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Abstract—Digital predistortion (DPD) has important appli-
cations in wireless communication for smart systems, such as,
for example, in Internet of Things (IoT) applications for smart
cities. DPD is used in wireless communication transmitters to
counteract distortions that arise from nonlinearities, such as
those related to amplifier characteristics and local oscillator
leakage. In this paper, we propose an algorithm-architecture-
integrated framework for design and implementation of adaptive
DPD systems. The proposed framework provides energy-efficient,
real-time DPD performance, and enables efficient reconfiguration
of DPD architectures so that communication can be dynamically
optimized based on time-varying communication requirements.
Our adaptive DPD design framework applies Markov Decision
Processes (MDPs) in novel ways to generate optimized runtime
control policies for DPD systems. We present a GPU-based
adaptive DPD system that is derived using our design framework,
and demonstrate its efficiency through extensive experiments.
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I. INTRODUCTION

Smart systems are capable of sensing the environment and
making decisions based on the available data in an adaptive
manner. To gather useful information about the environment
from sensors in real-time, smart systems may make use of
Internet of Things (IoT) technology. The sensory information
acquired by IoT devices can be transmitted to a base station
for aggregation and analysis to make decisions.

IoT devices are often equipped with wireless interfaces.
However, the quality of the wireless communication in smart
systems can suffer from non-idealities. In particular, non-
linearity of the power amplifier (PA) is a notorious source
of signal distortion. To address this issue, digital predistortion
(DPD) can be utilized to counteract PA non-linearities [1].
The implementation of an adaptive DPD system involves
a complex optimization problem that affects the wireless
communications quality, energy efficiency, and real-time per-
formance of the associated devices.

Due to changes in the environment such as temperature and
voltage, PA characteristics in general vary at run-time. Thus,
for most efficient operation, a DPD system should be able
to change the predistortion coefficients dynamically to ensure
that its underlying model matches accurately with its operating
environment. Moreover, for integration in smart systems with

many types of connected devices and communication modes,
it is critical for DPD systems to support efficient predistortion
across time-varying operational requirements and modulation
schemes. Thus, dynamic system control and reconfiguration
are desirable compared to static design for DPD systems.

In this paper, we develop a general framework for deploying
DPD implementations that address the need for efficient adap-
tivity in wireless communications devices. Implementations
that are deployed using this framework are designed to au-
tonomously make run-time decisions on DPD system configu-
rations based on the current system state and operational state.
The reconfiguration is driven by policies for dynamic system
management that are derived at design time using Markov
decisions processes (MDPs) [2]. The key novelty of this paper
is the development of a general framework for MDP-based
design and implementation of adaptive DPD systems.

We refer to the proposed framework as the MDP framework
for Adaptive DPD Systems (MADS). Dynamic reconfiguration
in MADS is performed with the objective of jointly optimizing
Adjacent Channel Power Ratio (ACPR), system throughput,
and power efficiency. ACPR is often viewed as the most
critical metric for assessing the quality of DPD systems. ACPR
is defined as the ratio of the mean power centered on the
adjacent channels to the mean power centered on the desired
channel.

To demonstrate the MADS Framework, we design an adap-
tive version of a state-of-the-art DPD algorithm from the
literature — the DPD algorithm presented by Anttila in [1].
In particular, we apply the MADS Framework to develop
an adaptive architecture that dynamically selects strategic
configurations from the design space defined by Anttila’s
algorithm. We develop a hybrid CPU/GPU implementation
of this adaptive architecture, and demonstrate its efficiency
through extensive experiments.

II. RELATED WORK

Optimization problems for DPD systems have been widely
studied over the years. For example, the work in [3]-[5]
applies genetic algorithms to optimize DPD filter coefficients
while assuming fixed filter and polynomial orders. In [6], both
filter coefficients and polynomial orders are jointly optimized;
however, this optimization is performed with respect to only a



single objective — ACPR. Ghazi et al. propose a data-parallel
implementation of reconfigurable DPD on a mobile Graphics
Processing Unit (GPU) [7]. The implementation allows the
DPD parameters to fit various transmission scenarios by se-
lecting a set of candidate profiles based on desired linearization
performance. However, this work does not provide any control
policy for optimized run-time reconfiguration. In [8], Pareto-
optimized DPD parameters are derived subject to multidi-
mensional constraints to support dynamically reconfigurable
DPD systems that are adaptive to changes in the employed
modulation schemes and operational constraints. However, this
work does not take into account reconfiguration costs nor
statistics of the environment and system states.

In comparison to the related work referenced above, our
contribution in this paper is novel in its development of a
general framework for integrating dynamic reconfiguration
systematically into a broad class of DPD algorithms. To the
best of our knowledge, the proposed framework is the first
that integrates MDP algorithms for the derivation of dynamic
DPD system parameters, and optimizes multiple objectives
including ACPR, power consumption and throughput.

III. MDP FRAMEWORK FOR ADAPTIVE DPD SYSTEMS

The MADS Framework is illustrated in Fig. 1. The frame-
work is designed so that many kinds of DPD algorithms can be
plugged in to generate MDP-integrated, adaptive systems that
are based on those algorithms. When the MADS Framework
is applied to a DPD algorithm X, we refer to X as the base
algorithm, and the adaptive system produced by the MADS
Framework is referred to as MADS-X. The base algorithm is
assumed to have two stages: (1) an estimation stage, where
the DPD coefficients are estimated according to the input and
output signals of the PA, and (2) a filtering stage, where the
input signal is filtered based on the coefficients estimated from
the estimation stage.

In Fig. 1, boxes with black-colored borders represent gen-
eral design processes that are involved in applying the MADS
Framework, while boxes with blue-colored borders represent
design processes that are specific to the base algorithm.

Parameterized Dataflow
Implementation in LIDE

&
System State

Hierarchical MDP Subsystem

Fig. 1: An illustration of the MADS Framework.

Based on both general features of DPD applications and
architecture-specific system behaviors, the MADS Framework
models environmental and system dynamics in the form of

hierarchical MDPs [9]. This modeling approach is illustrated
in the block in Fig. 1 that is labeled Hierarchical MDP
Subsystem. The Hierarchical MDP Subsystem consists of two
smaller MDPs, MDP-I and MDP-II. MDP-I generates a policy
that determines when to turn the DPD system on and off,
while MDP-II determines key DPD parameter configurations
that should be used at a given time when the DPD is on.
MDP-I may turn predistortion off, for example, if due to
current channel conditions or quality of service requirements,
predistortion is expected to not be needed for some significant
amount of time.

DPD parameters that can be configured by MDP-II include
the polynomial orders, filter orders, and filter coefficients.
The exact set of parameters that MDP-II optimizes in gen-
eral differs between different choices of the base algorithm.
Thus, when applying the MADS design methodology, MDP-II
should be formulated specifically for the given base algorithm.

The block in Fig. 1 labeled Policy Generation illustrates
the application of an MDP solver that is used to derive
reconfiguration policies from MDP-I and MDP-II. As with
the base algorithm, the MADS Framework is not specialized
to any specific MDP solver. In our current implementation of
the framework, we use the MDPSOLVE solver [10].

As shown in Fig. 1, a reconfigurable DPD application
system developed in MADS is modeled as a parameterized
dataflow graph. Parameterized dataflow is a graph-based form
of model-based design that is well-suited to design and imple-
mentation of signal processing systems that have dynamic pa-
rameters [11]. To implement the dataflow graph, we apply the
lightweight dataflow environment (LIDE), which is a design
tool for dataflow-based design and implementation of signal
processing systems [12]. LIDE provides a compact set of
application programming interfaces (APIs) for implementing
signal processing applications as dataflow graphs. A useful
feature of LIDE is that it facilitates the retargeting of designs
to different implementation languages, such as C, CUDA, and
Verilog/VHDL, and different platforms [13]. MADS inherits
this useful feature of retargetability from LIDE.

A parameterized dataflow specification consists of three
distinct graphs — the init, subinit, and body graphs. Intuitively,
the init and subinit graphs are used to compute parameter
updates for the body graph. The init graph can also modify
parameters of the subinit graph. In the remainder of this
section, we describe how these component graphs are applied
in the MADS Framework; for general definitions on these and
other parameterized dataflow concepts, we refer the reader
to [11].

In our LIDE-based implementation of MADS, the init
graph computes system hyperparameters that affect the overall
DPD system architecture (i.e., the DPD specific subsystems
that are used and their interconnections). We refer to these
hyperparameters as architecture configuration parameters. The
parameterized dataflow runtime system in LIDE propagates the
parameter updates computed by the init graph to the subinit
and body graphs.

In contrast to the init graph, the subinit graph computes
system parameters that are used to configure a given DPD



architecture. We refer to these architecture-specific parameters
as DPD coefficients since they are constrained to being values
associated with digital filter coefficients. The subinit graph
encapsulates the base-algorithm-specific DPD estimation sub-
system as a main component. The estimation subsystem is
used to estimate new values for filter coefficients that are to be
used in subsequent executions of the body graph. On the other
hand, the body graph encapsulates the set of available DPD ar-
chitectures, and performs the signal predistortion based on the
most-recently selected architecture (selected by the init graph)
and its most-recently configured coefficients (from the subinit
graph). Execution control changes iteratively among the init,
subinit, and body graphs based on coordination rules that are
defined as part of parameterized dataflow semantics [11].

IV. ACTIVATION CONTROL

In this section, we present the formulation of MDP-I. This
MDP is designed in a general way to operate with arbitrary
base algorithms. In general, the formulation of an MDP
requires specification of four key components: the state space
(SS), action space (AS), state transition matrix (STM), and
reward function (RF). In the remainder of this section, we
describe the formulation of these components for MDP-I. For
general background on MDPs, including the role of their four
general components, we refer the reader to [2].

SS: The SS for MDP-1 is represented as: s; = (T, on), where
T is the current transmission power level, and on is a binary
value representing whether the system is turned on (1) or off
(0). The subscript 1 is used to indicate correspondence with
MDP-I. We quantize the continuous values of transmission
power to obtain a discrete SS.
AS: The AS consists of two actions: one to turn on (activate)
the DPD system and the other to turn it off. We denote the
action by a;.
STM: We define two STMs, which specify the state transition
probabilities for each of the two actions. The definition of
these STMs exploits two properties: (1) 7T, is independent
of the action and the other state variable, and (2) the DPD
system is fully under the control of the action, so the system
transitions to the on/off state as requested by the action with
probability 1. The STMs are defined by:

P(si(t+1) = (4, y)ls1(t) = (4,2), a1)

=P(Ty(t+ 1) =j,on(t+1) =y|T:(t) =1, on(t) =x,a1) (1)

= P(Te(t +1) = j|T=(t) = ) P(on(t + 1) = yla1) ,

where P(on(t+ 1) = ylap) is 1 if a; is to turn on the DPD
and O otherwise.

RF: We formulate the RF R; as a linear combination of four
competing metrics: the averaged DPD power consumption
Mp, ACPR My, throughput M7, and switching cost Mg
incurred by turning on the DPD system from an off status.

R1 (Sl(t), (11) = Clj\/[p(sl(t)) + CQI\V{A(Sl(t))+
csMs(ay, s1(t)) + caMr(s1(1)) ,
where c1, c2, c3 and ¢y are the weights of the optimization
objectives. Determination of these weights is a design issue
that influences operational trade-offs of the DPD system. The

values of c¢1, cg, and c3 should be negative and c4 should be
positive since the MDP is formulated to maximize the reward
function.

V. DEMONSTRATION AND EXPERIMENTS

In this section, we demonstrate the MADS Framework by
applying it to Anttila’s algorithm [1] as the base algorithm.
We refer to the integration of MADS with Anttila’s algorithm
as MADS-A.

In Anttila’s algorithm, the DPD system is split into two parts
(branches): direct and conjugate predistortions. We denote
the maximum orders of the polynomials for the direct and
conjugate branches by p and ¢, respectively. The parameters
p and ¢ influence trade-offs among throughput, ACPR, and
power consumption. Strategic control of these parameters is
the target of MDP-II in MADS-A. In Anttila’s algorithm, only
odd-order polynomials are used. Thus, the sets of polynomial
orders are I, = {1,3,5,...,p} for the direct branches and
I, = {1,3,5,...,¢} for the conjugate branches. For more
details about Anttila’s algorithm, we refer the reader to [1].

A. MDP-II Formulation

As discussed in Section III, the MDP-II component of
MADS is application-specific in that it needs to be specialized
to the base algorithm. In this section, we present our MDP
formulation for MDP-II in MADS-A. In MADS-A, the base
algorithm parameters that are controlled by MDP-II are the
polynomial orders p and q. The components of MDP-II are
summarized as follows.

SS: The SS consists of the current transmission power level
(as in MDP-I) and the deployed DPD configuration (p-q
combination), where p € {1,3,5,7,9} and ¢ € {1,3,5,7,9}.
In MDP-II, we represent the state as so = (Ty,p, q).

AS: An action in MDP-II corresponds to determining the p-q
combination for the next MDP time step. Thus, the AS can
be represented as the set of all possible p-g combinations, and
the AS contains 5 X 5 = 25 elements. We denote the AS by
asg.

STM: We define 25 STMs corresponding to the 25 actions
in MDP-II. The state transitions for transmission power are
controlled by MDP-I, and are independent from both the action
and the system configuration. Similar to our development of
MDP-I, we assume that given a particular action, there is a
deterministic transition to the target configuration. The STMs
can be expressed in a form similar to that of Equation 1. We
omit the details due to space limitations.

RF: Similar to MDP-I, the reward function is a linear combi-
nation of Mp, M 4, My, and a switching cost Mg. The metrics
Mp, M4, Mz are the same as in MDP-I and have the same
weighting coefficients. However, the switching cost Mg for
MDP-II is different. For MDP-II, Mg refers to the cost of
reconfiguration from the p-q combination in the current time
step to the combination to be used in the next time step (based
on az). The weight of Mg for MDP-II is generally determined
separately from the corresponding weight for MDP-I.
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Fig. 2: Measured results for (a) MDP-1, (b) MDP-II, (c) MADS-A (Hierarchical MDPs), (d) Averaged ACPR (dBc), power

(mW) and throughput (Msps) of hierarchical MDPs.

B. Experimental Results

We implemented the MADS-A system using LIDE on a
hybrid CPU/GPU platform composed of an Intel i7-2600K
(CPU) running at 3.4 GHz, and an NVIDIA GeForce GTX
1080 (GPU). The body graph (see Fig. 1) of MADS-A is
mapped to the GPU and the subinit and init graphs are mapped
to the CPU. The system throughput and power consumption
data that we collected to calibrate the reward functions for
the MDP formulations in MADS-A are based on the NVIDIA
GeForce 1080.

Metrics under different DPD configurations are obtained
from a wireless transmission simulator identical to that used
in [1]. The simulator that we used consists of a WiFi signal
generator, pulse shaping filter, DPD, and Wiener PA with the
same parameters as used in [1]. Signal bandwidth is 20 MHz
with 64 subcarriers and QPSK modulation. For each system
configuration (p,q, Prx), the simulator is executed and the
results are used later by the MDP solver.

The key component for the STM is the transmit power
transition matrix (TPTM). To obtain the transition matrix, we
collect WiFi packets with a bandwidth of 20 MHz on the 5
GHz band with a laptop in a building within the University of
Maryland campus. A software called libpcap is used on the
laptop to capture the transmit power levels of WiFi packets
from nearby devices. The TPTM is derived from the transmit
power data that is collected in this way.

In the remainder of this section, we present experimental
results for MDP-I, MDP-II and the hierarchical combination of
both MDP-I and MDP-II. We compare the the three resulting
MDP-generated policies among themselves to assess the utility
of using the proposed hierarchical MDP. We also compare the
MDP approaches with a number of simple, static policies for
configuration management. The hierarchical combination rep-
resents the MADS-A implementation, while the other recon-
figuration policies are implemented using the same CPU/GPU
testbed by adding/disabling appropriate functionality.

In each of the experiments, we simulate the DPD application
system for 10,000 MDP time steps (reconfiguration rounds),
where the interval between steps is 10 milliseconds (ms). This
is the average reception interval between two packets that was
measured in the WiFi experiments described above.

The simulation is carried out with MATLAB using reward
functions that are computed based on profiled execution time

and power consumption characteristics that are measured from
the targeted CPU/GPU platform.

The results are summarized in in Fig. 2(a)-2(c) with
(c1,¢2,¢3,¢4) = (—0.4,—0.3,—0.2,0.1). Here, the curves
labeled “Maximum Reward Mapping” represent the policy
that selects the action with highest reward in the current
state without considering the potential impact of the action on
the future. The curve labeled “Thresholding” represents the
performance of a policy that turns off the system when the
transmission power is smaller than a certain pre-defined value
(5 dBm). The curves labeled with the prefix “Fixed Policy”
represent policies that simply fix the DPD configuration as
specified.

The results in Fig. 2(a)-2(c) clearly demonstrate the capa-
bility of MADS-A to significantly outperform the individual
MDPs used in isolation as well the more conventional (static)
configuration management schemes. A similar observation can
be made for different (c1, c2, 3, ¢4).

In Fig. 2(d), we demonstrate the ACPR, power consumption,
and throughput under different policies. These results show the
effectiveness of the proposed framework — in particular, its
ability to strike a balance among different DPD metrics.

VI. CONCLUSIONS

In this paper, we have motivated the relevance of adaptive
digital predistortion (DPD) to smart systems, and we have
proposed a general framework that applies Markov decision
processes (MDPs) for design and implementation of adaptive
DPD systems. Our framework, called the MDP framework
for Adaptive DPD Systems (MADS), is designed so that
many kinds of DPD algorithms can be plugged in to generate
MDP-integrated, adaptive systems that are based on those
algorithms. We demonstrate MADS by plugging into it a
state-of-the-art DPD algorithm, and implementing the result-
ing adaptive DPD system on a hybrid CPU/GPU platform.
Through extensive experiments, we have demonstrated the
utility of the resulting implementation — in particular, of the
hierarchical MDP approach that is at the core of the MADS
Framework.
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