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Abstract—The popularity of tools for analyzing Technical Debt,
and particularly the popularity of SonarQube, is increasing
rapidly. SonarQube proposes a set of coding rules, which repre-
sent something wrong in the code that will soon be reflected
in a fault or will increase maintenance effort. However, our
local companies were not confident in the usefulness of the rules
proposed by SonarQube and contracted us to investigate the
fault-proneness of these rules.
In this work we aim at understanding which SonarQube rules are
actually fault-prone and to understand which machine learning
models can be adopted to accurately identify fault-prone rules.
We designed and conducted an empirical study on 21 well-known
mature open-source projects. We applied the SZZ algorithm to
label the fault-inducing commits. We analyzed the fault-proneness
by comparing the classification power of seven machine learning
models.
Among the 202 rules defined for Java by SonarQube, only 25 can
be considered to have relatively low fault-proneness. Moreover,
violations considered as ”bugs” by SonarQube were generally
not fault-prone and, consequently, the fault-prediction power of
the model proposed by SonarQube is extremely low.
The rules applied by SonarQube for calculating technical debt
should be thoroughly investigated and their harmfulness needs
to be further confirmed. Therefore, companies should carefully
consider which rules they really need to apply, especially if their
goal is to reduce fault-proneness.

Index Terms—Technical Debt, SonarQube, coding style, code
smells, architectural smells, static analysis, machine learning

I. INTRODUCTION

The popularity of tools for analyzing technical debt, such
as SonarQube, is increasing rapidly. In particular, SonarQube
has been adopted by more than 85K organizations 1 including
nearly 15K public open-source projects 2. SonarQube analyzes
code compliance against a set of rules. If the code violates a
rule, SonarQube adds the time needed to refactor the violated
rule as part of the technical debt. SonarQube also identifies a
set of rules as ”bugs”, claiming that they ”represent something
wrong in the code and will soon be reflected in a fault”;
moreover, they also claim that zero false positives are expected
from ”bugs” 3.

Four local companies have been using SonarQube for more
than five years to detect possible issue in their code, reported
that their developers do not believe that the rules classified as
bugs can actually result in faults. Moreover, they also reported

1https://www.sonarqube.org
2https://sonarcloud.io/explore/projects
3SonarQube Rules: https://tinyurl.com/v7r8rqo

that the manual customization of the SonarQube out-of-the-
box set of rules (named ”the Sonar way”4) is very subjective
and their developers did not manage to agree on a common
set of rules that should be enforced. Therefore, the companies
asked us to understand if it is possible to use machine
learning to reduce the subjectivity of the customization of
the SonarQube model, considering only rules that are actually
fault-prone in their specific context.

SonarQube is not the most used static analysis tool on the
market. Other tools such as Checkstyle, PMD and FindBugs
are more used, especially in Open Source Projects [1] and
in research [2]. However, the adoption of another tool in
the DevOps pipeline requires extra effort for the companies,
including the training and the maintenance of the tool itself. If
the SonarQube rules actually resulted fault-prone, our compa-
nies would not need to invest extra effort to adopt and maintain
other tools.

At the best of our knowledge, not studies have investigated
the fault-proneness of SonarQube rules, and therefore, we
accepted the challenge and we designed and conducted this
study. At best, only a limited number of studies have con-
sidered SonarQube rule violations [3], [4], but they did not
investigate the impact of the SonarQube violations considered
as ”bugs” on faults.

The goal of this work is twofold:

• Analyze the fault-proneness of SonarQube rule violations,
and in particular, understand if rules classified as ”bugs”
are more fault-prone than security and maintainability
rules.

• Analyze the accuracy of the quality model provided by
SonarQube in order to understand the fault-prediction
accuracy of the rules classified as ”bugs”.

SonarQube and issue tracking systems adopt similar terms
for different concepts. Therefore, in order to clarify the
terminology adopted in this work, we define SQ-Violation

as a violated SonarQube rule that generated a SonarQube
”issue” and fault as an incorrect step, process, data definition,
or any unexpected behavior in a computer program inserted
by a developer, and reported by Jira issue-tracker. We also
use the term ”fault-fixing” commit for commits where the
developers have clearly reported bug fixing activity and ”fault-
inducing” commits for those commits that are responsible for
the introduction of a fault.

4SonarQube Quality Profiles: https://tinyurl.com/wkejmgr



The remainder of this paper is structured as follows. In
Section II-A we introduce SonarQube and the SQ-Violations
adopted in this work. In Section II we present the background
of this work, introducing the SonarQube violations and the
different machine learning algorithms applied in this work.
In Section III, we describe the case study design. Section IV
presents respectively the obtained results. Section V identifies
threats to validity while Section VI describes related works.
Finally, conclusions are drawn in Section VII.

II. BACKGROUND

A. SonarQube

SonarQube is one of the most common Open Source static
code analysis tools adopted both in academia [5],[2] and in
industry [1]. SonarQube is provided as a service from the
sonarcloud.io platform or it can be downloaded and executed
on a private server.

SonarQube calculates several metrics such as the number
of lines of code and the code complexity, and verifies the
code’s compliance against a specific set of ”coding rules”
defined for most common development languages. In case the
analyzed source code violates a coding rule or if a metric
is outside a predefined threshold, SonarQube generates an
”issue”. SonarQube includes Reliability, Maintainability and
Security rules.

Reliability rules, also named ”bugs” create issues (code
violations) that ”represents something wrong in the code”
and that will soon be reflected in a bug. ”Code smells” are
considered ”maintainability-related issues” in the code that de-
creases code readability and code modifiability. It is important
to note that the term ”code smells” adopted in SonarQube
does not refer to the commonly known code smells defined
by Fowler et al. [6] but to a different set of rules. Fowler et
al. [6] consider code smells as ”surface indication that usually
corresponds to a deeper problem in the system” but they can be
indicators of different problems (e.g., bugs, maintenance effort,
and code readability) while rules classified by SonarQube
as ”Code Smells” are only referred to maintenance issues.
Moreover, only four of the 22 smells proposed my Fowler
et al. are included in the rules classified as ”Code Smells” by
SonarQube (Duplicated Code, Long Method, Large Class, and
Long Parameter List).

SonarQube also classifies the rules into five severity levels5:
Blocker, Critical, Major, Minor, and Info.

In this work, we focus on the sq-violations, which are
reliability rules classified as ”bugs” by SonarQube, as we are
interested in understanding whether they are related to faults.

SonarQube includes more than 200 rules for Java (Version
6.4). In the replication package (Section III-D) we report
all the violations present in our dataset. In the remainder
of this paper, column ”squid” represents the original rule-id
(SonarQube ID) defined by SonarQube. We did not rename it,
to ease the replicability of this work. In the remainder of this

5SonarQube Issues and Rules Severity:’
https://docs.sonarqube.org/display/SONAR/Issues Last Access:May 2018

work, we will refer to the different sq-violations with their id
(squid). The complete list of violations can be found in the
file ”SonarQube-rules.xsls” in the online raw data.

B. Machine Learning Techniques

In this Section, we describe the machine learning techniques
adopted in this work to predict the fault-proneness of sq-
violations. Due to the nature of the task, all the models used
for this work were used for classification. We compared eight
machine learning models. Among these, we used a generalized
linear model: Logistic Regression [7]; one tree based classi-
fier: Decision Tree [8]; and 6 ensemble classifiers: Bagging
[9], Random Forest [10], Extremely Randomized Trees [11],
AdaBoost [12], Gradient Boosting [13], and XGBoost [14]
which is an optimized implementation of Gradient Boosting.
All the models, except the XGBoost, were implemented using
the library Scikit-Learn6, applying the default parameters for
building the models. For the ensamble classifiers we alwasys
used 100 estimators. The XGBoost classifier was implemented
using the XGBoost library7 also trained with 100 estimators.

1) Logistic Regression [7]: Contrary to the linear regres-
sion, which is used to predict a numerical value, Logistic
Regression is used for predicting the category of a sample.
Particularly, a binary Logistic Regression model is used to
estimate the probability of a binary result (0 or 1) given a set
of independent variables. Once the probabilities are known,
these can be used to classify the inputs in one of the two
classes, based on their probability to belong to either of the
two.

Like all linear classifiers, Logistic Regression projects the
P -dimensional input x into a scalar by a dot product of the
learned weight vector w and the input sample: w · x + w0,
where w0 ∈ R the constant intercept. To have a result which
can be interpreted as a class membership probability—a num-
ber between 0 and 1—Logistic Regression passes the projected
scalar through the logistic function (sigmoid). This function,
for any given input x, returns an output value between 0 and
1. The logistic function is defined as

σ(x) =
1

1 + e−x
.

Where the class probability of a sample x ∈ RP is modeled
as

Pr(c = 1 | x) =
1

1 + e−(w·x+w0)
.

Logistic Regression is trained through maximum likelihood:
the model’s parameters are estimated in a way to maximize
the likelihood of observing the inputs with respect to the
parameters w and w0. We chose to use this model as baseline
as it requires limited computational resources and it is easy to
implement and fast to train.

6https://scikit-learn.org
7https://xgboost.readthedocs.io



2) Decision Tree Classifier [8]: Utilizes a decision tree
to return an output given a series of input variables. Its tree
structure is characterized by a root node and multiple internal

nodes, which are represented by the input variable, and leaf,
corresponding to the output. The nodes are linked between one
another through branches, representing a test. The output is
given by the decision path taken. A decision tree is structured
as a if-then-else diagram: in this structure, given the value of
the variable in the root node, it can lead to subsequent nodes
through branches following the result of a test. This process
is iterated for all the input variables (one for each node) until
it reaches the output, represented by the leaves of the tree.

In order to create the best structure, assigning each input
variable to a different node, a series of metrics can be
used. Amongst these we can find the GINI impurity and the
information gain:

• Gini impurity measures how many times randomly cho-
sen inputs would be wrongly classified if assigned to a
randomly chosen class;

• Information gain measures how important is the infor-
mation obtained at each node related to its outcome: the
more important is the information obtained in one node,
the purer will be the split.

In our models we used the Gini impurity measure to
generate the tree as it is more computationally efficient. The
reasons behind the choice of decision tree models and Logistic
Regression, are their simplicity and easy implementation.
Moreover, the data does not need to be normalized, and
the structure of the tree can be easily visualized. However,
this model is prone to overfitting, and therefore it cannot
generalize the data. Furthermore, it does not perform well with
imbalanced data, as it generates a biased structure.

3) Random Forest [10]: is an ensemble technique that helps
to overcome overfitting issues of the decision tree. The term
ensemble indicates that these models use a set of simpler
models to solve the assigned task. In this case, Random Forest
uses an ensemble of decision trees.

An arbitrary number of decision trees is generated consid-
ering a randomly chosen subset of the samples of the original
dataset [9]. This subset is created with replacement, hence
a sample can appear multiple times. Moreover, in order to
reduce the correlation between the individual decision trees a
random subset of the features of the original dataset. In this
case, the subset is created without replacement. Each tree is
therefore trained on its subset of the data, and it is able to
give a prediction on new unseen data. The Random Forest
classifier uses the results of all these trees and averages them
to assign a label to the input. By randomly generating multiple
decision trees, and averaging their results, the Random Forest
classifier is able to better generalize the data. Moreover, using
the random subspace method, the individual trees are not
correlated between one another. This is particularly important
when dealing with a dataset with many features, as the prob-
ability of them being correlated between each other increases.

4) Bagging [9]: Exactly like the Random Forest model,
the Bagging classifier is applied to an arbitrary number of

decision trees which are constructed choosing a subset of
the samples of the original dataset. The difference with the
Random Forest classifier is in the way in which the split point
is decided: while in the Random Forest algorithm the splitting
point is decided base on a random subset of the variables,
the Bagging algorithm is allowed to look at the full set of
variable to find the point minimizing the error. This translates
in structural similarities between the trees which do not resolve
the overfitting problem related to the single decision tree. This
model was included as a mean of comparison with newer and
better performing models.

5) Extremely Randomized Trees [11]: (ExtraTrees) [11],
provides a further randomization degree to the Random Forest.
For the Random Forest model, the individual trees are created
by randomly choosing subsets of the dataset features. In
the ExtraTrees model the way each node in the individual
decision trees are split is also randomized. Instead of using
the metrics seen before to find the optimal split for each
node (Gini impurity and Information gain), the cut-off choice
for each node is completely randomized, and the resulting
splitting rule is decided based on the best random split. Due
to its characteristics, especially related to the way the splits
are made at the node level, the ExtraTrees model is less
computationally expensive than the Random Forest model,
while retaining a higher generalization capability compared
to the single decision trees.

6) AdaBoost [12]: is another ensemble algorithm based on
boosting [15] where the individual decision trees are grown
sequentially. Moreover, a weight is assigned to each sample of
the training set. Initially, all the samples are assigned the same
weight. The model trains the first tree in order to minimize the
classification error, and after the training is over, it increases
the weights to those samples in the training set which were
misclassified. Moreover, it grows another tree and the whole
model is trained again with the new weights. This whole
process continues until a predefined number of trees has been
generated or the accuracy of the model cannot be improved
anymore. Due to the many decision trees, as for the other
ensemble algorithms, AdaBoost is less prone to overfitting
and can, therefore, generalize better the data. Moreover, it
automatically selects the most important features for the task
it is trying to solve. However, it can be more susceptible to
the presence of noise and outliers in the data.

7) Gradient Boosting [13]: also uses an ensemble of indi-
vidual decision trees which are generated sequentially, like for
the AdaBoost. The Gradient Boosting trains at first only one
decision tree and, after each iteration, grows a new tree in order
to minimize the loss function. Similarly to the AdaBoost, the
process stops when the predefined number of trees has been
created or when the loss function no longer improves.

8) XGBoost [14]: can be viewed as a better performing im-
plementation of the Gradient Boosting algorithm, as it allows
for faster computation and parallelization. For this reason it
can yield better performance compared to the latter, and can
be more easily scaled for the use with high dimensional data.



III. CASE STUDY DESIGN

We designed our empirical study as a case study based on
the guidelines defined by Runeson and H’́ost [16]. In this
Section, we describe the empirical study including the goal and
the research questions, the study context, the data collection
and the data analysis.

A. Goal and Research Questions

As reported in Section 1, our goals are to analyze the fault-
proneness of SonarQube rule violations (SQ-Violations) and
the accuracy of the quality model provided by SonarQube.
Based on the aforementioned goals, we derived the following
three research questions (RQs).

RQ1 Which are the most fault-prone SQ-Violations?

In this RQ, we aim to understand whether the intro-
duction of a set of SQ-Violations is correlated with
the introduction of faults in the same commit and
to prioritize the SQ-Violations based on their fault-
proneness.
Our hypothesis is that a set of SQ-Violations should
be responsible for the introduction of bugs.

RQ2 Are SQ-Violations classified as ”bugs” by Sonar-
Qube more fault-prone than other rules?

Our hypothesis is that reliability rules (”bugs”)
should be more fault-prone that maintainability rules
(”code smells”) and security rules.

RQ3 What is the fault prediction accuracy of the

SonarQube quality model based on violations

classified as ”bugs”?

SonarQube claims that whenever a violation is clas-
sified as a ”bug”, a fault will develop in the software.
Therefore, we aim at analyzing the fault prediction
accuracy of the rules that are classified as ”bugs” by
measuring their precision and recall.

B. Study Context

In agreement with the four companies, we considered open
source projects available in the Technical Debt Dataset [17].
The reason for considering open source projects instead of
their private projects is that not all the companies would
have allowed us to perform an historical analysis of all their
commits. Moreover, with closed source projects the whole
process cannot be replicated and verified transparently.

For this purpose, the four companies selected together 21
out of 31 projects available, based on the ones that were more
similar to their internal projects considering similar project
age, size, usage of patterns used and other criteria that we
cannot report for reason of NDA.

The dataset includes the analysis of each commit of the
projects from their first commit until the end of 2015 with
SonarQube, information on all the Jira issues, and a classifi-
cation of the fault-inducing commits performed with the SZZ
algorithm [18].

In Table I, we report the list of projects we considered
together with the number of analyzed commits, the project
size (LOC) of the last analyzed commits, the number of faults

TABLE I
THE SELECTED PROJECTS

Project
Name

Analyzed
commits

Last
commit
LOC

Faults SonarQube
Violations

Ambari 9727 396775 3005 42348
Bcel 1255 75155 41 8420
Beanutils 1155 72137 64 5156
Cli 861 12045 59 37336
Codec 1644 34716 57 2002
Collections 2847 119208 103 11120
Configuration 2822 124892 153 5598
Dbcp 1564 32649 100 3600
Dbutils 620 15114 21 642
Deamon 886 3302 4 393
Digester 2132 43177 23 4945
FileUpload 898 10577 30 767
Io 1978 56010 110 4097
Jelly 1914 63840 45 5057
Jexl 1499 36652 58 34802
Jxpath 596 40360 43 4951
Net 2078 60049 160 41340
Ognl 608 35085 15 4945
Sshd 1175 139502 222 8282
Validator 1325 33127 63 2048
Vfs 1939 59948 129 3604
Sum 39.518 1,464,320 4,505 231,453

Residual Analysis

ΔIND + ΔFIX

Commit Labeling

SZZ

Labeled Commits Overall Validation

V1 V2 V4 V6

V1 V3 V4 V5 V6

> 95%

Random Forest

Gradient Boost.

Extr. Rnd. Trees

Decision Trees

Logistic Reg.

AdaBoost

XGBoost

SQ-Violations
Importance

Labeled Com
m

its Be
st 

Mod
el

SQ-Violations

Fig. 1. The Data Analysis Process

identified in the selected commits, and the total number of
SQ-Violations.

C. Data Analysis

Before answering our RQs, we first executed the eight
machine learning (ML) models, we compared their accuracy,
and finally performed the residual analysis.

The next subsections describe the analysis process in details
as depicted in Figure 1.

1) Machine Learning Execution: In this step we aim at
comparing fault-proneness prediction power of SQ-Violations
by applying the eight machine learning models described in
Section II-B.

Therefore we aim at predicting the fault-proneness of a
commit (labeled with the SZZ algorithm) by means of the SQ-
Violations introduced in the same commit. We used the SQ-
Violations introduced in each commits as independent vari-
ables (predictors) to determine if a commit is fault-inducing
(dependent variable).



After training the eight models described in Section II-B,
we performed a second analysis retraining the models using a
drop-column mechanism [19]. This mechanism is a simplified
variant of the exhaustive search [20], which iteratively tests
every subset of features for their classification performance.
The full exhaustive search is very time-consuming requiring
2P train-evaluation steps for a P -dimensional feature space.
Instead, we look only at dropping individual features one at a
time, instead of all possible groups of features.

More specifically, a model is trained P times, where P is
the number of features, iteratively removing one feature at a
time, from the first to the last of the dataset. The difference in
cross-validated test accuracy between the newly trained model
and the baseline model (the one trained with the full set of
features) defines the importance of that specific feature. The
more the accuracy of the model drops, the more important for
the classification is the specific feature.

The feature importance of the SQ-Violation has been cal-
culated for all the machine learning models described, but we
considered only the importance calculated by the most accu-
rate model (cross-validated with all P features, as described in
the next section), as the feature importances of a poor classifier
are likely to be less reliable.

2) Accuracy Comparison: Apart from ranking the SQ-
Violations by their importance, we first need to confirm the
validity of the prediction model. If the predictions obtained
from the ML techniques are not accurate, the feature ranking
would also become questionable. To assess the prediction
accuracy, we performed a 10-fold cross-validation, dividing the
data in 10 parts, i.e., we trained the models ten times always
using 1/10 of the data as a testing fold. For each fold, we
evaluated the classifiers by calculating a number of accuracy
metrics (see below). The data related to each project have been
split in 10 sequential parts, thus respecting the temporal order,
and the proportion of data for each project. The models have
been trained iteratively on group of data preceding the test set.
The temporal order was also respected for the groups included
in the training set: as an example, in fold 1 we used group 1
for training and group 2 for testing, in fold 2 groups 1 and 2
were used for training and group 3 for testing, and so on for
the remaining folds.

As accuracy metrics, we first calculated precision and recall.
However, as suggested by [21], these two measures present
some biases as they are mainly focused on positive examples
and predictions and they do not capture any information about
the rates and kind of errors made.

The contingency matrix (also named confusion matrix), and
the related f-measure help to overcome this issue. Moreover, as
recommended by [21], the Matthews Correlation Coefficient
(MCC) should be also considered to understand possible dis-
agreement between actual values and predictions as it involves
all the four quadrants of the contingency matrix.

From the contingency matrix, we retrieved the measure
of true negative rate (TNR), which measures the percentage
of negative sample correctly categorized as negative, false

positive rate (FPR) which measures the percentage of negative

sample misclassified as positive, and false negative rate (FNR),
measuring the percentage of positive samples misclassified
as negative. The measure of true positive rate is left out
as equivalent to the recall. The way these measures were
calculated can be found in Table II.

TABLE II
ACCURACY METRICS FORMULAE

Accuracy Measure Formula

Precision TP
FP+TP

Recall TP
FN+TP

MCC TP∗TN−FP∗FN√
(FP+TP )(FN+TP )(FP+TN)(FN+TN)

f-measure 2 ∗
precision∗recall
precision+recall

TNR TN
FP+TNe

FPR FP
TN+FP

FNR FN
FN+TP

TP: True Positive; TN: True Negative; FP: False Positive; FN: False
Negative

Finally, to graphically compare the true positive and the
false positive rates, we calculated the Receiver Operating Char-
acteristics (ROC), and the related Area Under the Receiver
Operating Characteristic Curve (AUC): the probability that a
classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one.

In our dataset, the proportion of the two types of commits is
not even: a large majority (approx. 90 %) of the commits were
non-fault-inducing, and a plain accuracy score would reach
high values simply by always predicting the majority class.
On the other hand, the ROC curve (as well as the precision
and recall scores) are informative even in seriously unbalanced
situations.

3) SQ-Violations Residual Analysis: The results from the
previous ML techniques show a set of SQ-Violations related
with fault-inducing commits. However, the relations obtained
in the previous analysis do not imply causation between faults
and SQ-Violations.

In this step, we analyze which violations were introduced
in the fault-inducing commits and then removed in the fault-
fixing commits. We performed this comparison at the file level.
Moreover, we did not consider cases where the same violation
was introduced in the fault-inducing commit, removed, re-
introduced in commits not related to the same fault, and finally
removed again during the fault-fixing commit.

In order to understand which SQ-Violations were introduced
in the fault-inducing commits (IND) and then removed in the
fault-fixing commit (FIX), we analyzed the residuals of each
SQ-Violation by calculating:

Residual = ∆IND +∆FIX

where ∆IND and ∆FIX are calculated as:

∆IND = #SQ-Violations introduced in the fault-inducing

commit

∆FIX =#SQ-Violations removed in the fault-fixing commit

Figure 2 schematizes the residual analysis.
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We calculated the residuals for each commit/fix pair, ver-
ifying the introduction of the SQ-Violation Vi in the fault-
inducing commit (IND) and the removal of the violation in the
fault-fixing commit (FIX). If ∆IND was lower than zero, no
SQ-Violations were introduced in the fault-inducing commit.
Therefore, we tagged such a commit as not related to faults.

For each violation, the analysis of the residuals led us to
two groups of commits:

• Residual > 0: The SQ-Violations introduced in the fault-
inducing commits were not removed during the fault-
fixing.

• Residual ≤ 0: All the SQ-Violations introduced in the
fault-inducing commits were removed during the fault-
fixing. If Residual < 0, other SQ-Violations of the same
type already present in the code before the bug-inducing
commit were also removed.

For each SQ-Violations, we calculated descriptive statistics
so as to understand the distribution of residuals.

Then, we calculated the residual sum of squares (RSS) as:

RSS =
∑

(Residual)2

We calculated the percentage of residuals equal to zero as:

#zero residuals

#residuals
∗ 100%

Based on the residual analysis, we can consider violations
where the percentage of zero residuals was higher than 95%
as a valid result.

4) RQ1: Which are the most fault-prone SQ-Violations?: In
order to analyze RQ1, we combined the results obtained from
the best ML technique and from the residual analysis. There-
fore, if a violation has a high correlation with faults but the
percentage of the residual is very low, we can discard it from
our model, since it will be valuable only in a limited number of
cases. As we cannot claim a cause-effect relationship without
a controlled experiment, the results of the residual analysis
are a step towards the identification of this relationship and
the reduction of spurious correlations.

5) RQ2: Are SQ-Violations classified as ”bugs” by Sonar-

Qube more fault-prone than other rules?: The comparison of
rules classified as ”bugs” with other rules has been performed
considering the results of the best ML techniques and the resid-
ual analysis, comparing the number of violations classified as
”bug” that resulted to be fault-prone from RQ1. We expect
bugs to be in the most faults-prone rules.

6) RQ3: What is the fault prediction accuracy of the Sonar-

Qube quality model based on violations classified as ”bugs”:

Since SonarQube considers every SQ-Violation tagged as a
”bug” as ”something wrong in the code that will soon be
reflected in a bug”, we also analyzed the accuracy of the model
provided by SonarQube.

In order to answer our RQ3, we calculated the percentage of
SQ-Violations classified as ”bugs” that resulted in being highly
fault-prone according to the previous analysis. Moreover, we
also analyzed the accuracy of the model calculating all the
accuracy measures reported in Section III-C2.

D. Replicability

In order to allow the replication of our study, we published
the raw data in the replication package 8.

IV. RESULTS

In this work, we considered more than 37 billion effective
lines of code and retrieved a total of 1,464,320 violations from
39,518 commits scanned with SonarQube. Table 1 reports the
list of projects together with the number of analyzed commits
and the size (in Lines of Code) of the latest analyzed commit.
We retrieved a total of 4,505 faults reported in the issue
trackers.

All the 202 rules available in SonarQube for Java were
found in the analyzed projects. For reasons of space limi-
tations, we will refer to the SQ-Violations only with their
SonarQube id number (SQUID). The complete list of rules,
together with their description is reported in the online
replication package (file SonarQube-rules.xlsx). Note that in
column ”Type” MA means Major, Mi means Minor, CR means
Critical, and BL means Blocker.

A. RQ1: Which are the most fault-prone SQ-Violations?

In order to answer this RQ, we first analyzed the importance
of the SQ-Violations by means of the most accurate ML
technique and then we performed the residual analysis.

1) SQ-Violations Importance Analysis: As shown in Fig-
ure 3, XGBoost resulted in the most accurate model among
the eight machine learning techniques applied to the dataset.
The 10-fold cross-validation reported an average AUC of 0.83.
Table III (column RQ1) reports average reliability measures
for the eight models.

Despite the different measures have different strengths and
weaknesses (see Section III-C2), all the measures are consis-
tently showing that XGBoost is the most accurate technique.

The ROC curves of all models are depicted in Table III
while the reliability results of all the 10-folds models are
available in the online replication package.

Therefore, we selected XGBoost as classification model for
the next steps, and utilized the feature importance calculated
applying the drop-column method to this classifier. The XG-
Boost classifier was retrained removing one feature at a time
sequentially.

8Replication Package: https://figshare.com/s/fe5d04e39cb74d6f20dd



TABLE III
MODEL RELIABILITY

RQ1 (Average between 10-fold validation models) RQ2 RQ3

Measure
Logistic
Regr.

Decision
Tree

Bagging Random
Forest

Extra
Trees

AdaBoost Gradient
Boosting

XGBoost SQ ”bugs”

Precision 0.417 0.311 0.404 0.532 0.427 0.481 0.516 0.608 0.086
Recall 0.076 0.245 0.220 0.156 0.113 0.232 0.192 0.182 0.028
MCC 0.162 0.253 0.279 0.266 0.203 0.319 0.300 0.318 0.032
f-measure 0.123 0.266 0.277 0.228 0.172 0.301 0.275 0.275 0.042
TNR 0.996 0.983 0.990 0.995 0.995 0.993 0.995 0.997 0.991
FPR 0.004 0.002 0.010 0.004 0.005 0.007 0.005 0.003 0.009
FNR 0.924 0.755 0.779 0.844 0.887 0.768 0.808 0.818 0.972
AUC 0.670 0.501 0.779 0.802 0.775 0.791 0.825 0.832 0.509

Fig. 3. ROC Curve (Average between 10-fold validation models)

23 SQ-Violations have been ranked with an importance
higher than zero by the XGBoost. In Table V, we report the
SQ-Violations with an importance higher or equal than 0.01 %
(coloumn ”Intr. & Rem. (%)” reports the number of violations
introduced in the fault-inducing commits AND removed in
the fault-fixing commits). The remaining SQ-Violations are
reported in the raw data for reasons of space. coloumn ”Intr.
& Rem. (%)” means

The combination of the 23 violations guarantees a good
classification power, as reported by the AUC of 0.83. However,
the drop column algorithm demonstrates that SQ-Violations
have a very low individual importance. The most important
SQ-Violation has an importance of 0.62%. This means that
the removal of this variable from the model would decrease
the accuracy (AUC) only by 0.62%. Other three violations
have a similar importance (higher than 0.5%) while others are
slightly lower.

2) Model Accuracy Validation: The analysis of residuals
shows that several SQ-Violations are introduced in fault-
inducing commits in more than 50% of cases. 32 SQ-
Violations out of 202 had been introduced in the fault-inducing
commits and then removed in the fault-fixing commit in more
than 95% of the faults. The application of the XGBoost, also
confirmed an importance higher than zero in 26 of these SQ-
Violations. This confirms that developers, even if not using
SonarQube, pay attention to these 32 rules, especially in case
of refactoring or bug-fixing.

Fig. 4. Comparison of Violations introduced in fault-inducing commits and
removed in fault-fixing commits

Table V reports the descriptive statistics of residuals, to-
gether with the percentage residuals = 0 (number of SQ-
Violations introduced during fault-inducing commits and

removed during fault-fixing commits).

Column ”Res >95%”, shows a checkmark (!) when the
percentage of residuals=0 was higher than 95%.

Figure 4 compares the number of violations introduced in
fault-inducing commits, and the number of violations removed
in the fault-fixing commits.

B. Manual Validation of the Results

In order to understand the possible causes and to validate the
results, we manually analyzed 10 randomly selected instances
for the first 20 SQ-Violations ranked as more important by the
XGBoost algorithm.

The first immediate result is that, in 167 of the 200 manually
inspected violations, the bug induced in the fault-inducing
commit was not fixed by the same developer that induced it.

We also noticed that violations related to duplicated code
and empty statements (eg. ”method should not be empty”)
always generated a fault (in the randomly selected cases).
When committing an empty method (often containing only
a ”TODO” note), developers often forgot to implement it and
then used it without realizing that the method did not return
the expected value. An extensive application of unit testing
could definitely reduce this issue. However, we are aware that
is is a very common practice in several projects. Moreover,
SQ-Violations such as 1481 (unused private variable should



TABLE IV
SONARQUBE CONTINGENCY MATRIX (PREDICTION MODEL BASED ON

SQ-VIOLATIONS CONSIDERED AS ”BUG” BY SONARQUBE)

Predicted Actual
IND NOT IND

IND 32 342
NOT IND 1,124 38,020

be removed) and 1144 (unused private methods should be
removed) unexpectedly resulted to be an issue. In several
cases, we discovered methods not used, but expected to be
used in other methods, resulted in a fault. As example, if a
method A calls another method B to compose a result message,
not calling the method B results in the loss of the information
provided by B.

C. RQ2: Are SQ-Violations classified as ”bugs” by Sonar-

Qube more fault-prone than other rules?

Out of the 57 violations classified as ”bugs” by SonarQube,
only three (squid 1143, 1147, 1764) were considered fault-
prone with a very low importance from the XGBoost and with
residuals higher than 95%. However, rules classified as ”code
smells” were frequently violated in fault-inducing commits.
However, considering all the SQ-Violations, out of 40 the SQ-
Violations that we identified as fault-prone, 37 are classified
as ”code smells” and one as security ”vulnerability”.

When comparing severity with fault proneness of the SQ-
Violations, only three SQ-Violations (squid 1147, 2068, 2178)
were associated with the highest severity level (blocker).
However, the fault-proneness of this rule is extremely low
(importance <= 0.14%). Looking at the remaining violations,
we can see that the severity level is not related to the
importance reported by the XGBoost algorithm since the rules
of different level of severity are distributed homogeneously
across all importance levels.

D. RQ3: Fault prediction accuracy of the SonarQube model

”Bug” violations were introduced in 374 commits out of
39,518 analyzed commits. Therefore, we analyzed which of
these commits were actually fault-inducing commits. Based
on SonarQube’s statement, all these commits should have
generated a fault.

All the accuracy measures (Table III, column ”RQ2”) con-
firm the very low prediction power of ”bug” violations. The
vast majority of ”bug” violations never become a fault. Results
are also confirmed by the extremely low AUC (50.95%) and
by the contingency matrix (Table IV). The results of the
SonarQube model also confirm the results obtained in RQ2.
Violations classified as ”bugs” should be classified differently
since they are hardly ever injected in fault-inducing commits.

V. THREATS TO VALIDITY

In this Section, we discuss the threats to validity, including
internal, external, construct validity, and reliability. We also
explain the different adopted tactics [22].

Construct Validity. As for construct validity, the results
might be biased regarding the mapping between faults and
commits. We relied on the ASF practice of tagging commits
with the issue ID. However, in some cases, developers could
have tagged a commit differently. Moreover, the results could
also be biased due to detection errors of SonarQube. We are
aware that static analysis tools suffer from false positives. In
this work we aimed at understanding the fault proneness of
the rules adopted by the tools without modifying them, so as
to reflect the real impact that developers would have while
using the tools. In future works, we are planning to replicate
this work manually validating a statistically significant sample
of violations, to assess the impact of false positives on the
achieved findings. As for the analysis timeframe, we analyzed
commits until the end of 2015, considering all the faults raised
until the end of March 2018. We expect that the vast majority
of the faults should have been fixed. However, it could be
possible that some of these faults were still not identified and
fixed.

Internal Validity. Threats can be related to the causation
between SQ-Violations and fault-fixing activities. As for the
identification of the fault-inducing commits, we relied on the
SZZ algorithm [18]. We are aware that in some cases, the SZZ
algorithm might not have identified fault-inducing commits
correctly because of the limitations of the line-based diff
provided by git, and also because in some cases bugs can be
fixed modifying code in other location than in the lines that
induced them. Moreover, we are aware that the imbalanced
data could have influenced the results (approximately 90% of
the commits were non-fault-inducing). However, the applica-
tion of solid machine learning techniques, commonly applied
with imbalanced data could help to reduce this threat.

External Validity. We selected 21 projects from the ASF,
which incubates only certain systems that follow specific and
strict quality rules. Our case study was not based only on one
application domain. This was avoided since we aimed to find
general mathematical models for the prediction of the number
of bugs in a system. Choosing only one or a very small number
of application domains could have been an indication of the
non-generality of our study, as only prediction models from
the selected application domain would have been chosen. The
selected projects stem from a very large set of application
domains, ranging from external libraries, frameworks, and web
utilities to large computational infrastructures. The dataset
only included Java projects. We are aware that different
programming languages, and projects different maturity levels
could provide different results.

Reliability Validity. We do not exclude the possibility that
other statistical or machine learning approaches such as Deep
Learning, or others might have yielded similar or even better
accuracy than our modeling approach.

VI. RELATED WORK

In this Section, we introduced the related works analyzing
literature on SQ-Violations and faults predictions.



TABLE V
SUMMARY OF THE MOST IMPORTANT SONARQUBE VIOLATIONS RELATED TO FAULTS (XGBOOST IMPORTANCE > 0.2%)

SonarQube SZZ Residuals XG
Boost

Res.
>95%

SQUID Severity Type # Occ. Intr. &
Rem.(%)

Intr. in
fault-ind

Mean Max Min Stdev RSS Imp.

S1192 CRITICAL CS 1815 50,87 95,10 245,60 -861 2139 344,42 1726 0,66 !

S1444 MINOR CS 96 2,69 97,92 4,59 -7 73 10,34 94 0,62 !

Useless Import Check MAJOR CS 1026 28,76 97,27 33,37 -170 351 61,58 998 0,41 !

S00105 MINOR CS 263 7,37 97,72 1,96 -13 32 10,22 257 0,41 !

S1481 MINOR CS 568 15,92 95,25 10,41 -6 83 14,60 541 0,39 !

S1181 MAJOR CS 200 5,61 97,00 8,87 0 88 13,43 194 0,31 !

S00112 MAJOR CS 1644 46,08 94,77 188,26 -279 1529 270,34 1558 0,29
S1132 MINOR CS 704 19,73 93,75 121,75 -170 694 134,91 660 0,24
Hidden Field MAJOR CS 584 16,37 92,98 26,96 -12 143 29,42 543 0,23
S134 CRITICAL CS 1272 35,65 94,65 70,66 -66 567 88,07 1204 0,20

Falessi et al. [3] studied the distribution of 16 metrics and
106 SQ-Violations in an industrial project. They applied a
What-if approach with the goal of investigating what could
happen if a specific SQ-Violation would not have been intro-
duced in the code and if the number of faulty classes decrease
in case the violation is not introduced. They compared four ML
techniques applying the same techniques on a modified version
of the code where they manually removed SQ-Violations.
Results showed that 20% of faults were avoidable if the code
smells would have been removed.

Tollin et al. [4] investigated if SQ-Violations introduced
would led to an increase in the number of changes (code
churns) in the next commits. The study was applied on two
different industrial projects, written in C# and JavaScript. They
reported that classes affected by more SQ-Violations have a
higher change proneness. However they did not prioritize or
classified the most change prone SQ-Violations.

Digkas et al. [23] studied weekly snapshots of 57 Java
projects of the ASF investigating the amount of technical debt
paid back over the course of the projects and what kind of
issues were fixed. They considered SQ-Violations with severity
marked as Blocker, Critical, and Major. The results showed
that only a small subset of all issue types was responsible
for the largest percentage of technical debt repayment. Their
results thus confirm our initial assumption that there is no
need to fix all issues. Rather, by targeting particular violations,
the development team can achieve higher benefits. However,
their work does not consider how the issues actually related
to faults.

Falessi and Reichel [24] developed an open-source tool to
analyze the technical debt interest occurring due to violations
of quality rules. Interest is measured by means of various
metrics related to fault-proneness. They use SonarQube rules
and uses linear regression to estimate the defect-proneness of
classes. The aim of MIND is to answer developers’ questions
like: is it worth to re-factor this piece of code? Differently
than in our work, the actual type of issue causing the defect
was not considered.

Codabux and Williams [25] propose a predictive model to
prioritize technical debt. They extracted class-level metrics for
defect- and change-prone classes using Scitool Understanding

and Jira Extracting Tool from Apache Hive and determined
significant independent variables for defect- and change-prone
classes, respectively. Then they used a Bayesian approach to
build a prediction model to determine the ”technical debt
proneness” of each class. Their model requires the identifi-
cation of ”technical debt items”, which requires manual input.
These items are ultimately ranked and given a risk probability
by the predictive framework.

Saarimäki investigated the diffuseness of SQ-violations in
the same dataset we adopted [26] and the accuracy of the
SonarQube remediation time [27].

Regarding other code quality rules detection, 7 different
machine learning approaches (Random Forest, Naive Bayes,
Logistic regression, IBl, IBk, VFI, and J48) [28] were suc-
cessfully applied on 6 code smells (Lazy Class, Feature Envy,
Middle Man Message Chains, Long Method, Long Param-
eter Lists, and Switch Statement) and 27 software metrics
(including Basic, Class Employment, Complexity, Diagrams,
Inheritance, and MOOD) as independent variables.

Code smells detection was also investigated from the point
of view of how the severity of code smells can be classified
through machined learning models [29] such as J48, JRip,
Random Forest, Naive Bayes, SMO, and LibSVM with best
agreement to detection 3 code smells (God Class, Large Class,
and Long Parameter List).

VII. DISCUSSION AND CONCLUSION

SonarQube classifies 57 rules as ”bugs”, claiming that they
will sooner or later they generate faults. Four local companies
contacted us to investigate the fault prediction power of the
SonarQube rules, possibly using machine learning, so as to
understand if they can rely on the SonarQube default rule-set
or if they can use machine learning to customize the model
more accurately.

We conducted this work analyzing a set of 21 well-known
open source project selected by the companies, analyzing
the presence of all 202 SonarQube detected violations in
the complete project history. The study considered 39,518
commits, including more than 38 billion lines of code, 1.4
million violations, and 4,505 faults mapped to the commits.

To understand which sq-violations have the highest fault-
proneness, we first applied eight machine learning approaches



to identify the sq-violations that are common in commits
labeled as fault-inducing. As for the application of the different
machine learning approaches, we can see an important differ-
ence in their accuracy, with a difference of more than 53%
from the worst model (Decision Trees AUC=47.3%±3%) and
the best model (XGBoost AUC=83.32%±10%). This confirms
also what we reported in Section II-B: ensemble models,
like the XGBoost, can generalize better the data compared to
Decision Trees, hence it results to be more scalable. The use of
many weak classifiers, yields an overall better accuracy, as it
can be seen by the fact that the boosting algorithms (AdaBoost,
GradientBoost, and XGBoost) are the best performers for this
classification task, followed shortly by the Random Forest
classifier and the ExtraTrees.

As next step, we checked the percentage of commits where a
specific violation was introduced in the fault-inducing commit
and then removed in the fault-fixing commit, accepting only
those violations where the percentage of cases where the
same violations were added in the fault-inducing commit and
removed in the fault-fixing commit was higher than 95%.

Our results show that 26 violations can be considered fault-
prone from the XGBoost model. However, the analysis of
the residuals showed that 32 sq-violations were commonly
introduced in a fault-inducing commit and then removed in the
fault-fixing commit but only two of them are considered fault-
prone from the machine learning algorithms. It is important to
notice that all the sq-violations that are removed in more than
95% of cases during fault-fixing commits are also selected by
the XGBoost, also confirming the importance of them.

When we looked at which of the sq-violations were con-
sidered as fault-prone in the previous step, only four of them
are also classified as (”bugs”) by SonarQube. The remaining
fault-prone sq-violations are mainly classified as ”code smells”
(SonarQube claims that ”code smells” increase maintenance
effort but do not create faults). The analysis of the accuracy
of the fault prediction power of the SonarQube model based
on ”bugs” showed an extremely low fitness, with an AUC of
50.94%, confirming that violations classified as ”bugs” almost
never resulted in a fault.

An important outcome is related to the application of the
machine learning techniques. Not all the techniques performed
equally and XGBoost was the most more accurate and fastest
technique in all the projects. Therefore, the application XG-
Boost to historical data is a good alternative to the manual
tuning of the model, where developers should select which
rules they believe are important based on their experience.

The result confirmed the impression of the developers of
our companies. Their developers still consider it very useful to
help to develop clean code that adhere to company standards,
and that help new developers to write code that can be easily
understood by other developers. Before the execution of this
study the companies were trying to avoid to violate the rules
classifies as bugs, hoping to reduce fault proneness. However,
after the execution of this study, the companies individually
customized the set of rules considering only coding standards
aspects and rules classified as ”security vulnerabilities”. The

main result for the companies is that they will need to invest
in the adoption of other tools to reduce the fault proneness
and therefore, we will need to replicate this work considering
other tools such as FindBugs, PMD but also commercial tools
such as Coverity Scan, Cast Software and others.

Based on the overall results, we can summarize the follow-
ing lessons learned:

Lesson 1: SonarQube violations are not good predictors
of fault-proneness if considered individually, but can be good
predictors if considered together. Machine learning techniques,
such as XGBoost can be used to effectively train a customized
model for each company.

Lesson 2: SonarQube violations classified as ”bugs” do not
seem to be the cause of faults.

Lesson 3: SonarQube violation severity is not related to
the fault-proneness and therefore, developers should carefully
consider the severity as decision factor for refactoring a
violation.

Lesson 4: Technical debt should be calculated differently,
and the non-fault prone rules should not be accounted as
”fault-prone” (or ”buggy”) components of the technical debt
while several ”code smells” rules should be carefully consid-
ered as potentially fault-prone.

The lessons learned confirm our initial hypothesis about the
fault-proneness of the SonarQube violations. However, we are
not claiming that SonarQube violations are not harmful in
general. We are aware that some violations could be more
prone to changes [3], decrease code readability, or increase
the maintenance effort.

Our recommendation to companies using SonarQube is to
customize the rule-set, taking into account which violations to
consider, since the refactoring of several sq-violations might
not lead to a reduction in the number of faults. Furthermore,
since the rules in SonarQube constantly evolve, companies
should continuously re-consider the adopted rules.

Research on technical debt should focus more on validating
which rules are actually harmful from different points of view
and which will account for a higher technical debt if not
refactored immediately.

Future works include the replication of this work consid-
ering the severity levels of SonarQube rules and their impor-
tance. We are working on the definition of a more accurate
model for predicting TD [30] Moreover, we are planning
to investigate whether classes that SonarQube identify as
problematic are more fault-prone than those not affected by
any problem. Since this work did not confirmed the fault
proneness of SonarQube rules, the companies are interested in
finding other static analysis tool for this purpose. Therefore,
we are planning to replicate this study using other tools such
as FindBugs, Checkstyle, PMD and others. Moreover, we will
focus on the definition of recommender systems integrated
in the IDEs [31][32], to alert developers about the presence
of potential problematic classes based on their (evolution of)
change- and fault-proneness and rank them based on the
potential benefits provided by their removal.
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