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Abstract—In the emerging 5G radio networks, beamforming-
capable nodes are able to densely cover narrow areas with a
high-quality signal. Such systems require high-level handover
management system to proactively react to upcoming changes
in signal quality, while restricting common issues such as ping-
ponging or fast-shadowing of the signal. The utilization of deep
learning in such a system allows for dynamic optimization of
the system policies, based directly on the past behavior of the
users and their channel responses. Our approach on handover
optimization is purely non-deterministic, proving the idea that a
self-learning network is able to efficiently manage user mobility in
dense network scenario. The proposed network consists of feature
extractors and dense layers. The model is trained in two stages,
first serves as an initial weight setting in supervised fashion based
on 3GPP model. The second stage is an optimization problem to
reduce the number of unnecessary handovers while sustaining a
high-quality connection. The model is also trained to predict the
user location information as the second output. The presented
results show that the number of handovers can be significantly
reduced without decreasing the throughput of the system. The
predicted location of the user has meter-level accuracy.

Index Terms—5G, Deep Learning, Handover, Localization,
Beamforming

I. INTRODUCTION

Mobility and beam-forming management, both a part of the
network control system, are the challenges which require new
approaches in the 5G networks. The topic of mobility manage-
ment and handover (HO) management was already addressed
in 2G, improved in 3G from the side of network optimization
(e.g. cell breathing) and further optimized in Long Term
Evolution (LTE). Just as previous network generations, New
Radio (NR) requires novel approaches and solutions in this
matter. Densification of networks, mostly due to beam-based
nodes, requires almost effortless HOs and traffic off-loading,
as well as accurate user positioning information at the base
stations. Beam management challenge rose with later releases
of LTE networks, as there are limitations on the number of
beams for every node.

In this paper, we propose a deep learning-based positioning
algorithm from the reported Reference Signal Received Power
(RSRP) values. The focus of this work is to evaluate the HO
count of both systems in the dense scenario, in order to assess
the requirement of NR networks for more dynamic solution
for HO management regarding improved network throughput,
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smaller signalling overhead and improved energy efficiency.
Additionally, we are simulating and comparing the effects of
the proactive HO system to the traditional, reactive one used
in LTE, and evaluate its advantages. The simulation is based
on the well-defined and transparent environment in an urban
area.

The topic of HO optimization using deep learning or rein-
forcement learning was targeted in the previous work, utilizing
various machine learning techniques in different scenarios.
Wang [1] utilizes Deep-Q-learning approach with the LSTM-
based neural network (NN) controller. The weights of the NN
were initiated with supervised pre-learning to speed up the
learning process, resulting in significant HO reduction com-
pared to the 3GPP model. Shen [2] proposes a e-greedy bandit
algorithm for HO management in the ultra-dense scenario.
Authors introduce a constant C as a switching cost of every
HO to the loss function in the model. The proposed solution
reduces the number of HOs by 80 % compared to the LTE
3GPP solution. Shi et al [3] propose a Lagrange Interpolation
solution to predict the trajectory of the user to reduce HO count
by up to 31 %. Back in 2013, [4] presented a SVM-based
method with history features for the same purpose, bearing
positive results.

In contrast to the above, this work addresses the HO
challenge in 5G scenario in an urban area, where the deployed
nodes have beamforming capabilities. The proposed solution
is purely non-deterministic, meaning no information about
the environment geometry, signal propagation or base station
physical positions are present in the model. The work is
testing the capabilities of Al-based system with no or basic
prior knowledge to learn the optimal HO solutions in the
environment.

This paper is divided into the following sections. Section I
includes the introduction, with a short presentation of related
work and this paper’s contribution. Section II presents a
theoretical background on deep learning architecture and its
components, followed by a description of the deployment in
Section III. Section IV presents the used methodology, Section
V the results of the analysis, followed by Section VI, which
is concluding this work.

II. BACKGROUND

The transition from LTE to the dense network of 5G
requires better HO control system, as the HO count drastically
increases in a beam-deployed network. The issues such as
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Fig. 1. Single neuron (a), ReLu function (b), Dense layer (c)

ping-pong unnecessary HOs due to signal strength fluctuations
or sudden outage due to fast shadowing become much more
impactful on the overall network performance, as HO events
occur more frequently in a dense scenario.

The goal of the resulting solution is to predict the require-
ments for the potential HO from the last several RSRP values
reported by the user. Since the deep learning model is trained
on the historical data from other users, the resulting system
will operate based on the user behavior in the area rather
than the area-specific geometry information, dependent on the
accurate positioning information. In addition to the HO control
capabilities, as the nodes gather reports of positioning data
from the users, the model is able to learn, and then assist the
system with the user localization in the process.

A. Deep Learning

Deep learning (DL) is currently the first choice method
in most machine learning approaches. The most significant
advantage of DL is that the model can adapt to almost any data,
and by slightly changing the composition of the model it is
able to completely change its purpose while leaving the trained
knowledge intact. The DL models are almost exclusively based
on NNs, with rare attempts of utilizing other techniques such
as Deep Forest [S] or Deep Gaussian Processes [6]. The
idea behind deep NNs is inspired by the human brain. The
models consist of numerous interconnected layers, extracting
information in the direction from the input layer to the output
layer. The free definition of deep learning is that there are at
least two intermediate layers between the input and the output
layer.

The elementary building block of NN is a neuron, shown
in Fig. la. Each neuron is interconnected with a number of
other neurons, and in every iteration does two basic operations.
First one is a weighted sum of the outputs of previous neurons
connected to the current one, which is then passed through
the second operation called activation. Activation function
defines the behaviour of the neuron. The function needs to
be non-complex to ensure fast operation and to extract and
pass on useful information. The most traditional activation
function is the logistic or sigmoid function, adopted from the
logistic regression model. This function is rarely used in deep
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Fig. 2. Functionality off convolutional layer, filter of the same shape is applied
to each segment

networks since it suffers from vanishing gradient problem and
is somewhat computationally expensive. The most commonly
used activation function, bearing the top results is rectified
linear unit (ReLu), is shown in Fig. 1b, based on (1).

y = maz(0, z)

(D

ReLu does not suffer from vanishing gradient, as the derivation
of the function is constant, and is computationally inexpensive.
Other activation functions are used mostly exclusively in
last layers of NNs, such as linear, softmax or step function,
defining the size and shape of the output. Neurons are stacked
together, composing individual layers of the model. The dense
layer is shown in Fig. 1c. It connects all outputs of the previous
layer to every neuron of that layer. Due to the large number
of interconnections, dense layers are computationally very
expensive. Convolutional layers connect a portion of outputs
from previous layers of the pre-defined shape, using the same
filter shape and weights for every neuron in the layer, as shown
in Fig. 2. Due to the small number of weights that have to be
trained, this layer is much lighter on the resources, as well as
enables efficient deep architectures of the ML models.

III. DEPLOYMENT

The part of the Madrid grid (see Fig. 3), proposed by
METIS society in [7], is selected as a scenario of interest.
It represents a densely build-up, urban scenario with a central
square in the middle. Millimeter-wave base stations (mmWave
BSs), operating at 30 GHz carrier frequency are deployed in
the area (marked with red crosses in Fig. 3) with specific
antenna orientations. Each of the 7 mmWave BSs includes
a uniform linear array of 32 antenna elements, which provide
32 different beams according to the phased array principle
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Fig. 3. Deployment of interest with highlighted positions of the base stations
and example coverage of BS1, 17th beam

(plotted RSRP values in Fig. 3 refer to a single beam of
BS1). In order to obtain beam orthogonality, the codebook,
from where the beams are selected, is designed based on a
discrete Fourier transform matrix. Its columns represent the
beamformer vector of each beam. The simulated data, which
are the beam-wise RSRP values, are generated by using a
ray-tracing tool according to the METIS model proposed in
Section 8 of the 3GPP specification 38.901 [8], based on [9].
The whole dataset consists of 1 342 701 samples including
user position and RSRP values for each beam.

The mobile user equipment (UE) moves in this deployment
in predefined patterns to simulate real-world behavior, while
measuring RSRP values from the deployed mmWave beams.
Based on the simulation settings, the mean time interval
between the two RSRP measurements on the mmWave BS
side is approx. 0.36 s, which corresponds to the 0.48 m mean
distance between two subsequent samples while walking at
5 km/h average speed.

According to 3GPP Rel. 15 regarding physical layer mea-
surements [10], there are two different reference signal re-
ceived strength (RSRP) measurements at the receiver side of
the network. Synchronization Signal (SS) RSRP is defined
as a linear average over the power contributions of resource
elements that carry secondary synchronization signals (SSS).
Measuring SS RSRP from multiple sources is possible, as the
SSS is broadcasted periodically across different frequencies
as a part of the SS block (SSB). Channel State Information
(CSI) RSRP, defined as linear average of power contribu-
tions of resource elements that carry CSI reference signal, is
transmitted only in a connected state and therefore available
only from the base stations, with which the UE has an active
connection. This work considers SS RSRP as the reference.
In the mmWave beamforming scenario, SSBs are transmitted
in SSB sets. During each set, one SSB is consecutively
transmitted over each beam each 5 to 160 ms (20 ms by
default), according to the 3GPP. This way, UE can measure the
RSRP of each beam it receives. In 5G, the maximum number
of SSBs in one SSB set is 64 for frequencies above 6 GHz.

UE reports the measured RSRP back to the base station in
CSI reports via physical uplink control channel (PUCCH).

In the scope of this work, the UE is considered to be able
to measure RSRP from all beams and report them back to the
base station during each step.

A. Real-world Operation

The following paragraphs describe the idea behind the
chosen approach from the practical point of view, as it could
operate in a real-life scenario. As the DL model is driven by
the data originated from the user behavior, the large dataset
has to be gathered before starting the learning procedure at
the new scenario. From a practical point of view, the solution
should be deployed in several consecutive steps.

1) The first, data mining step, consists of installing the
base stations to the new environment, then operating the
system based on purely deterministic algorithm (in this
case 3GPP LTE model), while gathering reported data
from the users.

2) After the gathered database is sufficiently large (e.g. after
two weeks of gathering data), the deep learning model
can start the initial learning procedure. In this phase,
deterministic model outputs serve as true labels, while
the Al model is trained to perform in logical boundaries
to initially adapt to the data.

3) In the next step, the Al model is set as the operating
algorithm in the area, while still gathering and storing
the data. As the model is managing the mobility of the
UEs and predicting their mobility patterns, this step is
called the operating phase.

4) After the system gathers additional data, the training
phase is initiated to improve the model behavior. For
this phase, the new logic has to be added to the system.
This can be done using supervised learning, which is
enabled by knowing the “future” behavior of the UEs
(and therefore their reported signal strengths) from the
database. The true labels can be calculated based on the
chosen algorithm. At the end of each training phase,
the system has to be validated to ensue the proper
functionality, after which it can switch to the operating
phase.

As the training phase is computationally expensive, while
the prediction phase is much cheaper, the switching between
them should be adjusted based on the network usage patterns.
During the active hours, the network resources are used to
manage multiple users, while gathering reported data and
storing them in the database (3 - prediction phase). During
the quiet hours (night), when the network has available com-
putational resources, it is able to train itself using the newly
gathered data to better cope with the dynamic changes in the
environment (4 - training phase). Permanent changes in the
area (new statue, building etc.), reported by multiple users
over longer periods of time will be included in the predicting
algorithm, while temporary, short-term changes (parked truck)
will be ignored, as an only small portion of people will
report them. This way, the self-learning system will be able
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Fig. 4. Model overview with data inputs (orange), outputs (red), positioning model (blue) and HO management model (purple)

to dynamically adapt to the changes, without the need from
the operator to adjust its parameters every time environment
changes.

IV. METHODOLOGY

In this chapter, we present the used models and the learning
process. The considered models are the 3GPP model for
HO control and our Deep Learning model, consisting of
the localization part and HO control part. The HO training
methodology consists of two main stages.

A. 3GPP Model

3GPP model [11] executes a HO to the candidate beam, in
case the reported RSRP value of that beam is higher than the
RSRP of the serving beam plus certain hysteresis margin (3 dB
by default). This model was used in LTE networks, serves as
the default model in the referred literature and provides data
for supervised pre-training of the DL model. This solution
is purely reactive (able to react after the event occurs), and
without further adjustments, is vulnerable to ping-pong HOs
and fast shadowing of the channel. The performance of the
model further decreases in case noise is introduced to the
channel.

B. Proposed Deep Learning Model

The basic structure of the proposed DL model is shown in
Fig. 4. The system is composed of two DL models, one for
position estimation, the other for HO management purposes.
The positioning estimation model can be interpreted as feature
extractor, which converts 224-dimensional vector into two-
dimensional coordinates. Additionally, those features have
real-world significance, to represent X and Y positions of the
user directly. The HO management model takes the positioning
data as the input, along with one-hot-encoded serving beam
information and a matrix of historical RSRP features, and
outputs the new serving beam index in categorical vector. The

two models are physically separated, as one works as two-
dimensional regressor, the second as 224-categorical classifier.
Merging two such different constructs may cause significant
complications in the training phase.

The positioning-estimation part of the model serves two
purposes, as explained above. First, it serves as a feature
extractor for the following HO management model, and sec-
ondly, it predicts user position as an additional output from
the system. The blue part in Fig. 4 shows the structure of
the positioning model composed of dense layers. The model
was trained with Adam optimizer [12] and mean squared error
as the loss function, which corresponds to the loss function
reflecting the Euclidean distance error. The reason to use the
recurrent layer is to decrease the variance of the subsequent
samples, as it feeds the previous results back into the input of
the layer.

The core model for the HO management is shown in purple
in Fig. 4. It consists of three inputs, multiple intermediate
layers and a single, duplicated output. The first input is a
tensor of the current and 8 last historical reported RSRP
values (9 in total). After this input, three core convolutional
layers are applied. First two have the convolution window
capturing the 9 measurements per beam with zero padding to
keep the output shape equal to the input. The third layer has
no padding, leaving a single feature per beam as the output.
All three layers have ReLu activation function. The second
input is the one-hot-encoded index of the current serving
beam, the third input is the predicted coordinates from the
position estimation model. After concatenating the extracted
beam features, serving beam index and position estimates,
the model consists of two ReLu-activated dense layers with
450 and 225 neurons, followed by an output dense layer
with Softmax activation function to predict the serving beam.
Additionally, the output layer was arbitrarily duplicated to add
the second loss to the model in the training stage. The model
was compiled using Adam optimizer [12], with categorical



crossentropy as the loss function and categorical accuracy as
validation metric.

The overall model is trained in three stages. First, the
positioning model is trained on training dataset to be able
to predict the accurate coordinates. In the second stage, the
model is trained with the 3GPP LTE model true labels. In the
third, HO optimization stage, the model is trained while the
true labels are predicted using the “future” samples from the
dataset. The input and output data of the three training stages
are shown in Table 1.

TABLE I
TABLE OF INPUT AND OUTPUT DATA IN DIFFERENT TRAINING STAGES OF
THE MODEL
[ Stage | Model [ Input data | Output data
1 Positioning Current RSRP Current position
Current + last RSRP Next SB index
2 HO blank SB index (current
(current 3GPP LTE SB) 3GPP LTE SB)
Positioning prediction
Current + last RSRP SB index
3 HO pretrained | SB index (Function
(last DL model prediction) | predicted value)
Positioning prediction

The function predicting the true label is shown in Eq. (2),
Yirue = argmax(w - RSRP) (2)

where w is the decreasing vector of 18 weights and RSRP
is 18x224 matrix of the current and 17 following RSRP
measurements. This way, the true beam index is set to be
the maximum of the weighted sums of the received signal
strengths in the consecutive measurements.

The second function for true label prediction applied in
second and third stage of the training is utilized to force the
model to choose only the high RSRP beams, rather than a
single “true” label. This function outputs a weighted values
for beams with 95 % or more RSRP as the strongest available
beam. This secondary loss function forces the model to choose
the high-RSRP beam, even though the first predicted label is
not classified.

V. RESULTS

The prediction accuracy of the positioning model is
1.54 meters mean Euclidean error between true coordi-
nates and predicted coordinates on the testing dataset. The
model was trained over 100 epochs, using 60-20-20 training-
validation-testing dataset split. Fig. 5 presents the Cumulative
Distribution Function (CDF) of the prediction result’s mean
Euclidean error for testing dataset, full dataset and central
square data. The figure highlights the median accuracy of
1.43 meters in the testing dataset, 1.49 meters accuracy across
all data and 1.44 meters in central positions. The results show
that the accuracy of the in the central area is as accurate as
in the streets between buildings. The presence of many strong
signals lead to the higher number of activated neurons in the
network. This fact might lead to strong fluctuations in the
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Fig. 5. CDF of positioning prediction error, with detail on median values

output layer resulting in lower accuracy compared to the sparse
inputs, yet due to the proper training, the model was able to
compensate.

The HO management models are evaluated on the testing
dataset. The comparison of the results of the 3GPP model and
the proposed DL model is shown in Table II. The models were
evaluated in scenarios while adding uncertainty represented by
additive Gaussian noise of different magnitudes (variances)
to the reported RSRP values. The testing dataset consists of
268 536 samples long track excluded from the training or
validation phase. The results show that the 3GPP model per-
forms the most efficiently when no uncertainty is present, with
0.0616 HO frequency (number of HOs per step) on average
and -31.11 dBm average RSRP. The results also show that with
increasing uncertainty, the performance of the model quickly
degenerates. The DL model was pre-trained on 100 epochs
using 3GPP labels (stage 2) and on 100 additional epochs in
stage 3. The results show, that although the performance of
the 3GPP model performs better without uncertainty, the DL
model’s performance remains high even with the uncertainty
being present. The results show the effective reduction of HO
count by 4.2 % when predicting the HO with the magnitude
uncertainty 1, 55.8 % when predicting the HO with the
uncertainty of magnitude 3 and 69.5 % when predicting the
HO with the uncertainty of magnitude 5. Figure 6 shows
distributions of RSRP for the considered models and shows,
that the resulting predicted serving distributions are almost
identical in all cases, with 3GPP model with uncertainty of
magnitude 5 behaving slightly worse in this aspect. The tail
distribution shows the weakest performance of 3GPP and Deep
Learning models with uncertainty 5. Overall, all models satisfy
the requirement of high RSRP level. Additionally, the results
after the second stage of training show, that the DL model
is in its essence a universal approximation model, which can
(under proper conditions) imitate any function, yet will never
perfectly copy the original.
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optimal beam selection. Additionally, the training of the model
could be sped-up, as with the current approach, the model
has to predict the next serving beam before fitting the model
in each step. The challenging part in that situation would be
properly setting the weights of the function. An additional
possible solution, which reduces the complexity of the model
is in predicting the future position of the user, rather than
predicting the next serving beam. The input complexity of
the history features could be reduced from 244 inputs to 2.
The next serving beam could then be chosen based on, e.g.
the beam coverage on the predicted path. The deep learning
solution also enables the network not to store the long-term
database of previous measurements, since after training the
model, the useful features of measured quantities are indirectly
stored in model weights. The utilization of the DL model as an
alternative to voluminous database might also be considered

Fig. 6. CDF of RSRP distributions across models and variyng level of
uncertainty, with detail on tail distribtions (5 percentile)

TABLE 11
TABLE OF 3GPP AND LTE MODEL COMPARISON

[ Model [ 3GPP | Deep Learning |
Uncertainty [dB] | HO freq. | Mean RSRP | HO freq. | Mean RSRP
0 0.0616 -31.33 0.0650 -31.37
1 0.0678 -31.42 0.0650 -31.37
3 0.1471 -31.68 0.0697 -31.40
5 0.2404 -32.42 0.0734 -31.45

VI. CONCLUSION AND DISCUSSION

In this work, we proposed a NN-based system for posi-
tioning estimation and HO management in 5G beamforming
scenario. Based on the obtained results, we prove that the DL
model is able to provide meter-level accuracy on user localiza-
tion, with median Euclidean distance error below 1.5 meters
on the testing dataset. The results also show that the model has
more accurate results in sparsely-covered areas than in areas
with seamless coverage from multiple beams. The reason for
that is that multiple strong inputs to the model strongly affect
the output label, causing inaccuracies in the prediction. The
results of the HO management model show, that although the
3GPP model performs almost optimally in scenarios without
any uncertainties introduced to the environment, it struggles
when the measurements are not uncertainty-free. DL model
can be able to efficiently cope with uncertainties to a certain
degree, bearing significantly better results in those scenarios.

Based on the above, several aspects of the model should
be targeted for further discussion. We can see, that more
considerable amount of high values in the input data usu-
ally decreases the ability of the model to predict accurately,
although dimensionality-reduction techniques were used (e.g.
convolutional branch in HO management model). The possible
solutions could be reducing the number of inputs to a smaller
number of candidate beams, which would also reflect better
the capabilities of UEs in the real-world deployment. Another
point to consider is training the HO model using a custom loss
function, instead of predicted true labels. The loss function can
better reflect the penalty for frequent HOs as well as the sub-

and tested.

In this paper, we show that the utilization of the DL models
in mmWave networks enables proactive HO management
based on the user behavior in the network and enables useful
information to be extracted from the received data, such as
meter-accuracy positioning from the RSRP values.
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