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ABSTRACT
Shearlet Transform (ST) is one of the most effective methods

for Densely-Sampled Light Field (DSLF) reconstruction from a

Sparsely-Sampled Light Field (SSLF). However, ST requires a pre-

cise disparity estimation of the SSLF. To this end, in this paper a

state-of-the-art optical flow method, i.e. PWC-Net, is employed to

estimate bidirectional disparity maps between neighboring views in

the SSLF. Moreover, to take full advantage of optical flow and ST

for DSLF reconstruction, a novel learning-based method, referred

to as Flow-Assisted Shearlet Transform (FAST), is proposed in this

paper. Specifically, FAST consists of two deep convolutional neural

networks, i.e. disparity refinement network and view synthesis net-

work, which fully leverage the disparity information to synthesize

novel views via warping and blending and to improve the novel view

synthesis performance of ST. Experimental results demonstrate the

superiority of the proposed FAST method over the other state-of-

the-art DSLF reconstruction methods on nine challenging real-world

SSLF sub-datasets with large disparity ranges (up to 26 pixels).

Index Terms— Densely-Sampled Light Field Reconstruction,

Parallax View Generation, Novel View Synthesis, Shearlet Trans-

form, Flow-Assisted Shearlet Transform

1. INTRODUCTION

Densely-Sampled Light Field (DSLF) is a discrete representation of

the 4D approximation of the plenoptic function parameterized by

two parallel planes (camera plane and image plane) [1], where multi-

perspective camera views are arranged in such a way that the dispar-

ities between adjacent views are less than one pixel [2]. How to

reconstruct a DSLF from a Sparsely-Sampled Light Field (SSLF) is

depicted in Fig. 1. The solid-line orange cameras, i.e. Cj , are uni-

formly distributed along the horizontal axis with the same camera

orientation and focal length. The images captured by them for a

static scene compose a horizontal-parallax SSLF. The DSLF recon-

struction on this 3D SSLF can be considered as novel view synthesis

between any two neighboring parallax views in this SSLF, of which

the results are represented by the images from the dash-line blue

cameras in Fig. 1. Let the interpolation rate of this novel view syn-

thesis process be denoted by δ, it is apparent that the virtual camera

Cj+t meets the condition that t ∈
{

1

δ
, 2

δ
, ..., δ−1

δ

}

. Besides, in or-

der to reconstruct the target unknown DSLF correctly, δ should be

greater than the disparity range of the input SSLF (see Sect. 4.1).

Shearlet Transform (ST) [3, 4] is especially effective in recon-

structing a DSLF from a SSLF with a large disparity range (> 16
pixels). The disparity information of the SSLF is required to be ob-

tained in advance for 1) constructing a decent shearlet system; 2)

pre-shearing the SSLF in order to eliminate the minimum disparity

of it. To tackle the disparity-estimation problem, a state-of-the-art

optical flow algorithm, i.e. PWC-Net [5], is exploited for estimating

the bidirectional disparity maps between adjacent views in the SSLF.

Fig. 1. DSLF reconstruction on a SSLF.

In addition to assisting the DSLF reconstruction of using ST, the

estimated bidirectional disparity maps can also be used to perform

DSLF reconstruction via novel view synthesis using image warping

and blending techniques. However, due to the occlusion and errors in

the estimated disparity maps, this disparity-based solution to DSLF

reconstruction may not produce visually pleasing results. Therefore,

to improve the performance of both ST-based and disparity-based

DSLF reconstruction methods, a novel learning-based approach, re-

ferred to as Flow-Assisted Shearlet Transform (FAST), is proposed

in this paper. The FAST method makes full use of the bidirectional

disparity maps predicted by PWC-Net and the DSLF recovered by

ST to better reconstruct the target DSLF via two deep convolutional

neural networks, i.e. disparity refinement network and view syn-

thesis network. Additionally, the proposed FAST is fully convolu-

tional and end-to-end trainable. Experimental results on nine evalu-

ation DSLF sub-datasets demonstrate the effectiveness of FAST for

reconstructing DSLFs from SSLFs with large disparity ranges.

2. RELATED WORK

Learning-based novel view synthesis. Niklaus et al. interpolate

a novel frame between two consecutive video frames using a deep

fully Convolutional Neural Network (CNN), which estimates a

spatially-adaptive convolution kernel that captures both motion and

re-sampling coefficients for each pixel [6]. Due to the large memory

demand of outputting all the 2D kernels for all the image pixels,

a spatially-adaptive Separable Convolution (SepConv) method is

proposed by replacing a 2D kernel with two 1D kernels, thus effect-

ively reducing the memory requirement [7]. Jiang et al. propose a

CNN-based variable-length multi-frame interpolation method, con-

sisting of a flow computation CNN and a flow interpolation CNN,

for generating as many intermediate frames as needed between two

consecutive video frames [8].

Light field angular super-resolution. Since a horizontal-parallax

SSLF can be converted into a video captured by a virtual cam-

era moving horizontally, Gao and Koch extend SepConv with

enhanced kernels and propose Parallax-Interpolation Adaptive

Separable Convolution (PIASC) for DSLF reconstruction [9]. In

addition, a horizontal-parallax SSLF can also be represented by

several Epipolar-Plane Images (EPIs), thus the DSLF reconstruction

problem is equal to how to reconstruct densely-sampled EPIs from

sparsely-sampled EPIs, which is effectively solved by ST in the

shearlet transform domain via EPI sparse representation [10, 3, 4].
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3. METHODOLOGY

3.1. Shearlet Transform (ST)

The ST approach is originally proposed in [3] and extended in [4]

for addressing the DSLF reconstruction problem with varying dis-

parities. The core idea of ST is to design an elaborately-tailored

universal shearlet system [3, 11] and to perform regularization in the

shearlet transform domain for EPIs via an iterative α-adaptive al-

gorithm [3] or a double overrelaxation (DORE) algorithm [4]. The

construction of the specifically-designed shearlet system relies on

the precise disparity estimation of the input SSLF. In particular, the

minimum disparity dmin and maximum disparity dmax of this SSLF

are required to be estimated before applying the ST method. The

corresponding disparity range of the input SSLF is determined by

them, i.e. drange = dmax − dmin. Based on the value of the estim-

ated dmin, a pre-shearing process using cubic interpolation is then

performed on the input SSLF, so that the new minimum disparity

d′min = 0, the new maximum disparity d′max = drange and the

sheared SSLF is capable of being correctly processed by a shearlet

system with ξ scales, where ξ = ⌈log2 drange⌉. Finally, a post-

processing shearing operation is applied to the reconstructed DSLF

in order to compensate for the disparity shift that is caused by the

pre-shearing step.

3.2. Image warping and blending using optical flow

The bidirectional optical flows between two video frames are ef-

fective in interpolating novels views between them via warping and

blending [8]. Since a horizontal-parallax SSLF can be treated as

a video captured by a virtual camera moving along the horizontal

axis, optical flow is used here to solve the DSLF reconstruction prob-

lem. Assume j = 0 as illustrated in Fig. 1, the novel view It of Ct

between C0 and C1 is synthesized by

It = λ ◦ g(I0,Ft→0) + (1− λ) ◦ g(I1,Ft→1),

λ =
(1− t)Vt←0

(1− t)Vt←0 + t(1− Vt←0)
,

(1)

where Ft→0 and Ft→1 denote the optical flows from It to I0 and It

to I1, g(·, ·) is an inverse warping function using bilinear interpol-

ation, ‘◦’ denotes the element-wise (Hadamard) product and Vt←0

represents the soft visibility map from C0 to Ct. However, it is diffi-

cult to compute the inverse optical flows, i.e. Ft→0 and Ft→1 in (1),

because the target novel view It is unknown. Since the bidirectional

optical flows, i.e. F0→1 and F1→0, are much easier to be estimated,

the inverse optical flows are typically approximated from them via

F̃t→0 = −(1− t)tF0→1 + t
2F1→0,

F̃t→1 = (1− t)2F0→1 − t(1− t)F1→0.
(2)

3.3. Flow-Assisted Shearlet Transform (FAST)

Inspired by the success of Super-SloMo [8] in video frame interpol-

ation, a novel learning-based method, referred to as Flow-Assisted

Shearlet Transform (FAST), is proposed to reconstruct DSLFs from

SSLFs. The FAST method adopts a state-of-the-art optical flow ap-

proach, i.e. PWC-Net [5], to estimate the bidirectional optical flows

between neighboring views in a SSLF. Besides, FAST also lever-

ages a state-of-the-art DSLF reconstruction method, i.e. ST [4], to

guide novel view synthesis. The architecture of FAST is illustrated

in Fig. 2. As can be seen from this figure, FAST is composed of

two deep convolutional neural networks based on the U-Net archi-

tecture [12], which are Disparity Refinement Network (DRN) and

View Synthesis Network (VSN). Regarding the architecture of DRN,

it has six hierarchies in the encoder part and five hierarchies in the

decoder part with the same architecture as the flow interpolation

CNN in Super-SloMo. Since the horizontal-parallax SSLF shown

DRN
VSN

using (1)

Fig. 2. An overview of the architecture of FAST. Note that IST
t is the

view reconstructed by ST and t ∈
{

1

δ
, 2

δ
, ..., δ−1

δ

}

(see Sect. 1).

in Fig. 1 does not involve any object motion along the vertical axis,

only the horizontal components of the bidirectional optical flows es-

timated by PWC-Net contain useful information, which are denoted

by F̃u
0→1 and F̃u

1→0 and called bidirectional disparity maps. The

inverse disparity maps, i.e. F̃u
t→0 and F̃u

t→1, can then be estimated

by using (2). The DRN of FAST takes F̃u
0→1, F̃u

1→0, F̃u
t→0, F̃u

t→1,

g(I0, F̃
u
t→0), g(I1, F̃

u
t→1), I0, I1 and IST

t as the input (19 channels

in total) and outputs Fu
t→0, Fu

t→1 and Vt←0, which are used to inter-

polate an intermediate view Ĩt via (1). With regard to the architec-

ture of VSN, it is a “shallow” version of DRN with four hierarchies

in the encoder part and three hierarchies in the decoder part. The

interpolated novel view Ĩt and the corresponding view reconstruc-

ted by ST, i.e. IST
t , are fed to the VSN of FAST to generate the final

target view It.

Loss functions. The loss function of FAST is composed of VSN

reconstruction loss, DRN reconstruction loss and warping loss, all

of which are based on ℓ1 norm:

LFAST = ω1L
VSN + ω2L

DRN + ω3L
W
, (3)

where

LVSN =
∥

∥It − IGT
t

∥

∥

1
,

LDRN =
∥

∥

∥
Ĩt − IGT

t

∥

∥

∥

1

,

LW =
∥

∥g(I0,F
u
t→0)− IGT

t

∥

∥

1
+

∥

∥g(I1,F
u
t→1)− IGT

t

∥

∥

1
,

(4)

ω1 = 9, ω2 = 2 and ω3 = 1. Note that these weights are set em-

pirically with a consideration that VSN reconstruction loss is more

important than the other two losses.

4. EXPERIMENTS

4.1. Experimental settings

Training dataset. Two light field datasets are used for the training

process. One is the Standford light field dataset captured by the Lego

gantry with an angular resolution of 17 × 17. The other is the 4D

light field benchmark with an angular resolution of 9×9 created with

Blender [13]. The Standford Lego-gantry light field dataset is com-

posed of 13 4D light fields. In each of these light fields, the center

region with a size of 512× 512 pixels w.r.t. each view is cut to make

up 17 horizontal-parallax sub-datasets, each of which has 17 paral-

lax images. Note that not all of these 13 4D light fields can be used

for the training process, which is because 1) the PWC-Net algorithm

fails in disparity estimation for the light field scenes containing re-

flective and transparent objects; 2) for some scenes, the estimated

disparity range is beyond 64 pixels, which will be extremely expens-

ive w.r.t. computation time if using ST method; 3) only static scenes

are considered here. Therefore, eight 4D light fields are picked out of

the Standford light field dataset. For the 4D light field benchmark, it

is originally designed for depth estimation from 4D light fields. The



(a) D1: Books and charts (b) D2: Lego city (c) D3: Lightfield production (d) D4: Plants (e) D5: Table in the garden

(f) D6: Table top I (g) D7: Table top II (h) D8: Table top III (i) D9: Workshop
90%5%

16 : 10

5%

(j) Cutting and scaling

Fig. 3. Middle views of evaluation DSLF sub-datasets Dµ (1 6 µ 6 9) and (j) illustrates the image cutting and scaling strategy.

benchmark contains four stratified, four test, and four training syn-

thetic light field scenes. Besides, there are 16 additional community-

supported photorealistic light field scenes captured in the same way

as the benchmark. All of these 28 4D light fields have the same

spatial resolution of 512 × 512 pixels and ground-truth dmin and

dmax, which can facilitate the ST-based DSLF reconstruction. Each

4D light field is then converted into three horizontal-parallax sub-

datasets, corresponding to 1st, 5th and 9th rows of views of it.

Training data augmentation. As introduced above, the training

dataset consists of 220 horizontal-parallax sub-datasets, of which

136 have the resolution of 17 × 512 × 512 × 3 and the remaining

ones have the resolution of 9× 512× 512× 3. For each horizontal-

parallax sub-dataset, nine continuous parallax images are randomly

selected and cropped together into nine image patches with a size of

352 × 352 pixels during each iteration of the training process. The

first and ninth cropped image patches are represented by I0 and I1,

and used as input views for PWC-Net, ST and FAST. The remain-

ing image patches are denoted by It, t ∈
{

1

8
, 2

8
, ..., 7

8

}

, which are

used as the target views to be reconstructed for the neural network

training of FAST.

Evaluation dataset. High Density Camera Array (HDCA) dataset

is a real-world high-resolution 4D light field dataset captured by a

DSLR camera mounted on a precisely-controlled gantry [14]. This

dataset is composed of nine different 4D light fields with the same

spatial resolution of 3976 × 2652 pixels. Eight of these light fields

have the angular resolution of 101 × 21 and the remaining one has

99 × 21 views. Nevertheless, directly using the HDCA dataset is

inappropriate for the performance evaluation of different DSLF re-

construction methods, because 1) all 4D light fields in this dataset

are not densely-sampled; 2) black borders caused by calibration are

not cut out as shown in Fig. 3 (j). Accordingly, a novel cutting and

scaling strategy is proposed for transforming all the nine light fields

of the HDCA dataset into DSLFs as illustrated in Fig. 3 (j). In par-

ticular, a 16 : 10 image at the bottom center with occupying 90% of

the width of the original view is cut and downscaled to a new res-

olution of 512 × 320 pixels by bicubic interpolation. Afterwards,

only the top 97 horizontal-parallax views of each light field are used

to construct a corresponding 3D DSLF, of which the resolution is

97 × 512 × 320 × 3. The generated ground-truth evaluation DSLF

sub-datasets are denoted by Dµ = {Id
i,µ|1 6 i 6 n}, where Id

i,µ ∈

R
M×N×3, 1 6 µ 6 9, n = 97, M = 512 and N = 320. The

middle views of them, i.e. Id
49,µ, are shown in Fig. 3 (a)-(i). After

setting the interpolation rate δ = 32, the corresponding evaluation

SSLF sub-datasets are represented by Sµ = {Is
j,µ|1 6 j 6 m},

where m = n−1

δ
+ 1(= 4). The estimated maximum and min-

imum disparities and disparity range of each Sµ by PWC-Net are

illustrated in Fig. 4. It can be found that the disparity-range values

Fig. 4. Disparity estimations of Sµ (1 6 µ 6 9) using PWC-Net.

of the nine evaluation SSLF sub-datasets vary from 16 to 26 pixels;

consequently,
drange

δ
< 1 pixel, which suggests that all the ground-

truth DSLF sub-datasets Dµ (1 6 µ 6 9) are densely sampled.

Evaluation criteria. The per-view PSNR for a ground-truth DSLF

sub-dataset Dµ and the corresponding DSLF sub-dataset D̃µ recon-

structed from Sµ is described as below:

MSEi,µ =
1

3×M ×N

M
∑

x=1

N
∑

y=1

∥

∥

∥
Ĩd
i,µ(x, y)− Id

i,µ(x, y)
∥

∥

∥

2

2

,

PSNRi,µ = 10 log10

(

2552

MSEi,µ

)

.

(5)

The minimum per-view PSNR for each Dµ is used as the final eval-

uation criteria as same as [9].

Implementation details. The proposed FAST method is imple-

mented by using PyTorch, where the training mini-batch size is 6,

the Adam optimizer is employed for training 1, 500 epochs and the

learning rate of it is fixed to be 0.0001. The whole training pro-

cess takes around 36 hours on an Nvidia Titan Xp GPU. Besides, the

parameters of ST using the DORE algorithm are set as same as [4].

4.2. Results and analysis

The proposed method and other DSLF reconstruction approaches are

evaluated quantitatively and qualitatively as follows:

Quantitative evaluation. The minimum per-view PSNR values

of the DSLF reconstruction on all the nine evaluation SSLF sub-

datasets Sµ using different methods are exhibited in Table I. As can

be seen from this table, the proposed FAST method achieves the

best performance on most of the evaluation SSLF sub-datasets ex-

cept for Sµ, µ ∈ {4, 5}. However, on these two SSLF sub-datasets,

the minimum per-view PSNR values of the FAST method are only

0.276 and 0.093 dB less than those of the ST approach. Besides, on



Table I. Minimum per-view PSNR values (in dB, explained in Sect. 4.1) for the performance evaluation of different DSLF reconstruction

methods on evaluation SSLF sub-datasets Sµ (1 6 µ 6 9).

Method S1 S2 S3 S4 S5 S6 S7 S8 S9

SepConv (L1) [7] 21.018 17.579 20.330 22.215 24.955 25.924 18.141 18.781 22.715

PIASC (L1) [9] 21.015 17.572 20.332 22.221 24.961 25.929 18.140 18.784 22.709

ST [4] 22.699 17.634 20.231 23.842 25.752 26.527 18.015 18.727 22.304

FAST 24.683 17.988 20.828 23.566 25.659 27.002 18.393 19.171 22.884

(a) Id
17,1 of D1 (Ground-truth) (b) SepConv (L1) [7] (21.795 dB) (c) ST [4] (22.952 dB)
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(d) FAST (25.364 dB)

(e) Id
29,9 of D9 (Ground-truth) (f) SepConv (L1) [7] (26.711 dB) (g) ST [4] (26.997 dB)
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(h) FAST (28.514 dB)

Fig. 5. Visualization of the results of different DSLF reconstruction methods.

S1, the DSLF reconstruction results indicate that the FAST method

achieves a significant improvement in performance over the second-

best approach with a gain of 1.984 dB, which demonstrates the

effectiveness of the proposed method. Moreover, it can also be seen

from the data in this table that SepConv and PIASC behave almost

the same and both of them outperform the ST approach on Sµ,

µ ∈ {3, 7, 8, 9}.

Qualitative evaluation. Since the above analysis shows the similar

DSLF reconstruction performance results of SepConv and PIASC,

only SepConv is visually evaluated here. Some of the reconstruc-

ted views from Sµ using different methods are displayed in Fig. 5.

The top row of this figure illustrates the DSLF reconstruction res-

ults w.r.t. Id
17,1 of D1. The image patches containing the check-

erboard and Siemens star are selected as the interesting areas. The

SepConv method totally fails in reconstructing the checkerboard part

with blur and artifacts. In addition, the Siemens star reconstructed

by it is also blurry. This is because that the size of the repetitive pat-

tern, i.e. the checker, is smaller than the disparities of neighboring

views of Sµ, which confuses the network of SepConv at the aspect

of the real-motion decision. The ST approach does not have such

motion-decision problem; however, it still outputs artifacts when re-

constructing the checkerboard. The proposed FAST method allevi-

ates this problem with visually appealing results for both interesting

areas, partially because it exploits the disparity information. The

bottom row of Fig. 5 shows the visualization results w.r.t. Id
29,9 of

D9. Two image patches involving the toolbox and Fraunhofer logo

with a background of bamboo curtain are chosen as the interesting

areas. Looking at Fig. 5 (f), the SepConv method succeeds in recon-

structing the toolbox part; however, it fails in the reconstruction of

the border of the Fraunhofer-logo patch. The ST approach solves this

blur-border problem, while it produces artifacts w.r.t. the bamboo

curtain in the interesting area including the toolbox. The proposed

FAST method successfully addresses these issues with achieving

sharp and visually correct results for both interesting areas, which

implies that FAST is effective in DSLF reconstruction for the scene

having a complex background.

5. CONCLUSION
This paper presents a novel learning-based method, Flow-Assisted

Shearlet Transform (FAST), for solving the DSLF reconstruction

problem. The FAST method fully leverages a state-of-the-art op-

tical flow method, i.e. PWC-Net, to estimate bidirectional disparity

maps between adjacent views in an input SSLF, which are benefi-

cial to the estimation of the inverse disparity maps and the prepara-

tion of the shearlet system in ST. Besides, FAST employs two fully

convolutional neural networks, i.e. disparity refinement network and

view synthesis network, to reconstruct a DSLF from a SSLF using

the disparity information and ST results. Experimental results on

nine challenging real-world DSLF sub-datasets with large disparity

ranges show that the proposed FAST method achieves better DSLF

reconstruction results than the other state-of-the-art approaches.
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