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Abstract—1In this paper, we study a visual sensing scheme
for 6 degree-of-freedom (DOF) tool center point (TCP) pose
estimation of large-scale, long-reach manipulators. A sensor
system is proposed, designed especially for mining manipu-
lators, comprising a stereo camera running a simultaneous
localization and mapping (SLAM) algorithm near the TCP
and multiple cameras that track a fiducial marker attached
near the stereo camera. In essence, the TCP pose is formulated
using two different routes in a co-operative (eye-in-hand/eye-to-
hand) manner using data fusion, with the goal of increasing the
system’s fault tolerance and robustness via sensor redundancy.
The system is studied in offline data analysis based on real-
world measurements recorded using a hydraulic 6 DOF robotic
manipulator with a 5 m reach. The SLAM pose trajectory
is obtained using the open source ORB-SLAM?2 Stereo algo-
rithm, whereas marker-based tracking is realized with a high-
end motion capture system. For reference measurements, the
pose trajectory is also formulated using joint encoders and a
kinematic model of the manipulator. Results of the 6 DOF pose
estimation using the proposed sensor system are presented, with
future work and key challenges also highlighted.

I. INTRODUCTION
A. Motivation

Mobile working machines represent a significant field in
industry, and they come in many different configurations
and sizes with respect to their on-board manipulators. In
machines designed specifically for mining and construction,
the reach of these manipulators can range from approxi-
mately 10-15 m in 6 degrees-of-freedom (DOF) tunneling
machines to only 1-2 m in small surface drilling platforms.
The annual production volume for a specialized machine
type can be a few hundred units, while the volume for
some production variants can be as low as 1-10 units per
year. Therefore, these high-precision, low-volume robotic
manipulators call for innovative sensor system solutions that
reduce the manufacturing, assembly, and maintenance costs
of these machines. The current solution is to fit each joint
of a manipulator with a joint sensor, which also requires
additional protective housing, mechanical couplings, and ca-
bling that are suitable for the given machine type. Therefore,
many components are required to fit all the machine types
with mechanical precision sensing, which also results in an
overall high cost in the terms of the bill of materials (BOM).
The underlying goal of the present research is that all types
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of mining machines are equipped with a standardized sensor
system that is of low cost, easy to install, and scalable to
fulfill all requirements across the range of machine types.

Each manipulator should have a sensor system because the
6 DOF tool center point (TCP) pose of the manipulator must
be known. In mining machines, knowledge of the joint states
and the TCP pose is currently required to carry out automated
and semi-automated operations, as a high production rate is
very valuable. Due to this, tunneling jumbos, for example,
can have up to four drilling booms attached to the same
machine for parallel operations. Overall, the goal is to move
toward fully automated operations in these hazardous appli-
cations, as discussed in, for example, [1]. From a practical
point of view, the important factor is being able to accurately
measure and control the TCP pose that is expressed in
Cartesian work space with respect to a world frame. For this
purpose, methods other than the traditional kinematic chain
formulation with joint sensors could also be developed. Due
to the long reach and high payload-to-own-weight ratios of
these manipulators, the traditional method based on a serial
kinematic chain structure will always impose significant
errors at the end of the chain (the TCP) due to structural
flexibilities and calibration uncertainties. Thus, driving these
manipulators with external sensor systems, in GPS-denied
environments, is of great interest.

Compared to traditional industrial robots, large-scale,
long-reach manipulators are often under the radar in research.
Whereas an industrial (stationary) robot has a relatively
low payload-to-own-weight ratio and precision sensors at
each joint providing the manufacturer-quaranteed absolute
accuracy and repeatability for the TCP pose in Cartesian
space, large-scale manipulators have much higher payload-
to-own-weight ratios (e.g., one), with many applications
still operated manually, as no sensors are installed due to
the harsh working conditions and structural flexibilities that
distort the results if basic rigid-body kinematics are applied.
This situation is changing, however, as the automation level
of these manipulators is increasing, thus requiring sensors.
In forestry machines, for example, inertial sensors have
been recently introduced commercially to measure the joint
angles that are sensitive to gravity, making it possible for the
operator to control the TCP directly, instead of controlling
each individual joint of the manipulator. A method for
computing gravity-sensitive angles using inertial sensors was
introduced in [2].

In mining machines, sensors have long been present to
measure the joint states, as in this application the TCP pose is
required so that drilling plans can be effectively completed.



For example, an orientation error of 5° at the TCP, with
a drilling depth of 4 m, will result in a position error of
35 cm at the end of a drill hole. The accuracy of the drill
holes with respect to the drilling plan is crucial. In tunneling,
inaccurate drilling results in more drilled meters required,
along with more blastings required, which slows progress and
increases operation costs. Respectively, in long-hole drilling,
inaccurate drilling can lead to ore-loss or increased dilution
(waste rock) of the product. Overall, straight drill holes result
in a better total economy. As rough target values for accuracy
in these applications, the positioning error at the TCP should
be less than 1 cm and the orientation error less than 1°,
respectively.

This paper is the new step after our previous research [3],
in which pure visual simultaneous localization and mapping
(SLAM)-based TCP pose estimation was studied. In this
paper, we extend toward a more complete sensor system
concept for the described application. Namely, marker-based
TCP pose tracking is combined with the SLAM module in an
attempt to obtain a more robust pose estimation. In essence,
this corresponds to the so-called eye-in-hand/eye-to-hand co-
operation, which is a method used for visual servoing, see
e.g. [4], [5]. In this work, the goal of the proposed solution
is to increase the system’s fault tolerance in the sense of
sensor redundancy, while having both measurements (marker
tracking and SLAM) available complement each other after
data fusion. For marker tracking, we used a commercial Opti-
Track motion capture system, which conveniently offered the
required functionality for measurements, such as calibration
and multi-camera tracking. Although such a high-end system
in commercial mining machines is unrealistic, lower-end
cameras are becoming more affordable and advanced, not
only the hardware but also software. Consequently, multi-
camera solutions with redundancy are becoming more viable
in cost-sensitive industry applications, and this paper is a step
toward this path. For SLAM, we used a Stereolabs ZED
camera along with the open source ORB-SLAM2!' Stereo
algorithm [6]. A test case using a laboratory-installed 6
DOF hydraulic crane was designed for a simple practical
experiment to study the feasibility and challenges in realizing
the conceptual sensor system at full scale. The results of
the offline data analysis show that the main challenges lie
in the system’s calibration (for precise measurements) and
in control design. Further practical issues, such as model
development for kinematic calibration of flexible robots, are
beyond the scope of this study.

B. Brief Literature Review

Due to the harsh and highly varying environmental con-
ditions that large-scale mobile manipulators are exposed to,
a wide variety of sensor technologies have been explored.
For example, in [7] battery-powered wireless sensors were
applied for local positioning of a loader crane. Inertial
sensors were used to measure joint angles, and an ultrasound
time-of-flight sensor was used to measure the length of
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a telescopic extension boom. In [8], a laser scanner was
used with a customized iterative closest point algorithm to
estimate the joint angles.

A marker-based pose estimation method for articulated
excavators was presented in [9]. In this case, the camera
was installed in the surrounding environment, and several
challenges were brought up, such as occlusion and lighting.
Thus, a marker-based system is foreseen to work best as
an auxiliary sensing method. A marker-less method for
the same problem was later presented in [10], in which
a deep convolutional network human pose algorithm was
used. These studies have in common that they focused on
articulated manipulators that have joints only in the vertical
plane. Mining manipulators, however, typically also have at
least two joints in the horizontal plane, which complicates
the pose estimation problem significantly.

The rest of the paper is organized as follows: Section
IT describes the proposed sensor system, whereas Section
IIT details the experimental setup for measurements. It is
followed by Section IV, which contains data analysis and
results. Finally, Section V concludes the paper.

II. CONCEPTUAL SENSOR SYSTEM FOR MINING
MANIPULATORS

Inertial sensors cannot be effectively utilized in mining
manipulators due to the presence of several horizontal joints
that are insensitive to gravity. As for visual sensing, such
systems are already utilized for collision avoidance [11].
The sensors are installed near the roof of the cabin of a
machine. Moreover, unlike with articulated cranes found
in, for example, excavators, in mining manipulators the
base of the manipulator is typically lower with respect to
the cabin, as shown in Fig. 1, giving natural elevation to
visual sensors installed near the roof. This results in fewer
occlusions that would result due to a part of the manipulator
blocking the TCP. However, as discussed in [9], pure marker-
based systems can be problematic to realize due to several
reasons, which suggests that additional sensors are required
for increasing accuracy and robustness.

In the previous study [3] we used SLAM to estimate the
TCP pose with good initial results. The idea was that the
surrounding mine walls provide enough features, and that
the operations conducted by these mining and construction
machines are controlled enough for SLAM to be viable. It is
also perceived that due to the length of these manipulators
(> 10 m), a sensor located near the TCP is required to
obtain precise measurements, which is supported by the
results of this paper. Thus, a sensor system resembling the
eye-in-hand/eye-to-hand co-operative scheme is studied in
this work. The SLAM module, located near the TCP of a
manipulator, can provide more precision in pose estimation.
The marker-based tracking module will be less accurate
due to the increased viewing distances, and thus, increased
uncertainties, but it will have a better view of the entire scene,
which could also be used for calibration and other assistive
operations, for example.



Fig. 1. A Sandvik tunneling jumbo with two drilling booms.
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Fig. 2. The experimental measurement setup. The goal was to track the TCP
pose of the manipulator by using i) SLAM (ZED stereo camera), in which
the tracked features were obtained from the test wall, and ii) marker-based
tracking, for which a high-end OptiTrack motion capture system was used.
For reference measurements, an analytical TCP of the manipulator was also
formulated based on forward kinematics and joint encoder measurements.
The world coordinate system is also shown.

III. EXPERIMENTAL SETUP

To study an application with the proposed sensor system
architecture and obtain initial results, a simple use case test
bed was designed. The system comprised the following main
components:

o A laboratory-installed hydraulic crane with accurate ref-
erence sensors and a dSPACE real-time control system.

o A Stereolabs ZED camera for SLAM, along with a
textured test wall for feature extraction.

o An OptiTrack motion capture system for marker-based
tracking.

The components are detailed further in the next subsections.

A. HIABO033 Hydraulic Crane with Additional 3 DOF Wrist

The target system was a hydraulic lorry crane, HIAB 033,
which was located at the heavy laboratory of the Innovative
Hydraulics and Automation research unit at Tampere Univer-
sity. The setup is presented in Fig. 2. The manipulator itself
had 3 active DOF (rotation, lifting, and tilting). A spherical
wrist was also attached at the tip of the structure, adding
another 3 DOF to the system. Each of the six active joints
was instrumented with an incremental encoder to obtain
precision measurements of the joint states.

B. SLAM Module

To estimate the TCP pose with SLAM, a Stereolabs
ZED camera was installed near the tip of the manipulator.
Grayscale images were captured at 24 ms intervals with
a resolution of 672 x 376 per lens and saved for offline
data analysis. As for the SLAM method, we utilized the
open source ORB-SLAM?2 Stereo algorithm. For the textured
environment, from which the feature points for SLAM were
to be obtained, a 2.5 X 4 m test wall was constructed using
decorative stones. The underlying goal was to simulate a
rock wall, as the target application of this research was
underground mining and construction.

C. Marker-Based Tracking Module

As this study was mainly concerned about a conceptual
sensor system, we used the most powerful systems available
to us. In this case, we used a commercial-off-the-shelf motion
capture system to realize high-performance marker tracking.
Three OptiTrack Prime 17W cameras were placed around the
base pillar of the manipulator: The idea is that the cameras
used for marker-based tracking are installed on top of the
cabin of a machine. An infrared-reflective (passive) marker
was then placed near the tip of the manipulator (next to
the ZED camera). Using OptiTrack’s Motive motion capture
software, the marker’s pose was tracked with reference to an
OptiTrack L-frame, which was placed next to the test wall
and in view of the cameras. With three cameras, the system
was able to effectively track the marker, although the boom
temporarily occluded the view of the third camera during the
measurements.

D. Data Flow

A general depiction of the data flow during the measure-
ments is presented in Fig. 3. The real-time control system
of the manipulator was a dSPACE DS1005 PPC controller
board, which used a 2 ms sampling period and recorded the
encoder and motion capture measurements. The OptiTrack
cameras were read using a dedicated laptop running Motive
software, from which the measured poses were transmitted
at a high frequency to the dSPACE development PC by using
Matlab and UDP. The ZED stereo image capture was also
realized with a dedicated laptop, which was synchronized
with the dSPACE development PC by sending a UDP trigger
signal from dSPACE to the dedicated laptop at a time interval
of 12 x 2 ms. The synchronized image sequences were then
recorded on the dedicated laptop by using Matlab and the
ZED SDK.

E. Ground-Truth TCP Pose

To have a reference pose for the camera measurements,
a kinematic model of the manipulator was formulated. This
was then used with the encoder measurements to produce
the TCP pose based on the model.

Remark 1: Compared to our previous study [3], the
Denavit-Hartenberg (DH) parameters of the manipulator
were kinematically calibrated using a Sokkia NETOS5 total
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Fig. 3. A general depiction of how the data was obtained and used for

offline data analysis.

TABLE I
DH PARAMETERS OF THE MANIPULATOR. THE SYSTEM COMPRISED
AN ANTHROPOMORPHIC ARM IN COMBINATION WITH A SPHERICAL

WRIST.
Joint a; a; 0; d;
Rotation | /2 a1 01 di
Lift 0 as 75 0
Tilt 7'('/2 al 93+7‘(‘/2 ds
Wrist 1 /2 0 04 dy
Wrist2 | —7/2 0 05 0
Wrist 3 0 0 06 dg

station. The resulting Cartesian average error in the calibra-
tion was reportedly less than 4 cm.

The symbolic DH parameters are presented in Table 1. The
forward kinematic relationship between the base and the
analytical TCP of the manipulator (see Fig. 2) was then
formulated as follows:

BTy = T TiTy Ty, Tap, T (1)

where the transformation matrix from the base to the TCP
is denoted by B Tcp. Joint transformation matrices T, ¢ €
{r,1,t,wy,wy, w3} are obtained using the following equation
by substituting the respective DH parameters for each joint:

ch; —sb;co; sO;sc;  a;c;
s0;, cbca; —cbisa;  a;s0;
Ti = 0 S0y coy d; )
0 0 0 1

where s = sin and ¢ = cos. Then, the TCP pose of the
manipulator is obtained from B Ticp.

FE. Data Fusion of the TCP Pose Estimates

The logic for obtaining the TCP pose estimates based on
the available signals was designed as shown in Fig. 4. In
the scope of this work, it is assumed that each sensor is
either fully operational or not operational (binary), as self-
diagnostic systems would be required for more advanced
signal analysis. In the event that both TCP pose estimates
are available, a data fusion method, confidence-weighted
averaging [12], is adopted. This simple, model-free method
fuses measurements based on the estimated variance of the
measurement error. The advantage is that, assuming that
the errors between the sensors are independent and that the

Marker tracking
also available

Marker tracking
available

Yes
TCP pose estimation with l§ TCP pose estimation [§ TCP pose estimation
CWA (SLAM + MOCAP) (SLAM only) (MOCAP only)

Fig. 4. A chart illustrating the logic behind utilizing the two TCP pose
estimates. In the ideal case that SLAM and marker tracking (mocap) are
available, confidence-weighted averaging (CWA) is used for data fusion.

expected error equals zero, the variance of the fused output
is minimized. The fused 6 DOF TCP pose vector X fyseq 1S
obtained as follows:

N
Xfused = y_WiX; 3)

i=1
where N denotes the total number of observations (in this
case, SLAM and marker-based tracking), W; is the weight
vector of the ith observation, and X; is the 6 DOF TCP
pose vector of the ¢th observation. The weights are computed

based on the signal variances as follows:

N
D= )

]:1 J

Sw\ -

where o? ;.; denotes the variance of a given signal.

Furthermore, if no TCP pose estimate is available, then
the manipulator is halted. Matlab Simulink’s Stateflow envi-
ronment was utilized in the experiments.

IV. DATA ANALYSIS
A. Calibration of the TCP Frame Correspondences

To obtain comparable results, calibration between the three
TCP frames (coordinate systems) is required. The SLAM
frame and the marker frame are to be transformed into the
analytical TCP frame, which served as the reference. For this
purpose, the iterative closest point (ICP) method [13] was
employed, which is suitable for offline experiments because
the entire pose trajectories from different sources can be
matched.

B. Signal Conditioning

The measured TCP orientations using marker-based track-
ing were conditioned with a geometric moving average
(GMA) filter [14] due to noisy data. The equation is given
as follows:

Sj = (1 - Oz)Sj_l + as;j, 7>0 (®))]

where S; denotes the geometric moving average (conditioned
signal) at time j, s; denotes the unconditioned signal at time
j, and 0 < a < 1 denotes the weight coefficient. Note that
Sp is set to the initial value of a given signal. Furthermore,
o = 0.02 was used.



C. Comparison of Pose Trajectories

First, a test trajectory was designed for the manipulator
by using quintic path planning [15]. A rectangular-shaped
trajectory was completed three times, after which the TCP
was moved closer to the test wall. Then, the rectangle was
completed three times again. Finally, the TCP was moved
back to the initial position. The trajectories are shown in
Fig. 5, which illustrates the three TCP pose trajectories in
Cartesian space after point cloud matching using the ICP.
The black point cloud represents the analytical reference
trajectory, the red point cloud represents the SLAM output
poses, and the blue point cloud is associated with the
trajectory of the tracked marker. The respective root mean
square errors resulting from the ICP matching algorithm are
presented in Table II.

The 6 DOF TCP pose estimates are presented based on
the chart in Fig. 4. First, only the SLAM pose estimates
were used, with the resulting 6 DOF poses shown in Fig. 6.
Respectively, the 6 DOF poses from marker-based tracking
are shown in Fig. 7. The CWA-fused 6 DOF pose estimates
are shown in Fig. 8. The visual measurements in each case
were compared with the reference encoder data, with the
mean and maximum absolute errors documented in Table
IV and Table V. Red lines are associated with the SLAM
poses, blue lines denote the marker-based tracking, and
black lines represent the encoder computed data. As shown
by the measured results, the Cartesian position variables
track relatively well over the entire test trajectory, with the
mean errors ranging from less than a millimeter to a few
centimeters. The orientation variables, however, show less
consistent behavior as the amplitudes seize to match well
after the TCP is driven closer to the wall. It is suspected this
followed from calibration errors, as the uncertainties present
in the reference encoder setup and the calibration were
quite significant. Furthermore, the visual sensors provided
similar behavior, with especially the OptiTrack system being
perceived as capable of highly accurate measurements. This
emphasizes the challenge of obtaining an accurate 6 DOF
pose reference in large-scale, long-reach manipulators.

The two ICP calibrated optical measurements were also
compared with each other, see, Fig. 9. Here, the uncondi-
tioned marker orientations are also shown with light-blue
lines. The results demonstrate a strong correspondence be-
tween the SLAM poses and the marker poses. The mean and
maximum absolute errors between the optical measurements
were also documented in Tables IV-V.

It is evident that the visual estimates of the TCP pose
differ from the analytical TCP based on the kinematic
model, which suggests that transitioning from the optical
measurements to the joint space of the manipulator will
be challenging. Thus, alternative, external methods of con-
trolling these manipulators, instead of using the numerical
serial kinematic chain structure, should be explored. For the
offline data analysis, the weights of the data fusion were
obtained using the variances computed over the entire test
trajectory by using the encoder reference measurements as
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Fig. 5. The pose trajectories after ICP registration and calibration. A
rectangular trajectory was first completed three times, after which the TCP
moved closer to the test wall and completed another three laps on a
rectangular trajectory. Finally, the TCP was moved back into the initial
position. The black point cloud represents the analytical TCP, the red point
cloud represents the SLAM TCP, and the blue point cloud represents the
tracked marker TCP.

TABLE 11
ROOT MEAN SQUARE ERRORS RESULTING FROM THE ICP
ALGORITHM.

Coord. transf.
RMS error

SLAM—> Analytical TCP
0.0371 [m]

Marker— Analytical TCP
0.0253 [m]

TABLE III
WEIGHTS USED IN THE CWA DATA FUSION.

W; T Y z Y Yy Yz
SLAM | 0.2828 0.4728 0.1311 0.4767  0.6613  0.4948
Mocap | 0.7172  0.5272 0.8689  0.5233  0.3387  0.5052

the ground-truth values. The weights used are presented
in Table IIl. As it shows, the marker-based tracking was
emphasized in fusing the positions which, in this case, was
logical due to the reduced ICP calibration error. The orienta-
tions were weighted quite evenly. However, the orientations
from the marker-based tracking module were GMA-filtered
before weights were computed. Consequently, the resulting
data fusion is, in this case, optimal in the sense that the
fused variance was minimized. However, for future online
experiments, a method for determining the weights in real-
time is required.

V. DISCUSSION AND CONCLUSION

This work presented a new sensor system concept de-
signed especially for large-scale, long-reach mining and
construction manipulators used underground, in which an
eye-in-hand/eye-to-hand co-operative scheme is utilized by
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Fig. 6. The estimated 6 DOF TCP pose variables, when only SLAM

is available. The black lines denote the reference values using encoder
measurements, and the red lines denote the SLAM pose variables.
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Fig. 7. The estimated 6 DOF TCP pose variables, when only marker-

based tracking is available. The black lines denote the reference values
using encoder measurements, and the blue lines denote the values from
marker tracking, with GMA-filtered orientations.

combining marker-based tracking with SLAM pose estima-
tion. The test case using a 6 DOF hydraulic manipulator, with
a reach of approximately 5 m, assumed equal availability
(same frequency) of the SLAM and marker poses. However,
it was shown that the SLAM camera, located near the TCP,
provided higher quality orientation measurements in relation
to the marker-based orientation measurements. In reality, it
is foreseen that the SLAM module is required to do the
majority of the work in the TCP pose estimation, as the
distances between the TCP and the base of the manipulator
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ICP calibration). The red lines are associated with SLAM, the blue lines
represent the marker-based tracking, and the light blue orientations denote
the unconditioned signals.

are quite large in actual mining manipulators, which will
degrade the accuracy of any marker-based tracking system. In
addition, occlusions will be a challenge in mining manipula-
tors that can rotate approximately 360°. Thus, marker-based
tracking is likely to be more useful as a secondary sensor
module, which can be realized, for example, with the CWA
data fusion method by tuning the weights appropriately. The
utilization of marker-based tracking for calibration, and for
example, condition monitoring, should be explored in the



TABLE IV

MEAN ABSOLUTE ERRORS IN EACH CASE.
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Fig. 6 Fig. 7 Fig. 8 Fig. 9

X [m] 0.0415 0.0262 0.0292  0.0216
y [m] 0.0052  0.0046  0.0044  0.0046
z [m] 0.0210  0.0081  0.0095 0.0142
Yz [deg] | 1.1221  1.0961  1.0924  0.2775
vy [deg] | 0.6462  0.6429  0.6079  0.6423
v [deg] | 1.8541 1.8277 1.8171 0.6104

TABLE V

MAXIMUM ABSOLUTE ERRORS IN EACH CASE.

Fig. 6 Fig.7 Fig. 8 Fig. 9
x[m] | 0.1195 00615 00619 0.1457
y[m] | 0.0288 00163 0.0214 0.0174
z[m] | 00894 00318 0.0347 0.0815

vr [deg] | 34733 35547 34241  3.1852

vy [deg] | 1.8698 2.1864 13959  1.9344

v [deg] | 53777 7.1867 6.0092 27358

future.

Although the two visual sensor modules produced seem-
ingly high performance, the challenge lies in the numerous
uncertainties present in the system. These follow especially
from the calibration that, even in the case of offline data
analysis, resulted in relatively considerable errors. Further-
more, a new calibration method is required for future online
experiments.It is also perceived that the encoder setup used
for reference measurements may provide the least accurate
TCP pose measurement. Being able to match the visual pose
measurements to the analytical TCP pose is desirable in the
sense that to control the manipulator, knowledge of the joint
states is usually required, which could be achieved by using
an inverse kinematic model. In addition, although the applied
kinematic model is based on the rigidity assumption, these
types of long-reach manipulators are very flexible due to their
length and high payload-to-own-weight ratio. This flexibility
and the following non-rigid kinematics are also a central
research problem related to the TCP pose estimation in long-
reach manipulators, and solving this with external sensors is
a long-term goal of this research. Thus, alternative control
methods that are not directly based on the joint states should
be pursued.
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