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ABSTRACT 
 
We propose simple and efficient method that produces 
content-adaptive superpixels, i.e. smaller segments in 
content-dense areas and larger segments in content-sparse 
areas. Previous adaptive methods distribute superpixels over 
the image according to image content. In contrast, we 
transform the image itself to redistribute the content density 
uniformly across the image area. This transformation is 
guided by a significance map, which characterizes the 
‘importance’ of each pixel. Arbitrary superpixel algorithm 
can be utilized to segment the transformed image into regular 
superpixels, providing a suitable representation for 
subsequent tasks. Regular superpixels in the transformed 
image induce content-adaptive superpixels in the original 
image facilitating the improved segmentation accuracy. 
 

Index Terms— Superpixel, image segmentation 
 

1. INTRODUCTION 
 
Superpixel segmentation methods aim to group image pixels 
into small perceptually homogeneous regions with 
boundaries adhering to image contours. Superpixels often 
serve as an intermediate representation for high-level image 
processing tasks providing two major advantages over raw 
pixels: reduced computational complexity and better spatial 
support for region-based feature extraction. Consequently, 
superpixel over-segmentation has become a standard pre-
processing step that have been used in wide range of 
computer vision and image processing applications, 
including semantic segmentation [1], object recognition and 
tracking [2, 3], depth and optical flow estimation [4, 5, 6], 3D 
reconstruction [7], localization [8], and many other.  

It is difficult to define universal performance criteria for 
all superpixel algorithms, yet computational efficiency and 
segmentation accuracy with as few superpixels as possible 
are commonly desirable properties. In addition, many authors 
agree that superpixel regularity, in terms of size and shape, is 
beneficial for subsequent processing, e.g. feature extraction 
or graph construction. In practice, these are conflicting 
requirements, and a compromise has to be made between 
computational time, boundary adherence, regularity and 
number of superpixels. Existing superpixel algorithms put 
focus on different performance aspects that may be beneficial 
for a specific application, e.g. runtime [9, 10], boundary 
adherence [10, 11], regularity [12, 13], topology [9, 14]. 

The superpixel methods developed in the recent years can 
be roughly grouped into three categories: graph-based, 
clustering-based, and methods based on energy optimization. 
A recent benchmark study [15] presents a comprehensive 
evaluation and ranking of 28 state-of-the-art superpixel 
algorithms. Among the top-performing algorithms are graph-
based ERS [11], energy-based SEEDS [10] and CFTP [9], 
and clustering-based SLIC [13]. While ERS and SEEDS can 
achieve high boundary precision, they lack a regularity 
constraint and produce superpixels with irregular shapes. 
Focusing on real-time performance, CFTP exhibits high 
boundary adherence, while a topology preserving term allows 
to control superpixel regularity. Simple and time-efficient 
SLIC provides direct control over the number of superpixels 
and their regularity. However, while regular superpixels have 
similar size and approximately uniform distribution, it is 
difficult to obtain optimal performance for images containing 
both homogeneous regions and fine structures. In this case, 
the choice of superpixel size is a trade-off between faithful 
representation of image details and excessive over-
segmentation of homogeneous regions. To achieve a better 
trade-off between segmentation accuracy and the number of 
superpixels, few methods propose to split/merge initial 
uniform superpixels or distribute superpixel seeds non-
uniformly depending on the image content [16, 17, 18]. This 
way, smaller and denser superpixels are produced in high 
complexity regions and larger superpixels in homogeneous 
regions. However, all these methods require geodesic 
distance evaluation and are much more time-consuming 
compared to fast superpixel methods such as [9, 10, 13].  

We approach the task of content-sensitive segmentation 
from a different perspective. Instead of splitting/merging or 
adaptively distributing superpixels over the image, we 
propose to optimize the use of the image space by 
transforming the image itself, such that content-dense regions 
are stretched, whereas content-sparse regions are contracted. 
When the image content is distributed more uniformly over 
the whole image area, it is appropriate to segment image into 
regular size superpixels. By mapping the segmentation map 
back to the initial image space, we conversely obtain a 
content-adapted superpixel segmentation where the segments 
are smaller in content-dense areas and larger in content-
sparse regions. Any superpixel segmentation method can be 
utilized to produce regular superpixels. As we do not alter the 
segmentation process, all important properties of the 
underlying segmentation method are preserved, e.g. 
connectivity, topology, and time-efficiency. 



2. PROPOSED APPROACH 
 

The workflow of our method is illustrated in Fig. 1. As an 
input, we take a raster image and a significance map that 
provides ‘importance’ value for each pixel. The goal is to 
transform the input image so that the image regions occupy 
areas that are proportional to their significance. To obtain the 
transformation function, we represent the input image as a 
regular grid mesh and deform the initial mesh by minimizing 
a weighted quadratic energy, where all the weights are 
positive. The minimization is achieved by solving a sparse 
linear system of equations, where the positions of the grid 
vertices are variables in the global optimization process. This 
resembles stretch-minimization techniques that are used to 
produce low-stretch planar mesh parameterizations for 3D 
surfaces via redistribution (diffusion) of local mesh stretches 
[19, 20, 21]. A significance map is used to guide the weights 
choice ensuring that significant regions are naturally allowed 
to occupy a larger image area, while insignificant regions 
(e.g. regions with homogeneous content) are contracted. The 
system solution is a one-to-one mapping and edge flips never 
happen [21], i.e. the mesh will not fold on itself. Thus, we can 
apply texture mapping to render the transformed image. 
Likewise, segmentation for the original image is obtained 
from the segmentation map of the transformed image by 
texture-mapping.  

 
2.1. Significance map 
 
Significance map provides the relative importance of 
different regions in the image. Each entry in the map 
represents a significance measure of a single pixel in the input 
image, where values range between 0 and 1, with 0 assigned 
to non-significant pixels. Various kinds of prior information 
can be incorporated into significance map to guide the image 
transformation, e.g. edge or contour prior [22, 23, 24], depth 
map [25], saliency map, or any arbitrary combination of such. 
In our experiments, we use contour prior (Section 3.1). We 
use binary contours following the assumption that contour 
presence is significant independently of the edge strength. 

2.2. Mesh representation 
 
We represent the input image as a 4-connected grid mesh 
𝐺𝐺 = (𝑉𝑉, 𝐸𝐸), where 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁} is the set of vertex 
positions and 𝐸𝐸 = {(𝑖𝑖, 𝑗𝑗)} is the set of edges, 𝑁𝑁 is the number 
of the mesh vertices. The vertices and edges form horizontal 
and vertical grid lines partitioning the image into quads. The 
number of rows and columns in the grid is proportional to the 
width and height of the input image. Significance of a quad 
can be defined based on pixel significance within the quad, 
e.g. as an average value. In our experiments, we use binary 
values and set quad significance to 1 if it has at least one 
significant pixel (i.e. if it contains a contour). 

 
2.3. Optimization 
 
In order to stretch or contract the grid quads according to their 
significance, we move the grid vertices to new locations so 
that the distance between two vertices 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 connected by 
an edge (𝑖𝑖, 𝑗𝑗) is proportional to the significance of the quads 
sharing this edge. The new vertex locations are selected so 
that the following local quadratic energy is minimized: 

𝐸𝐸(𝑣𝑣𝑖𝑖) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗�
2.𝑗𝑗  (1) 

 
Here 𝑣𝑣𝑖𝑖 is the vertex of the grid, and 𝑣𝑣𝑗𝑗 is its one-link 
neighbor. The weight 𝑤𝑤𝑖𝑖𝑖𝑖 is a positive value inversely 
proportional to quad significance and defined as:  

𝑤𝑤𝑖𝑖𝑖𝑖 = 1
(𝛼𝛼+𝑠𝑠𝑖𝑖𝑖𝑖)

 , (2) 
 
where 𝑠𝑠𝑖𝑖𝑖𝑖 is the average significance of the quads sharing 
(𝑖𝑖, 𝑗𝑗) and 𝛼𝛼 is a positive constant added to avoid zero division.  

The minimization of 𝐸𝐸(𝑣𝑣𝑖𝑖) is a classical least-squares 
optimization problem. The optimal position for 𝑣𝑣𝑖𝑖 can be 
obtained by solving a sparse system of linear equations:  

  ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗� = 0,𝑗𝑗  (3) 
 
subject to boundary constraints that are substituted into the 
linear system during the optimization.  

 
 

Fig. 1. The flow-chart of the proposed method. 
 



The boundary constraints are the locations of the corner 
vertices that must remain fixed: 

  𝑣𝑣𝑡𝑡𝑡𝑡 = (0, 0)𝑇𝑇, 𝑣𝑣𝑡𝑡𝑡𝑡 = (𝑤𝑤, 0)𝑇𝑇, (4) 
      𝑣𝑣𝑏𝑏𝑏𝑏 = (0, ℎ)𝑇𝑇, 𝑣𝑣𝑏𝑏𝑏𝑏 = (𝑤𝑤, ℎ)𝑇𝑇, 

 
where 𝑤𝑤 is the image width and ℎ is the image height. In 
addition, to keep the image shape rectangular all the rest 
boundary vertices are constrained to slide only along 
directions aligned with the boundary: 

 𝑣𝑣𝑖𝑖(𝑥𝑥) = � 0,   if 𝑣𝑣𝑖𝑖 is on the left boundary
 𝑤𝑤, if 𝑣𝑣𝑖𝑖 is on the right boundary , (5) 

  𝑣𝑣𝑖𝑖(𝑦𝑦) = � 0,   if 𝑣𝑣𝑖𝑖 is on the top boundary
 ℎ,   if 𝑣𝑣𝑖𝑖 is on the bottom boundary . 

 
2.4. Image transformation 
 
The edge contraction process redistributes edge lengths: 
edges of higher significance will get longer, while those of 
smaller significance will get shorter. It was proven [21], that 
if the weights are positive and symmetric, such optimization 
procedure does not generate edge flips, i.e. the mesh does not 
fold on itself. Hence, we can render the transformed image by 
texture-mapping the initial image onto the deformed grid 
mesh. We triangulate the deformed mesh and interpolate 
texture coordinates within each triangle in order to sample the 
input image appropriately. The texture mapping procedure is 
fast and fully supported by graphics hardware. Likewise, after 
the transformed image is segmented into regular superpixels, 
segmentation of the original image is obtained by mapping 
the transformed image segments back to the initial grid mesh. 
 

3. EXPERIMENTAL RESULTS 
 
We chose two representative algorithms to evaluate the 
proposed method: CFTP [9] and SLIC [13]. According to the 
benchmark study [15], CFTP provides the best quantitative 
results, while SLIC is the most widely used algorithm in 
practical applications; both algotithms produce regular 
superpixels. The algorithms are tested using benchmark 
source code [15] with the default parameters specified in the 
benchmark library. The same parameters are used to segment 
initial and transformed images. We then compare the results 

obtained with and without image transformation in order to 
demonstrate the relative performance improvement. 

Commonly used quality evaluation metrics are boundary 
recall (BR) [26], achievable segmentation accuracy (ASA) 
[11] and undersegmentation error (UE) [27]. Better 
segmentation performance corresponds to higher BR and 
ASA, and lower UE. We use the benchmark implementation 
of these metrics, as defined in [15]. We perform our 
experiments on BSDS500 dataset [28] containing 500 images 
(200 training, 100 validation, 200 testing) with resolution 
321×481. For each image, at least four ground truth human-
labeled multi-class segmentations are provided. 

For image transformation, we need to choose the density 
of the grid mesh. A finer mesh leads to better approximation 
of the significance map but increases the computational cost. 
In our experiments, we use a grid mesh containing 
approximately 400 quads, which produces sufficiently good 
results. Apart from that, our method requires only one 
additional parameter 𝛼𝛼, which is a positive constant that is 
used to vary the strength of the image deformation, 𝛼𝛼 is fixed 
to 0.25 in all our experiments. 

 
3.1. Contour prior 
 
In our experiments, we use contour prior as a significance 
map. To investigate the influence of a contour map accuracy, 
we obtain contour maps using three different methods: 
standard Canny edge detection [29], filter-based structure-
texture decomposition [30], and a contour detection based on 
a random forest classifier [31]. The example contour maps 
obtained by each method are shown in Fig. 2. Canny edge 
detector is fast and simple, however it is sensitive to textures, 
producing noisy edges that are not true contours (Fig. 2(b)). 
We can improve the Canny edge detection results by applying 
structure-texture decomposition method [30] that removes 
texture from an image by filtering the image gradient. As a 
result, we can extract faithful contours with relatively low 
computational complexity (Fig. 2(c)). Fast and accurate 
random forest contour detector [31] based on convolutional 
neural network provides a contour strength estimate at each 
image pixel (Fig. 2(d)). We apply Canny edge detector for 
binarization of these contours. 
 

 
(a) (b) (c) (d) 
 

Fig. 2. Contour prior illustration: (a) example ground true contour map; (b) Canny edge detector [29]; (c) structure-texture decomposition 
[30]; (d) random forest contour detector [31]. 
 



3.2. Performance 
 
The results of quantitative comparison are shown in Fig. 3. 
The performance metrics are plotted against varying number 
of superpixels 𝐾𝐾 ∈ [200,300, … , 1000]. As there are several 
ground truths segmentations available for each image, we 
report the results averaged over all ground truths and all 
images. The evaluation is performed using 200 images of the 
test subset. For each metric, the baseline performance curve 
of the underlying segmentation algorithm is provided along 
with several plots for our method obtained with different 
contour priors. It can be observed, that even when using basic 
Canny edge detection our method demonstrates improved 
performance over the baseline algorithms in terms of all three 
metrics. It is also clear that better contour detection accuracy 
yields better performance. We thus also include a plot 
obtained using a ground truth contour map (we use the rest of 
the ground truth maps for evaluation) that provides a good 
estimate of the achievable improvement of our method. 

Fig. 4 provides visual results for comparison with CFTP 
and SLIC. As can be seen, the superpixels obtained after 
image transformation are content-adaptive. Smaller size of 
the superpixels near objects boundaries facilitates better 
object separation from the background regions, even when 
the colors between two regions are quite similar. Thus, for a 
specific number of superpixels, this allows to achieve higher 
boundary adherence compared to the baseline methods. 

Since superpixel segmentation is usually used as a pre-
processing step, runtime is an important performance factor. 

The most computationally intensive part of our method is the 
minimization of the quadratic energy function. This involves 
solving sparse linear system of size 2𝑁𝑁×2𝑁𝑁, containing only 
five non-zero coefficients in each row, which can be solved 
efficiently using a sparse matrix solver. E.g., using Matlab 
implementation of preconditioned conjugate gradients [32] 
(iterations 100, error 10−6) and a laptop with a 2.6 GHz CPU, 
we can obtain solution for 𝑁𝑁 =500 in 10ms and for 𝑁𝑁 =1150 
in 18ms.  
 

4. CONCLUSION 
 
We have presented an efficient method for producing 
content-adaptive superpixels via image transformation that 
takes only a few milliseconds per image. Experimental results 
on the BSDS500 dataset demonstrate the advantages of our 
method over the baseline methods in application to image 
segmentation using a contour prior. In general, various kinds 
of prior information can be utilized to guide the image 
transformation. Furthermore, any superpixel segmentation 
algorithm can be applied to segment the transformed image 
into regular superpixels ensuring other desired segmentation 
properties, such as connectivity, topology, and time-
efficiency. Therefore, we see the proposed method as a 
generic approach that can be applied in wide variety of 
applications. However, more experiments are needed to 
demonstrate its advantages in other applications.  

 
(a) SLIC (b) CFTP 

 
Fig. 3. Quantitative comparison on BSDS500 dataset with (a) SLIC, 
(b) CFTP: top row BR↑, middle row ASA↑, bottom row UE↓. 
 

 
(a) 

 
(b) 

Fig. 4. Visual comparison with (a) SLIC and (b) CFTP. Clockwise 
from top left: input image; SLIC and CFTP superpixels; our final 
results; SLIC and CFTP segmentation of the transformed image  
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