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Abstract — This paper presents an open-source simulation 

environment for 360-degree traffic imaging. The environment is 

built on the openly available AirSim Windridge City Asset. In 

this work, the city is populated with custom autonomous 

vehicles and pedestrians. The vehicles navigate along a designed 

node map that can be manually placed on the roads according 

to the specified traffic regulations. The vehicles are also made to 

detect other vehicles, pedestrians, and traffic lights for simple 

collision avoidance and smoother traffic flows in intersections. 

The pedestrians follow a NavMesh placed on the walkable areas 

and stop at the traffic lights when crossing the streets. Weather 

effects, time-of-day, and rain distortion lens shader bring the 

environment more close to the reality. The whole system is built 

on top of free and self-made assets, making it easy to use, 

configure, and extend. The performance of the simulator 

exceeds 60 frames per second when run on NVIDIA RTX 2070 

with Intel Xeon E5-2620 or equivalent hardware.  

Keywords— Open-source software, traffic simulator, scene 

population, traffic imaging 

I. INTRODUCTION 

Advanced driver-assistance systems (ADAS) have been an 
increasingly popular research topic in recent years [1], [2]. 
These systems are being developed to improve vehicle safety, 
driver behavior, and driving experience. Particularly, a 
cumulative number of modern vehicles contain video-based 
ADAS to detect other vehicles, pedestrians, and surrounding 
obstacles. The next-generation systems are also able to 
leverage vehicle-to-everything (V2X) communication to 
provide vehicles with more visual data.  

In vision-based ADAS development, the simulation 
environment is a must-have for testing different parameter 
settings and verifying the operation before actual 
implementation. However, the existing traffic imaging 
simulators are either expensive or lacking in usability or 
modifiability, especially when specific camera positioning 
and image distortions are of interest. 

This paper presents a tailor-made, open-source See-
Through Sight (CiThruS) simulation environment for 360-
degree traffic imaging. It is designed to facilitate the 
development of vision-based ADAS for next-generation 
vehicles. Fig. 1 depicts a snapshot of the open Windridge City 
Asset [3] which is used as a basis for our work. The asset is 
available in the Unity Asset Store and the 3D models for the 
vehicles are obtained from [4]-[7]. The environment is built in 
Unity. 

 The original Windridge City scene is void of life and it 
only has a clear day weather. The design goal was to add 

photorealistic dynamic features to the city in order to make 
camera-capture simulation look more realistic. The 
implemented features include self-driving vehicles, 
pedestrians, various weather effects, and different time-of-day 
lightings. Since our interest is not in the traffic simulation, the 
autonomously moving vehicles and pedestrians are made to 
follow predefined routes for the sake of lower complexity. 
However, this customizable and extendable setup still enables 
us to address wide range of use cases, from ideal to non-ideal 
traffic imaging conditions. The presented solution is available 
at https://github.com/ultravideo/CiThruS-simulation-
environment/. 

This paper is organized as follows. Section II gives an 
overview of the previous work. Section III takes an in-depth 
look at the vehicles and pedestrians implemented in the scene. 
Section IV describes the environment effects. Section V 
explains the lighting features and Section VI concludes the 
paper. 

II. RELATED WORK 

To the best of our knowledge, there are no ready-made, 
open-source, and easy-to-use simulation environments for 
360-degree traffic imaging in the prior art. The existing open-
source traffic simulators are lacking in realistic graphics like 
SIRCA (SImulador Reactivo de Conduccion de Autómoviles) 
[8], exclude other vehicles or pedestrians like TORCS (The 
Open Racing Car Simulator) [9], or include a lot of additional 
features not necessarily needed in traffic imaging [10]. 

The closest approach to ours is CARLA (Car Learning to 
Act) [10] open-source simulator for autonomous driving 
systems. CARLA is built on compute-intensive machine-
learning algorithms and it uses highly detailed vehicle models 

  

Fig. 1. Windridge City Asset [3]. 

 



   

 

   

 

to simulate traffic as realistically as possible. However, this 
approach adds multiple layers of complexity and makes the 
simulator fall behind real-time performance.  

Unlike CARLA, our simulator is able to attain real-time 
performance on high-end consumer-grade graphics 
processing unit (GPUs). Our approach is also more scalable, 
meaning that the number of vehicles and pedestrians can be 
practically selected freely without making any major 
performance compromises.  

III. OPERATING PRINCIPLES OF VEHICLES AND PEDESTRIANS 

Fig. 2 describes the artificial intelligence (AI) state 
machine implemented for vehicle control in the scene. The 
goal was not to create a complete simulation model of a real-
life city, but a more straightforward and light-weight control 
scheme is enough for the vehicle control.  

A. Collision Prevention 

The vehicles use an optimized array of Unity 3D built-in 
raycasts to monitor their surroundings. These rays reach the 
distance of two meters at maximum depending on the car type. 
An individual car uses a total of eight rays to check for other 
vehicles and an additional spherical sweep of rays for 
pedestrians, totaling to a couple of hundred of rays. This check 
is performed once per frame for every vehicle, which for this 
many raycasts is inefficient and is optimized by factoring the 
scene into different physics layers. This allows the raycasts 
only to check against specific objects in the scene and ignore 
the rest. The raycasts can collide only with vehicles and 
pedestrians. 

Should any of the rays hit an obstruction in the way of the 
car, an appropriate action will be taken. If a ray hits another 
vehicle, first the speed of the car hit with the ray will be 
checked. If the speed is lower than the speed of the car casting 
the ray, but a non-zero value, the current car will begin to slow 
down. Since this is checked once per frame, there will come a 
point of time when the car casting the ray is going slower than 
the car in front. After a while, the current car will have slowed 
down enough so that none of the rays will hit anything and the 
car can begin to speed up again. If the next car is still going 
slower than the current car, the process begins anew.  

The cars always try to prevent collisions with a car or a 
pedestrian. This means if a ray hits a stopped car the current 
car will be stopped as well in order to prevent collision.  

The cars check for pedestrians by using a spherical sweep. 
In essence, a spherical sweep is an empty volume which is 
projected in front of the car. If the volume contains any 
pedestrians, a hit is registered and appropriate actions are 
taken according to Fig. 2.  

Pedestrians themselves comply with the control scheme 
described in Fig. 3. It is even more light-weight and does not 
take into account anything except traffic lights. It is up to the 
cars to prevent collisions with anything moving in the scene.  

B. Pathfinding 

Fig. 4 depicts the node network the vehicles use to 
navigate the scene. Using state-of-the-art approaches, like 
machine learning and machine vision, would deteriorate the 
simulator performance. Instead, building a custom solution 
and manually placing nodes on the roads beforehand keeps the 
frame rate high.  

The nodes are directional and enforce the possible turns a 
car can take. This eliminates unnecessary conflicts such as car 
driving on the wrong lane or turning in an illegal direction. For 
the rest, a full path control is left for the developer.  

A node based approach is also able to detect allowed paths 
and speed limits without heavy algorithms. Should the need 
arise, speed limits could be programmed directly into the 
individual nodes. In that case, there would only exists a global 
speed limit to avoid any unnecessary complexity.  

The pedestrians operate on a Unity built-in “NavMesh” 
based solution exemplified in Fig. 5. They are controlled by a 
script called the Pedestrian Hive Mind. It is able to command 
a huge number of individual humans. The Hive Mind 
calculates appropriate paths for the pedestrians and broadcasts 
them to all pedestrians at once. In addition, a single pedestrian 
can also request an individual path.  

This kind of data -oriented approach has the benefit of 
managing many sub-objects efficiently and not generating a 
lot of garbage, which is customary for managed programming 
languages such as C# used in this project. 

C. Integrating Vehicles with a Virtual Camera System 

Cameras can be added inside vehicles for first person view 
and other possible configurations as illustrated in Fig. 6. 

 

 

Fig. 2. AI state machine for vehicle control in the scene. 

 

 

Fig. 3. AI state machine for pedestrian control in the scene. 

 



   

 

   

 

D. Models for Vehicles and Pedestrians 

The 3D models for the cars were obtained from the Unity 
Asset Store [4]-[6] and the model for the truck from 
free3d.com [7].  

The pedestrians were created using an open-source tool 
Make Human [11] for 3D characters. The animations were 
obtained from an online rigging tool and animation database 
called Mixamo [12]. Due to incompatibility between the 
animations and the models, some of the animations are not 
realistic enough at closer inspection. Nevertheless, this 
mismatch does not change the functionality of the scene so 
tweaking the animations to fit the models better was not 
considered important.  

E. Route Editor 

A route editor was implemented for editing existing 

vehicle routes and adding routes to new maps. The route 

editor was implemented as drag-and-drop Unity prefab, 

which makes it easy to include it in a new scene. The route 

editor has a brush mode for creating new paths (Fig. 4) and a 

deletion mode to remove paths. It writes the path data to disk. 

IV. ENVIRONMENTAL EFFECTS 

A simulation world with perfect cameras and always 
sunny weather is not in line with reality so it fails to offer 
interesting test cases for traffic imaging. We are especially 
interested in non-ideal conditions, e.g., test cases where there 

is water or dirt on the lens. For this purpose, different weather 
effects and times of day were implemented. These effects have 
no impact on the functionality of the vehicles or pedestrians in 
the scene. 

A. Daytime 

A Sunny daytime was the default setting in the Windridge 
City Asset. The setting was kept mostly as is, only the skybox 
was tweaked to better match with the other skyboxes used in 
different weather conditions. A skybox creates an illusion of 
the sky. It is a texture which is stretched across the box or 
sphere which indicates the scene bounds.  

B. Night Time 

In order to add a semi-realistic clear night to the scene, the 
skybox was changed to a starry sky and the fog color was 
tweaked to better suit the darker atmosphere. Street lights 
were also added to brighten up the scene and make it more 
realistic for a small city. The windows of the buildings are not 
illuminated for performance reasons but the cars turn on their 
headlights at night time. 

C. Weather Effects: Rain 

Rain was one of the most important weather effects to be 
added due to the visual distortions it causes. In addition to rain 
drops on lenses and car windshields, heavy rain also 
deteriorates visibility on multiple levels. This was simulated 
with a particle system where the amount of individual rain 
particles can easily be altered. 

 

Fig. 5. NavMesh for pedestrians (blue regions). 

 

 

 

Fig. 4. Node network for vehicles. 

 

 

 

Fig. 6. First person view from a car. 

 



   

 

   

 

When creating the lens raindrop effect, visual distortion 
was emphasized in place of actual photorealism as shown in 
Fig. 7. An image-effect shader was used for this purpose. 
There are ready-made solutions available, but implementing a 
custom shader gives more control over the resulting effects. A 
tailored shader also provides easy access to and from our own 
controllers and other scripts.  

The raindrops-on-lens shader was tweaked for the night –
mode as shown in Fig. 8. It was observed that the effect was 
not pronounced enough during the night so it was made 
brighter by taking a weighted average of pixels under the 
effect and blending that with the original view. 

D. Weather Effects: Snow 

Heavy snowfall at night is one of the hardest driving 
conditions so implementing it was vital for our testing 
purposes. Fig. 9 depicts an example snapshot of the wintry 
weather.  

The snow effect was implemented using Unity 3D particle 
system. To make it work better with multiple cameras, the 
effect was made global. This means that instead of a small 
particle system which follows the camera around, a single 
large particle system was used with hundreds of thousands of 
particles. This approach is not optimal performance wise but 
it is unlikely to be the bottleneck of the system. Furthermore, 
optimizing the effect is possible on demand. 

The snow effect also alters the scene ambient lighting to 
better suit the atmosphere. A blue tint is applied during the day 
mode and a blue-gray tint during the night.  

E. Weather Effects: Fog 

Fog in the scene is implemented using Unity 3D 
“RenderSettings” and it can be changed at run time. Every 
weather effect makes use of the ability to change how the fog 
looks.  

F. Miscellanious Lens Effects: Dust and Dirt 

In the simulation scene, it is easy to work with a perfect 
camera and use it as a basis for testing, but it would not 
correspond to real-world testing conditions. This motivated us 
to add the ability to overlay dirt, dust, and scratches over the 
lens as shown in Fig. 10. These effects were achieved using 
an additional blending shader with a weighting factor that can 
be adjusted at run time. 

V. LIGHTING 

The system implements real-time lights instead of baked 
ones. This approach slightly sacrifices performance in favor 
of easy manipulation at run time, which is important for the 
day-night switching process and different weather effects.  

For better performance, most lights do not cast shadows at 
all, do not contribute to the scene global illumination, and 
have limited range. This approach has a couple of drawbacks. 

 

Fig. 9. Snow effect at night. 

 

 

Fig. 7. Lens rain effect in the daytime. 

 

Fig. 8. Lens rain effect at night. 

 



   

 

   

 

 For example, passive street lights make the area 
surrounding them look unrealistic and dull. However, 
adjusting the global illumination settings for the night mode 
makes the scene look more realistic. For example, increasing 
the skybox’s intensity multiplier helped to blend the scene 
better together.  

 Despite the aforementioned improvements, the 
environment still suffers from the “cheese-effect” illustrated 
in Fig. 11. That is, the scene looks like Swiss cheese, full of 
holes when viewed from above especially at night time. The 
effect looks quite strong when viewed directly, but it is not 
noticeable from the ground or inside a vehicle so the effect is 
not considered critical.  

VI. CONCLUSIONS 

 This paper presented an open-source CiThruS simulation 
environment for 360-degree traffic imaging. We populated the 
open Windridge City Asset with vehicles and pedestrians that 
follow basic traffic rules to keep the traffic flow smooth. An 
easy-to-use route editor was also designed to allow users to 
adjust the node system for the vehicle path control. 
Furthermore, different weather conditions and times of day 
were added to meet diverse traffic imaging needs. Thanks to 
the low-complexity nature of our traffic controlling scheme, 
we were able to keep the simulation light-weight but still 
maintain high-quality graphics. Our simulator is able to 
sustain a stable frame rate of over 60 frames per second on 
high-end consumer-grade hardware, like NVIDIA RTX 2070 
with Intel Xeon E5-2620 desktop computer or NVIDIA GTX 
1060 with Intel Core i7-7700HQ laptop. The source files of 
the proposed simulator are available for download at 
https://github.com/ultravideo/CiThruS-simulation-environment/ 
with a permissive MIT license. Future plans for the system 
include adding LiDAR and other sensor simulations as well as 
camera rigging tools, for attaching cameras to the vehicles and 
stationary objects. 
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Fig. 11. Cheese-effect as viewed from the Unity editor. 

 

 

Fig. 10. Camera lens dust shader in use. 

 


