

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Open-Source CiThruS Simulation Environment for

Real-Time 360-Degree Traffic Imaging

Teo Niemirepo, Juuso Toivonen, Marko Viitanen and Jarno Vanne

Tampere University

Tampere, Finland

{teo.niemirepo, juuso.toivonen, marko.viitanen, jarno.vanne}@tuni.fi

Abstract — This paper presents an open-source simulation

environment for 360-degree traffic imaging. The environment is

built on the openly available AirSim Windridge City Asset. In

this work, the city is populated with custom autonomous

vehicles and pedestrians. The vehicles navigate along a designed

node map that can be manually placed on the roads according

to the specified traffic regulations. The vehicles are also made to

detect other vehicles, pedestrians, and traffic lights for simple

collision avoidance and smoother traffic flows in intersections.

The pedestrians follow a NavMesh placed on the walkable areas

and stop at the traffic lights when crossing the streets. Weather

effects, time-of-day, and rain distortion lens shader bring the

environment more close to the reality. The whole system is built

on top of free and self-made assets, making it easy to use,

configure, and extend. The performance of the simulator

exceeds 60 frames per second when run on NVIDIA RTX 2070

with Intel Xeon E5-2620 or equivalent hardware.

Keywords— Open-source software, traffic simulator, scene

population, traffic imaging

I. INTRODUCTION

Advanced driver-assistance systems (ADAS) have been an
increasingly popular research topic in recent years [1], [2].
These systems are being developed to improve vehicle safety,
driver behavior, and driving experience. Particularly, a
cumulative number of modern vehicles contain video-based
ADAS to detect other vehicles, pedestrians, and surrounding
obstacles. The next-generation systems are also able to
leverage vehicle-to-everything (V2X) communication to
provide vehicles with more visual data.

In vision-based ADAS development, the simulation
environment is a must-have for testing different parameter
settings and verifying the operation before actual
implementation. However, the existing traffic imaging
simulators are either expensive or lacking in usability or
modifiability, especially when specific camera positioning
and image distortions are of interest.

This paper presents a tailor-made, open-source See-
Through Sight (CiThruS) simulation environment for 360-
degree traffic imaging. It is designed to facilitate the
development of vision-based ADAS for next-generation
vehicles. Fig. 1 depicts a snapshot of the open Windridge City
Asset [3] which is used as a basis for our work. The asset is
available in the Unity Asset Store and the 3D models for the
vehicles are obtained from [4]-[7]. The environment is built in
Unity.

 The original Windridge City scene is void of life and it
only has a clear day weather. The design goal was to add

photorealistic dynamic features to the city in order to make
camera-capture simulation look more realistic. The
implemented features include self-driving vehicles,
pedestrians, various weather effects, and different time-of-day
lightings. Since our interest is not in the traffic simulation, the
autonomously moving vehicles and pedestrians are made to
follow predefined routes for the sake of lower complexity.
However, this customizable and extendable setup still enables
us to address wide range of use cases, from ideal to non-ideal
traffic imaging conditions. The presented solution is available
at https://github.com/ultravideo/CiThruS-simulation-
environment/.

This paper is organized as follows. Section II gives an
overview of the previous work. Section III takes an in-depth
look at the vehicles and pedestrians implemented in the scene.
Section IV describes the environment effects. Section V
explains the lighting features and Section VI concludes the
paper.

II. RELATED WORK

To the best of our knowledge, there are no ready-made,
open-source, and easy-to-use simulation environments for
360-degree traffic imaging in the prior art. The existing open-
source traffic simulators are lacking in realistic graphics like
SIRCA (SImulador Reactivo de Conduccion de Autómoviles)
[8], exclude other vehicles or pedestrians like TORCS (The
Open Racing Car Simulator) [9], or include a lot of additional
features not necessarily needed in traffic imaging [10].

The closest approach to ours is CARLA (Car Learning to
Act) [10] open-source simulator for autonomous driving
systems. CARLA is built on compute-intensive machine-
learning algorithms and it uses highly detailed vehicle models

Fig. 1. Windridge City Asset [3].

to simulate traffic as realistically as possible. However, this
approach adds multiple layers of complexity and makes the
simulator fall behind real-time performance.

Unlike CARLA, our simulator is able to attain real-time
performance on high-end consumer-grade graphics
processing unit (GPUs). Our approach is also more scalable,
meaning that the number of vehicles and pedestrians can be
practically selected freely without making any major
performance compromises.

III. OPERATING PRINCIPLES OF VEHICLES AND PEDESTRIANS

Fig. 2 describes the artificial intelligence (AI) state
machine implemented for vehicle control in the scene. The
goal was not to create a complete simulation model of a real-
life city, but a more straightforward and light-weight control
scheme is enough for the vehicle control.

A. Collision Prevention

The vehicles use an optimized array of Unity 3D built-in
raycasts to monitor their surroundings. These rays reach the
distance of two meters at maximum depending on the car type.
An individual car uses a total of eight rays to check for other
vehicles and an additional spherical sweep of rays for
pedestrians, totaling to a couple of hundred of rays. This check
is performed once per frame for every vehicle, which for this
many raycasts is inefficient and is optimized by factoring the
scene into different physics layers. This allows the raycasts
only to check against specific objects in the scene and ignore
the rest. The raycasts can collide only with vehicles and
pedestrians.

Should any of the rays hit an obstruction in the way of the
car, an appropriate action will be taken. If a ray hits another
vehicle, first the speed of the car hit with the ray will be
checked. If the speed is lower than the speed of the car casting
the ray, but a non-zero value, the current car will begin to slow
down. Since this is checked once per frame, there will come a
point of time when the car casting the ray is going slower than
the car in front. After a while, the current car will have slowed
down enough so that none of the rays will hit anything and the
car can begin to speed up again. If the next car is still going
slower than the current car, the process begins anew.

The cars always try to prevent collisions with a car or a
pedestrian. This means if a ray hits a stopped car the current
car will be stopped as well in order to prevent collision.

The cars check for pedestrians by using a spherical sweep.
In essence, a spherical sweep is an empty volume which is
projected in front of the car. If the volume contains any
pedestrians, a hit is registered and appropriate actions are
taken according to Fig. 2.

Pedestrians themselves comply with the control scheme
described in Fig. 3. It is even more light-weight and does not
take into account anything except traffic lights. It is up to the
cars to prevent collisions with anything moving in the scene.

B. Pathfinding

Fig. 4 depicts the node network the vehicles use to
navigate the scene. Using state-of-the-art approaches, like
machine learning and machine vision, would deteriorate the
simulator performance. Instead, building a custom solution
and manually placing nodes on the roads beforehand keeps the
frame rate high.

The nodes are directional and enforce the possible turns a
car can take. This eliminates unnecessary conflicts such as car
driving on the wrong lane or turning in an illegal direction. For
the rest, a full path control is left for the developer.

A node based approach is also able to detect allowed paths
and speed limits without heavy algorithms. Should the need
arise, speed limits could be programmed directly into the
individual nodes. In that case, there would only exists a global
speed limit to avoid any unnecessary complexity.

The pedestrians operate on a Unity built-in “NavMesh”
based solution exemplified in Fig. 5. They are controlled by a
script called the Pedestrian Hive Mind. It is able to command
a huge number of individual humans. The Hive Mind
calculates appropriate paths for the pedestrians and broadcasts
them to all pedestrians at once. In addition, a single pedestrian
can also request an individual path.

This kind of data -oriented approach has the benefit of
managing many sub-objects efficiently and not generating a
lot of garbage, which is customary for managed programming
languages such as C# used in this project.

C. Integrating Vehicles with a Virtual Camera System

Cameras can be added inside vehicles for first person view
and other possible configurations as illustrated in Fig. 6.

Fig. 2. AI state machine for vehicle control in the scene.

Fig. 3. AI state machine for pedestrian control in the scene.

D. Models for Vehicles and Pedestrians

The 3D models for the cars were obtained from the Unity
Asset Store [4]-[6] and the model for the truck from
free3d.com [7].

The pedestrians were created using an open-source tool
Make Human [11] for 3D characters. The animations were
obtained from an online rigging tool and animation database
called Mixamo [12]. Due to incompatibility between the
animations and the models, some of the animations are not
realistic enough at closer inspection. Nevertheless, this
mismatch does not change the functionality of the scene so
tweaking the animations to fit the models better was not
considered important.

E. Route Editor

A route editor was implemented for editing existing

vehicle routes and adding routes to new maps. The route

editor was implemented as drag-and-drop Unity prefab,

which makes it easy to include it in a new scene. The route

editor has a brush mode for creating new paths (Fig. 4) and a

deletion mode to remove paths. It writes the path data to disk.

IV. ENVIRONMENTAL EFFECTS

A simulation world with perfect cameras and always
sunny weather is not in line with reality so it fails to offer
interesting test cases for traffic imaging. We are especially
interested in non-ideal conditions, e.g., test cases where there

is water or dirt on the lens. For this purpose, different weather
effects and times of day were implemented. These effects have
no impact on the functionality of the vehicles or pedestrians in
the scene.

A. Daytime

A Sunny daytime was the default setting in the Windridge
City Asset. The setting was kept mostly as is, only the skybox
was tweaked to better match with the other skyboxes used in
different weather conditions. A skybox creates an illusion of
the sky. It is a texture which is stretched across the box or
sphere which indicates the scene bounds.

B. Night Time

In order to add a semi-realistic clear night to the scene, the
skybox was changed to a starry sky and the fog color was
tweaked to better suit the darker atmosphere. Street lights
were also added to brighten up the scene and make it more
realistic for a small city. The windows of the buildings are not
illuminated for performance reasons but the cars turn on their
headlights at night time.

C. Weather Effects: Rain

Rain was one of the most important weather effects to be
added due to the visual distortions it causes. In addition to rain
drops on lenses and car windshields, heavy rain also
deteriorates visibility on multiple levels. This was simulated
with a particle system where the amount of individual rain
particles can easily be altered.

Fig. 5. NavMesh for pedestrians (blue regions).

Fig. 4. Node network for vehicles.

Fig. 6. First person view from a car.

When creating the lens raindrop effect, visual distortion
was emphasized in place of actual photorealism as shown in
Fig. 7. An image-effect shader was used for this purpose.
There are ready-made solutions available, but implementing a
custom shader gives more control over the resulting effects. A
tailored shader also provides easy access to and from our own
controllers and other scripts.

The raindrops-on-lens shader was tweaked for the night –
mode as shown in Fig. 8. It was observed that the effect was
not pronounced enough during the night so it was made
brighter by taking a weighted average of pixels under the
effect and blending that with the original view.

D. Weather Effects: Snow

Heavy snowfall at night is one of the hardest driving
conditions so implementing it was vital for our testing
purposes. Fig. 9 depicts an example snapshot of the wintry
weather.

The snow effect was implemented using Unity 3D particle
system. To make it work better with multiple cameras, the
effect was made global. This means that instead of a small
particle system which follows the camera around, a single
large particle system was used with hundreds of thousands of
particles. This approach is not optimal performance wise but
it is unlikely to be the bottleneck of the system. Furthermore,
optimizing the effect is possible on demand.

The snow effect also alters the scene ambient lighting to
better suit the atmosphere. A blue tint is applied during the day
mode and a blue-gray tint during the night.

E. Weather Effects: Fog

Fog in the scene is implemented using Unity 3D
“RenderSettings” and it can be changed at run time. Every
weather effect makes use of the ability to change how the fog
looks.

F. Miscellanious Lens Effects: Dust and Dirt

In the simulation scene, it is easy to work with a perfect
camera and use it as a basis for testing, but it would not
correspond to real-world testing conditions. This motivated us
to add the ability to overlay dirt, dust, and scratches over the
lens as shown in Fig. 10. These effects were achieved using
an additional blending shader with a weighting factor that can
be adjusted at run time.

V. LIGHTING

The system implements real-time lights instead of baked
ones. This approach slightly sacrifices performance in favor
of easy manipulation at run time, which is important for the
day-night switching process and different weather effects.

For better performance, most lights do not cast shadows at
all, do not contribute to the scene global illumination, and
have limited range. This approach has a couple of drawbacks.

Fig. 9. Snow effect at night.

Fig. 7. Lens rain effect in the daytime.

Fig. 8. Lens rain effect at night.

 For example, passive street lights make the area
surrounding them look unrealistic and dull. However,
adjusting the global illumination settings for the night mode
makes the scene look more realistic. For example, increasing
the skybox’s intensity multiplier helped to blend the scene
better together.

 Despite the aforementioned improvements, the
environment still suffers from the “cheese-effect” illustrated
in Fig. 11. That is, the scene looks like Swiss cheese, full of
holes when viewed from above especially at night time. The
effect looks quite strong when viewed directly, but it is not
noticeable from the ground or inside a vehicle so the effect is
not considered critical.

VI. CONCLUSIONS

 This paper presented an open-source CiThruS simulation
environment for 360-degree traffic imaging. We populated the
open Windridge City Asset with vehicles and pedestrians that
follow basic traffic rules to keep the traffic flow smooth. An
easy-to-use route editor was also designed to allow users to
adjust the node system for the vehicle path control.
Furthermore, different weather conditions and times of day
were added to meet diverse traffic imaging needs. Thanks to
the low-complexity nature of our traffic controlling scheme,
we were able to keep the simulation light-weight but still
maintain high-quality graphics. Our simulator is able to
sustain a stable frame rate of over 60 frames per second on
high-end consumer-grade hardware, like NVIDIA RTX 2070
with Intel Xeon E5-2620 desktop computer or NVIDIA GTX
1060 with Intel Core i7-7700HQ laptop. The source files of
the proposed simulator are available for download at
https://github.com/ultravideo/CiThruS-simulation-environment/
with a permissive MIT license. Future plans for the system
include adding LiDAR and other sensor simulations as well as
camera rigging tools, for attaching cameras to the vehicles and
stationary objects.

 ACKNOWLEDGMENT

This work was supported in part by the European ECSEL
project PRYSTINE (under the grant agreement 783190) and
the Academy of Finland (decision no. 301820).

REFERENCES

[1] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H.

Winner, “Three decades of driver assistance systems: review and future
perspectives,” IEEE Intell. Transportation Syst. Mag., vol. 6, no. 4,
Oct. 2014, pp. 6-22.

[2] S. Alvarez, Y. Page, U. Sander, F. Fahrenkrog, T. Helmer, O. Jung, T.
Hermitte, M. Düering, S. Döering, and O. Op den Camp, “Prospective
effectiveness assessment of ADAS and active safety systems via virtual
simulation: a review of the current practices,” in Proc. Int. Tech. Conf.
on the Enhanced Safety of Vehicles, Detroit, Michigan, USA, June
2017.

[3] Windridge City Asset [online]. Available:
https://assetstore.unity.com/packages/3d/environments/roadways/win
dridge-city-132222

[4] Low-poly Civilian Vehicle #5 [online]. Available:
https://assetstore.unity.com/packages/3d/vehicles/land/low-poly-
civilian-vehicle-5-124987

[5] 3D Low Poly Car For Games (Tocus) [online]. Available:
https://assetstore.unity.com/packages/3d/vehicles/land/3d-low-poly-
car-for-games-tocus-101652

[6] 4 Door Sport Car – Mobile [online]. Available:
https://assetstore.unity.com/packages/3d/characters/4-door-sport-car-
mobile-104177

[7] KamAZ 55111 3D Model [online]. Available: https://free3d.com/3d-
model/kamaz-55111-28591.html

[8] S. Bayarri, M. Fernandez, and M. Perez, “Virtual reality for driving
simulation - SIRCA,” Commun. ACM, vol. 39, no. 5, May 1996, pp.
72-76.

[9] TORCS: The Open Racing Car Simulator [online]. Available:
http://www.torcs.org

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: an open urban driving simulator,” in Proc. Annual Conf. on
Robot Learning, Mountain View, California, USA, Nov. 2017.

[11] Make Human [online]. Available:
http://www.makehumancommunity.org

[12] Adobe Mixamo [online]. Available: https://www.mixamo.com

Fig. 11. Cheese-effect as viewed from the Unity editor.

Fig. 10. Camera lens dust shader in use.

