
CONTENT-ADAPTIVE SUPERPIXEL SEGMENTATION VIA IMAGE TRANSFORMATION

Aleksandra Chuchvara, Atanas Gotchev

Tampere University, Tampere, Finland

ABSTRACT

We propose simple and efficient method that produces
content-adaptive superpixels, i.e. smaller segments in
content-dense areas and larger segments in content-sparse
areas. Previous adaptive methods distribute superpixels over
the image according to image content. In contrast, we
transform the image itself to redistribute the content density
uniformly across the image area. This transformation is
guided by a significance map, which characterizes the
‘importance’ of each pixel. Arbitrary superpixel algorithm
can be utilized to segment the transformed image into regular
superpixels, providing a suitable representation for
subsequent tasks. Regular superpixels in the transformed
image induce content-adaptive superpixels in the original
image facilitating the improved segmentation accuracy.

Index Terms— Superpixel, image segmentation

1. INTRODUCTION

Superpixel segmentation methods aim to group image pixels
into small perceptually homogeneous regions with
boundaries adhering to image contours. Superpixels often
serve as an intermediate representation for high-level image
processing tasks providing two major advantages over raw
pixels: reduced computational complexity and better spatial
support for region-based feature extraction. Consequently,
superpixel over-segmentation has become a standard pre-
processing step that have been used in wide range of
computer vision and image processing applications,
including semantic segmentation [1], object recognition and
tracking [2, 3], depth and optical flow estimation [4, 5, 6], 3D
reconstruction [7], localization [8], and many other.

It is difficult to define universal performance criteria for
all superpixel algorithms, yet computational efficiency and
segmentation accuracy with as few superpixels as possible
are commonly desirable properties. In addition, many authors
agree that superpixel regularity, in terms of size and shape, is
beneficial for subsequent processing, e.g. feature extraction
or graph construction. In practice, these are conflicting
requirements, and a compromise has to be made between
computational time, boundary adherence, regularity and
number of superpixels. Existing superpixel algorithms put
focus on different performance aspects that may be beneficial
for a specific application, e.g. runtime [9, 10], boundary
adherence [10, 11], regularity [12, 13], topology [9, 14].

The superpixel methods developed in the recent years can
be roughly grouped into three categories: graph-based,
clustering-based, and methods based on energy optimization.
A recent benchmark study [15] presents a comprehensive
evaluation and ranking of 28 state-of-the-art superpixel
algorithms. Among the top-performing algorithms are graph-
based ERS [11], energy-based SEEDS [10] and CFTP [9],
and clustering-based SLIC [13]. While ERS and SEEDS can
achieve high boundary precision, they lack a regularity
constraint and produce superpixels with irregular shapes.
Focusing on real-time performance, CFTP exhibits high
boundary adherence, while a topology preserving term allows
to control superpixel regularity. Simple and time-efficient
SLIC provides direct control over the number of superpixels
and their regularity. However, while regular superpixels have
similar size and approximately uniform distribution, it is
difficult to obtain optimal performance for images containing
both homogeneous regions and fine structures. In this case,
the choice of superpixel size is a trade-off between faithful
representation of image details and excessive over-
segmentation of homogeneous regions. To achieve a better
trade-off between segmentation accuracy and the number of
superpixels, few methods propose to split/merge initial
uniform superpixels or distribute superpixel seeds non-
uniformly depending on the image content [16, 17, 18]. This
way, smaller and denser superpixels are produced in high
complexity regions and larger superpixels in homogeneous
regions. However, all these methods require geodesic
distance evaluation and are much more time-consuming
compared to fast superpixel methods such as [9, 10, 13].

We approach the task of content-sensitive segmentation
from a different perspective. Instead of splitting/merging or
adaptively distributing superpixels over the image, we
propose to optimize the use of the image space by
transforming the image itself, such that content-dense regions
are stretched, whereas content-sparse regions are contracted.
When the image content is distributed more uniformly over
the whole image area, it is appropriate to segment image into
regular size superpixels. By mapping the segmentation map
back to the initial image space, we conversely obtain a
content-adapted superpixel segmentation where the segments
are smaller in content-dense areas and larger in content-
sparse regions. Any superpixel segmentation method can be
utilized to produce regular superpixels. As we do not alter the
segmentation process, all important properties of the
underlying segmentation method are preserved, e.g.
connectivity, topology, and time-efficiency.

2. PROPOSED APPROACH

The workflow of our method is illustrated in Fig. 1. As an
input, we take a raster image and a significance map that
provides ‘importance’ value for each pixel. The goal is to
transform the input image so that the image regions occupy
areas that are proportional to their significance. To obtain the
transformation function, we represent the input image as a
regular grid mesh and deform the initial mesh by minimizing
a weighted quadratic energy, where all the weights are
positive. The minimization is achieved by solving a sparse
linear system of equations, where the positions of the grid
vertices are variables in the global optimization process. This
resembles stretch-minimization techniques that are used to
produce low-stretch planar mesh parameterizations for 3D
surfaces via redistribution (diffusion) of local mesh stretches
[19, 20, 21]. A significance map is used to guide the weights
choice ensuring that significant regions are naturally allowed
to occupy a larger image area, while insignificant regions
(e.g. regions with homogeneous content) are contracted. The
system solution is a one-to-one mapping and edge flips never
happen [21], i.e. the mesh will not fold on itself. Thus, we can
apply texture mapping to render the transformed image.
Likewise, segmentation for the original image is obtained
from the segmentation map of the transformed image by
texture-mapping.

2.1. Significance map

Significance map provides the relative importance of
different regions in the image. Each entry in the map
represents a significance measure of a single pixel in the input
image, where values range between 0 and 1, with 0 assigned
to non-significant pixels. Various kinds of prior information
can be incorporated into significance map to guide the image
transformation, e.g. edge or contour prior [22, 23, 24], depth
map [25], saliency map, or any arbitrary combination of such.
In our experiments, we use contour prior (Section 3.1). We
use binary contours following the assumption that contour
presence is significant independently of the edge strength.

2.2. Mesh representation

We represent the input image as a 4-connected grid mesh
𝐺𝐺 = (𝑉𝑉, 𝐸𝐸), where 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁} is the set of vertex
positions and 𝐸𝐸 = {(𝑖𝑖, 𝑗𝑗)} is the set of edges, 𝑁𝑁 is the number
of the mesh vertices. The vertices and edges form horizontal
and vertical grid lines partitioning the image into quads. The
number of rows and columns in the grid is proportional to the
width and height of the input image. Significance of a quad
can be defined based on pixel significance within the quad,
e.g. as an average value. In our experiments, we use binary
values and set quad significance to 1 if it has at least one
significant pixel (i.e. if it contains a contour).

2.3. Optimization

In order to stretch or contract the grid quads according to their
significance, we move the grid vertices to new locations so
that the distance between two vertices 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 connected by
an edge (𝑖𝑖, 𝑗𝑗) is proportional to the significance of the quads
sharing this edge. The new vertex locations are selected so
that the following local quadratic energy is minimized:

𝐸𝐸(𝑣𝑣𝑖𝑖) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗�
2.𝑗𝑗 (1)

Here 𝑣𝑣𝑖𝑖 is the vertex of the grid, and 𝑣𝑣𝑗𝑗 is its one-link
neighbor. The weight 𝑤𝑤𝑖𝑖𝑖𝑖 is a positive value inversely
proportional to quad significance and defined as:

𝑤𝑤𝑖𝑖𝑖𝑖 = 1
(𝛼𝛼+𝑠𝑠𝑖𝑖𝑖𝑖)

 , (2)

where 𝑠𝑠𝑖𝑖𝑖𝑖 is the average significance of the quads sharing
(𝑖𝑖, 𝑗𝑗) and 𝛼𝛼 is a positive constant added to avoid zero division.

The minimization of 𝐸𝐸(𝑣𝑣𝑖𝑖) is a classical least-squares
optimization problem. The optimal position for 𝑣𝑣𝑖𝑖 can be
obtained by solving a sparse system of linear equations:

 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗� = 0,𝑗𝑗 (3)

subject to boundary constraints that are substituted into the
linear system during the optimization.

Fig. 1. The flow-chart of the proposed method.

The boundary constraints are the locations of the corner
vertices that must remain fixed:

 𝑣𝑣𝑡𝑡𝑡𝑡 = (0, 0)𝑇𝑇, 𝑣𝑣𝑡𝑡𝑡𝑡 = (𝑤𝑤, 0)𝑇𝑇, (4)
 𝑣𝑣𝑏𝑏𝑏𝑏 = (0, ℎ)𝑇𝑇, 𝑣𝑣𝑏𝑏𝑏𝑏 = (𝑤𝑤, ℎ)𝑇𝑇,

where 𝑤𝑤 is the image width and ℎ is the image height. In
addition, to keep the image shape rectangular all the rest
boundary vertices are constrained to slide only along
directions aligned with the boundary:

 𝑣𝑣𝑖𝑖(𝑥𝑥) = � 0, if 𝑣𝑣𝑖𝑖 is on the left boundary
 𝑤𝑤, if 𝑣𝑣𝑖𝑖 is on the right boundary , (5)

 𝑣𝑣𝑖𝑖(𝑦𝑦) = � 0, if 𝑣𝑣𝑖𝑖 is on the top boundary
 ℎ, if 𝑣𝑣𝑖𝑖 is on the bottom boundary .

2.4. Image transformation

The edge contraction process redistributes edge lengths:
edges of higher significance will get longer, while those of
smaller significance will get shorter. It was proven [21], that
if the weights are positive and symmetric, such optimization
procedure does not generate edge flips, i.e. the mesh does not
fold on itself. Hence, we can render the transformed image by
texture-mapping the initial image onto the deformed grid
mesh. We triangulate the deformed mesh and interpolate
texture coordinates within each triangle in order to sample the
input image appropriately. The texture mapping procedure is
fast and fully supported by graphics hardware. Likewise, after
the transformed image is segmented into regular superpixels,
segmentation of the original image is obtained by mapping
the transformed image segments back to the initial grid mesh.

3. EXPERIMENTAL RESULTS

We chose two representative algorithms to evaluate the
proposed method: CFTP [9] and SLIC [13]. According to the
benchmark study [15], CFTP provides the best quantitative
results, while SLIC is the most widely used algorithm in
practical applications; both algotithms produce regular
superpixels. The algorithms are tested using benchmark
source code [15] with the default parameters specified in the
benchmark library. The same parameters are used to segment
initial and transformed images. We then compare the results

obtained with and without image transformation in order to
demonstrate the relative performance improvement.

Commonly used quality evaluation metrics are boundary
recall (BR) [26], achievable segmentation accuracy (ASA)
[11] and undersegmentation error (UE) [27]. Better
segmentation performance corresponds to higher BR and
ASA, and lower UE. We use the benchmark implementation
of these metrics, as defined in [15]. We perform our
experiments on BSDS500 dataset [28] containing 500 images
(200 training, 100 validation, 200 testing) with resolution
321×481. For each image, at least four ground truth human-
labeled multi-class segmentations are provided.

For image transformation, we need to choose the density
of the grid mesh. A finer mesh leads to better approximation
of the significance map but increases the computational cost.
In our experiments, we use a grid mesh containing
approximately 400 quads, which produces sufficiently good
results. Apart from that, our method requires only one
additional parameter 𝛼𝛼, which is a positive constant that is
used to vary the strength of the image deformation, 𝛼𝛼 is fixed
to 0.25 in all our experiments.

3.1. Contour prior

In our experiments, we use contour prior as a significance
map. To investigate the influence of a contour map accuracy,
we obtain contour maps using three different methods:
standard Canny edge detection [29], filter-based structure-
texture decomposition [30], and a contour detection based on
a random forest classifier [31]. The example contour maps
obtained by each method are shown in Fig. 2. Canny edge
detector is fast and simple, however it is sensitive to textures,
producing noisy edges that are not true contours (Fig. 2(b)).
We can improve the Canny edge detection results by applying
structure-texture decomposition method [30] that removes
texture from an image by filtering the image gradient. As a
result, we can extract faithful contours with relatively low
computational complexity (Fig. 2(c)). Fast and accurate
random forest contour detector [31] based on convolutional
neural network provides a contour strength estimate at each
image pixel (Fig. 2(d)). We apply Canny edge detector for
binarization of these contours.

(a) (b) (c) (d)

Fig. 2. Contour prior illustration: (a) example ground true contour map; (b) Canny edge detector [29]; (c) structure-texture decomposition
[30]; (d) random forest contour detector [31].

3.2. Performance

The results of quantitative comparison are shown in Fig. 3.
The performance metrics are plotted against varying number
of superpixels 𝐾𝐾 ∈ [200,300, … , 1000]. As there are several
ground truths segmentations available for each image, we
report the results averaged over all ground truths and all
images. The evaluation is performed using 200 images of the
test subset. For each metric, the baseline performance curve
of the underlying segmentation algorithm is provided along
with several plots for our method obtained with different
contour priors. It can be observed, that even when using basic
Canny edge detection our method demonstrates improved
performance over the baseline algorithms in terms of all three
metrics. It is also clear that better contour detection accuracy
yields better performance. We thus also include a plot
obtained using a ground truth contour map (we use the rest of
the ground truth maps for evaluation) that provides a good
estimate of the achievable improvement of our method.

Fig. 4 provides visual results for comparison with CFTP
and SLIC. As can be seen, the superpixels obtained after
image transformation are content-adaptive. Smaller size of
the superpixels near objects boundaries facilitates better
object separation from the background regions, even when
the colors between two regions are quite similar. Thus, for a
specific number of superpixels, this allows to achieve higher
boundary adherence compared to the baseline methods.

Since superpixel segmentation is usually used as a pre-
processing step, runtime is an important performance factor.

The most computationally intensive part of our method is the
minimization of the quadratic energy function. This involves
solving sparse linear system of size 2𝑁𝑁×2𝑁𝑁, containing only
five non-zero coefficients in each row, which can be solved
efficiently using a sparse matrix solver. E.g., using Matlab
implementation of preconditioned conjugate gradients [32]
(iterations 100, error 10−6) and a laptop with a 2.6 GHz CPU,
we can obtain solution for 𝑁𝑁 =500 in 10ms and for 𝑁𝑁 =1150
in 18ms.

4. CONCLUSION

We have presented an efficient method for producing
content-adaptive superpixels via image transformation that
takes only a few milliseconds per image. Experimental results
on the BSDS500 dataset demonstrate the advantages of our
method over the baseline methods in application to image
segmentation using a contour prior. In general, various kinds
of prior information can be utilized to guide the image
transformation. Furthermore, any superpixel segmentation
algorithm can be applied to segment the transformed image
into regular superpixels ensuring other desired segmentation
properties, such as connectivity, topology, and time-
efficiency. Therefore, we see the proposed method as a
generic approach that can be applied in wide variety of
applications. However, more experiments are needed to
demonstrate its advantages in other applications.

(a) SLIC (b) CFTP

Fig. 3. Quantitative comparison on BSDS500 dataset with (a) SLIC,
(b) CFTP: top row BR↑, middle row ASA↑, bottom row UE↓.

(a)

(b)

Fig. 4. Visual comparison with (a) SLIC and (b) CFTP. Clockwise
from top left: input image; SLIC and CFTP superpixels; our final
results; SLIC and CFTP segmentation of the transformed image

5. REFERENCES

[1] J. Xiao and L. Quan. Multiple view semantic

segmentation for street view images. In ICCV, 2009.
[2] J. Yan, Y. Yu, X. Zhu, Z. Lei, and S.Z. Li. Object

detection by labeling superpixels. In CVPR, 2015.
[3] S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel

tracking. In ICCV, 2011.
[4] F. Liu, C. Shen, G. Lin, and I. Reid. Deep convolutional

neural fields for depth estimation from a single image. In
CVPR, 2015.

[5] M. Menze and A. Geiger. Object scene flow for
autonomous vehicles. In CVPR, 2015.

[6] J. Lu, H. Yang, D. Min, and M.N. Do. Patch match filter:
efficient edge-aware filtering meets randomized search
for fast correspondence field estimation. In CVPR, 2013.

[7] A. Bódis-Szomorú, H. Riemenschneider, and L. van
Gool. Superpixel meshes for fast edge-preserving
surface reconstruction. In CVPR, 2015.

[8] B. Fulkerson, A. Vedaldi, and S. Soatto. Class
segmentation and object localization with superpixel
neighborhoods. In ICCV, 2009.

[9] J. Yao, M. Boben, S. Fidler, and R. Urtasun. Real-time
coarse-to-fine topologically preserving segmentation. In
CVPR, 2015.

[10] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and
L. Van Gool. SEEDS: Superpixels extracted via energy-
driven sampling. In ECCV, 2012.

[11] M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa.
Entropy rate superpiexl segmentation. In CVPR, 2011.

[12] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S.
J. Dickinson, and K. Siddiqi. Turbopixels: Fast
superpixels using geometric flows. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 31(12):
2290–2297, 2009.

[13] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Susstrunk. SLIC superpixels compared to state-of-the-
art superpixel methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(11):2274—2282,
2012.

[14] H. Fu, X. Cao, D. Tang, Y. Han, and D. Xu. Regularity
preserved superpixels and supervoxels. IEEE Trans.
Multimedia, 16(4):1165–1175, 2014.

[15] D. Stutz, A. Hermans, and B. Leibe. Superpixels: An
evaluation of the state-of-the-art. Computer Vision and
Image Understanding, 166(C): 1–27, 2018.

[16] P. Wang, G. Zeng, R. Gan, J. Wang, and H. Zha.
Structure-sensitive superpixels via geodesic distance.
International Journal of Computer Vision, 103(1):1–21,
2013.

[17] Y.-J. Liu, M. Yu, B.-J. Li, and Y. He. Intrinsic manifold
SLIC: A simple and efficient method for computing
contentsensitivesuperpixels. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(3):653–
666, 2018.

[18] A. Rubio, L. Yu, E. Simo-Serra, and F. Moreno-Noguer.
BASS: Boundary-aware superpixel segmentation. In
ICPR, 2016.

[19] S. Yoshizawa, A. Belyaev, and H. P. Seidel. A fast and
simple stretch-minimizing mesh parameterization. In
Proceedings Shape Modeling Applications, 2004.

[20] A. Sheffer, E. Praun, and K. Rose. Mesh
parameterization methods and their applications.
Foundations and Trends in Computer Graphics and
Vision, 2(2): 105-171, 2006.

[21] M. S. Floater and K. Hormann. Recent advances in
surface parameterization. In Multiresolution in
Geometric Modelling, 2003.

[22] A. Moore, S. Prince, and J.Warrell. “Lattice cut” –
constructing superpixels using layer constraints. In
CVPR, 2010.

[23] S.-H. Lee, W.-D. Jang, and C.-S. Kim. Contour-
constrained superpixels for image and video processing.
In CVPR, 2017.

[24] R. Giraud, V.-T. Ta, and N. Papadakis. SCALP:
Superpixels with contour adherence using linear path. In
ICPR, 2016.

[25] D.Weikersdorfer, D. Gossow, and M. Beetz. Depth-
adaptive superpixels. In ICPR, 2012.

[26] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to
Detect Natural Image Boundaries Using Local
Brightness, Color, and Texture Cues. IEEE Transactions
on PAMI, 26(5):530–549, 2004.

[27] P. Neubert and P. Protzel. Superpixel benchmark and
comparison. In Proc. of Forum Bildverarbeitun, 2012.

[28] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application
to evaluating segmentation algorithms and measuring
ecological statistics. In ICCV, 2001.

[29] J. Canny. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 8(6):679–698, 1986

[30] H. Lee, J. Jeon, J. Kim, and S. Lee. Structure-texture
decomposition of images with interval gradient. In
Computer graphics forum, 36:262–274, 2017.

[31] P. Dollar and C. L. Zitnick. Structured forests for fast
edge detection. In ICCV, 2013.

[32] R. Barrett, M. Berry, and T. F. Chan. Templates for the
Solution of Linear Systems: Building Blocks for Iterative
Methods. In SIAM, 1994.

	Content-Adaptive Superpixel segmentation via Image Transformation
	Abstract

