. Database searches are performed using the 
SELECT statement, and it is possible to use other 
refinement criteria in addition to it, such as GROUP BY, 
INTO, or WHERE. The language also includes other useful 
functions for retrieving information. One database consists 
of at least two mandatory fields: a timestamp and a field. 
The timestamp is stored in the time column for each data 
point in the format RFC3339 and there can be only one for 
each data point. The field consists of a key value pair, 

Figure 1. Open-Source sensing solution. 



where the column name acts as a key (Field Key) and the 
corresponding data points as values (Field Value). The keys 
are stored as strings, while values can be stored as either 
strings, truth value variables, or as floats or integers. The 
database can also contain tags. According to the fields, the 
tags consist of a key-value pair, where the column name 
acts as a key (Tag Key) and the corresponding data points 
as values (Tag Value). All tags are stored as strings. 
Although tags are not mandatory, their use is desirable 
mainly because, like fields, the columns are not indexed. 
As a result, database searches for tags are faster and are 
ideal for storing frequently retrieved data. All of the above 
together form a point. The point is thus in practice one line 
in the same series with the same timestamp. [12] 

3) Data visualization 
Data visualization is the presentation of data and data in 

the form of graphical components such as graphs, charts, 
histograms, gauges, geographic maps, etc. Data 
visualization helps users understand the meaning, 
structures, and correlation of data by displaying raw data 
more comprehensibly. 

Grafana is a general-purpose open source visualization 
tool developed by Grafana Labs. It makes it possible to 
create different dashboards that allow time-stamped data to 
be visualized. Grafana runs as a web application and 
officially supports eight different data sources including 
Elasticsearch and InfluxDB, among others. Since version 
3.0, Grafana has been able to install other data sources as 
plugins, but they are not officially supported. Dashboards 
play a key role in Grafana. A single dashboard is in practice 
an organized collection of different panels that together 
form a visual representation of the data collected. There can 
be one or more dashboards and it is possible to import or 

export them from the system as JSON documents. 
Panels are individual components that visualize data from 
a desired source, for example in the form of a graph. Each 
panel includes a Query Editor with slightly different 
functionality depending on the data source used. The Query 
Editor makes it easier to retrieve data from the data source 
used, and any changes you make to it in the panel Query 
are immediately reflected. Like dashboards, panels can be 
imported or exported from the system as JSON documents. 
[13] 

Grönman et al. [14] present a low-cost and flexible 
solution for environmental sensing. The implementation is 
based on open-source components. The solution utilizes an 
ROS (Robot Operating System), RuuviTag sensor, and 
Raspberry Pi 3 computer to achieve a low-cost solution. By 
implementing a pilot project, they concretized the potential 
of their approach to environmental sensing. Potential 
application areas of this solution include the microclimate 
control of greenhouses and warehouses; for example, 
robots can also be used in environments where it is unsafe 
for humans to enter. Compact robots may also reach places 
that are inaccessible to humans. The robotics solution can 
utilize the information transmitted by IoT devices and 
sensors. RuuviTag is connected via Bluetooth to the 
Raspberry Pi and the collected data is transferred to the 
TSDB database. The stored data can be visualized by the 
visualization software.  

In this case, they decided to choose three main software 
programs to take care of the functionality of the sensing 
solution. On the software level, the solution has three 
important programs: RuuviCollector, InfluxDB, and 
Grafana. First, the RuuviTag is switched to “RAW” mode, 
which means data comes straight from the sensor and no 

Figure 2.   Example of a Grafana dashboard layout with charts. 



modification is made on the way. RuuviCollector uses a 
Raspberry Pi 3 computer with built-in Bluetooth to listen to 
the data coming from RuuviTag. RuuviCollector needs to 
parse the data into the correct format and then puts the data 
in the InfluxDB database. When the sensor data is stored in 
InfluxDB, then the connection between Grafana and the 
database needs to be made. Then Grafana simply reads the 
database and the user can create dashboards to visualize the 
data. The software and hardware connections are shown in 
Fig. 1. 

Fig. 2. shows the Grafana user interface in the browser 

window. The user interface is designed to work in a web 

browser and can also be accessed from public or private 

networks. Information content can be displayed on the user 

interface. Fig. 2. also shows the RuuviTag measurements 

of temperature, humidity, pressure, acceleration x, 

acceleration y, acceleration z, battery voltage, RSSI, and 

counts of measurements per hour.  

B. Document database 

In this section, one developed prototype measurement 
system is presented. A document database test environment 
was installed and tested in a real environment, a detached 
house. The focus was to test the data flow and usability 
from the sensors to a cloud database service. In addition, 
during the test, a mobile application was developed to 
inform the user.  

The document database was tested in a detached house 
where the main heating system is a fossil fuel (wood) fired 
water heater. The heating is managed by the resident and 
the wood burning is not automated. The house has central 
heating with water circulation, which is automated. The 
water circulation power depends on the outside 
temperature. The measurement system is illustrated in Fig. 
3.  

 
Figure 3. Heating system with measurement system. 

The measurement system consists of sensors. The data 
from the temperature sensors is collected with an Arduino, 
a single board microcontroller that can handle several types 
of sensors. The Arduino is connected to the Raspberry Pi, 
which is small single-board computer (SBC) with a Linux 
Operating system (OS). The SBC can handle several 
Arduinos with wired or wireless connections. In the 
presented case we used a wired connection, but if a wireless 
connection is used the Arduino is able to work for long 
periods powered by battery.  

The Raspberry Pi is commonly used in rapid prototype 
test cases due to its ease of use. The Raspberry Pi and the 
peripherals are off-the-shelf devices, which are low-cost 
and easily available. In this scenario, the Raspberry Pi was 
connected to the Internet with a WiFi connection. This 
connection is needed because the collected data is sent to 

the Google Firebase Realtime Database. The data includes 
a timestamp with date and time, and two temperature sensor 
values.  

In the usage test, the measurement system collected 4.3 
MB of data during about 10 months. The data was collected 
once every ten minutes and the database included over 40 
thousand datapoints.   

The data in the database could be handled in several 
ways. The Firebase Realtime database provides an interface 
for reading, modifying, and saving data. In this example 
case, the data was used with the TempApp mobile 
application. The TempApp is an Android application and is 
coded for testing purposes. The main idea was to test the 
data usage possibilities. The basic functionality of the 
TempApp application is to retrieve data on a mobile device 
and show it to the user.  

The software framework of the measurement prototype 
consists of several software components. Fig 4. lists the 
software used with the devices.  

 
Figure 4. Hardware with software components. 

The software in Raspberry Pi has several tasks: 
importData.py gets data provided by Arduino and sends the 
data to the database. Gui.py was developed for testing 
purposes to show that the data collected is acceptable. This 
was necessary during application development. Raspberry 
Pi runs with Linux OS and therefore the remote 
management capabilities provided by Linux were utilized. 
A remote desktop is one useful tool for the testing phase. 
Raspberry Pi also stores the data in a file, which can be 
retrieved easily. Fig 5. shows a bar graph of about one week 
of data.  
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Figure 5. Collected data from measurement prototype. 

The database handles data storing and offers the 
necessary interfaces for using the data. Furthermore, 
Firebase provides the authentication services that were 
utilized in the Firebase connections with Raspberry Pi and 
the TempApp mobile application. The mobile phone runs 
the TempApp software, the main purpose of which was to 
provide the user with information. 

C. Relational database 

In one of our experiments [2], we used the embedded 
relational database, SQLite, for persistent time-series data. 
The aim of the study was to test cost-effective, off-the-shelf 
components for measuring indoor air quality. In one of the 
cases, a sensor system was installed in an apartment 
building used for eldercare. In this section, we present a 
simplified schema of the database of the experiment and 
discuss corresponding schemas for document and time 
series databases, especially for MongoDB and InfluxDB. 

Table 1 shows an excerpt of the data collected by the 
sensor system. The structure of the data follows the 
following relational schema - tables and their columns, 
primary keys (PK), alternate keys (AK), and foreign keys 
(FK): 

sensor_nodes: {node_idPK, description} 
sensor_data: {data_idPK, timestampAK, eco2, humidity, pressure, 

temperature, node_idFK} 
Table 1. Excerpt of data captured by the sensors in the experiment. 

ECO2 Humidity Pressure Temp. (oC) Timestamp 

541 57.96 1007.44 23.54 2019-09-12 
T12:00:37.000+0000 

 

600 57.88 1007.50 23.55 2019-09-12 
T12:03:57.000+0000 

 

646 57.82 1007.82 23.57 2019-09-12 
T12:07:17.000+0000 

 

 

The conceptual representation of the data is shown in 
Figure 6. There are two entity types, Sensor Node and 
Sensor Data.  Sensor Node has two attributes, ID and 
Description, of which the second one is key.  The key 
attribute of Sensor Data is Timestamp. The other four 
attributes represent the information collected at the 
timestamp, ECO2 (CO2 level), Humidity, Pressure, and 
Temperature. In the conceptual representation, the foreign 
key column of the relational schema has been replaced with 
the relationship type, collects. The primary key column of 
the sensor_data table is a surrogate key and therefore it has 
been omitted. 

A record in a traditional relational database is a row, 
whose counterpart in MongoDB is a document. The 
structure of the document is composed of field and value 
pairs, being similar to JSON objects. The values of fields 
may include other documents, arrays, and arrays of 
documents.  

From the conceptual schema in Fig. 6, we can derive 
different kind of schemas for the MongoDB document 
database. One of them is similar to the relational schema 
shown earlier: 

sensor_node: {node_id, description} 
sensor_data: {timestamp, eco2, humidity, pressure, temperature, 

node_id} 

 

Like the rows in relational databases, the documents 
following the structure above are flat: the values of fields 
are simple – no documents or arrays. The associations 
between the documents are implemented by storing the key 
field of the sensor_node document in the sensor_data 
document, which corresponds to the principle in relational 
data structures.  

Another way to structure data is to use only one type of 
document: 

sensor_node: { 
     node_id, description, 
     sensor_data: [{ 

timestamp, eco2, humidity, pressure, temperature}] 
} 

 

The document stores information on both the sensor 
nodes and the data they collect. The sensor_data is now a 
field of the sensor_node document. The field is an array of 

                              

  
  

           

         

    

        

        

           

Figure 6. Conceptual schema of the database using prototype system. 



documents based on the data collected by a sensor node.  
Alternatively, the information about the sensor node could 
be included in the sensor_data document as follows: 

sensor_data: { 
     timestamp, eco2, humidity, pressure, temperature,    
     sensor_node: {node_id, description} 
} 

 

The InfluxDB time series database stores 
measurements, which are containers of time, a field set, and 
an optional tag set. Time contains timestamps, and the field 
sets and tag sets are collections of key-value pairs.  The 
value of a field can be of string, float, integer, or Boolean 
type, while a tag value can only be string type. Unlike 
fields, tags are indexed. [8] 

sensor_data: { 
   time, 
   field_set: {eco2, humidity, pressure, temperature}, 
   tag_set: {sensor_node} 
} 

 

Converting the relational structure of our experiment 
for a time series database is relatively straightforward, as 
shown above. As in the corresponding relational schema, 
the data structure contains time. The data collected by the 
system forms the field set. The data is classified based on 
the sensor nodes, which represent tags. 

IV. DISCUSSION AND CONCLUSION 

The “best choice” depends on several factors: data size, 
frequency of data saving, and usage of collected data. 
Therefore, each use case needs a different kind of data 
storage system. The previous section presented suitable 
ways to store data in our use cases. 

The study points out several possibilities for future 
research: How to define a general data structure for storing 
data? This issue is touched on in the conclusion of use 
cases. Furthermore, the study raises a question about a 
technical issue: How to manage databases–cloud based or 
in one’s own managed servers?  

The study is part of our ongoing project, the purpose of 
which is to develop a means of reducing energy 
consumption in houses and apartments. The presented 
practical cases focus on the continuous measuring of living 
conditions, which produces a large amount of data. The 
data has to be monitored continuously and stored for later 
analysis.  

The study has introduced three different use cases of 
storing and handling IoT data. Appropriate tools for 
storing, monitoring, and visualizing the data of living 
conditions have been presented. In our test arrangements, 
the data was gathered by IoT sensors in real locations.  

Different types of database systems and dashboard 
software were used in the trials. As the conclusion of our 

study, we found the time series database with the general-
purpose visualization tool for a suitable toolset for this kind 
of context.  
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