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Abstract—In this paper, the physical layer security in cog-
nitive radio networks (CRNs) is investigated. We consider an
underlay relay assisted CRN consisting of multiple secondary
sources, multiple-antenna destination, a single relay, and multiple
eavesdroppers. The destination node performs the maximal-
ratio combining under uncorrelated Rayleigh fading channels.
In more details, we consider, a secondary source is randomly
selected to transmit its data, and a jammer is chosen from
the remaining source nodes to send a jamming signal to the
eavesdroppers. The closed-form expression of the secrecy outage
probability is derived, based on the statistical characteristics of
the communication channels, under the primary user’s quality of
service constraint. The derived analysis gives deep insights into
the impact of network parameters on the performance of on the
secrecy outage performance. Analytic results are corroborated
through Monte Carlo simulation.

I. INTRODUCTION

The increasing number of connected devices represents a

major challenge for broadband wireless networks that would

require a paradigm shift towards the development of key

enabling technologies for the fifth generation wireless net-

works. One of the key challenges towards realizing the next

generation wireless networks, however, is the scarcity of

spectrum, owing to the unprecedented broadband penetration

rate in recent years. A promising solution to the current spec-

trum crunch is the development of cognitive radio networks

(CRNs). In CRNs, unlicensed users, also known as secondary

users (SUs), opportunistically access the spectrum of primary

(licensed) users (PUs). In underlay networks, the SU signals

do not cause interference to the PUs. Accordingly, the physical

layer security under such condition is a challenging problem as

the SUs have to continuously adapt their transmission power

in order to avoid causing interference to the PUs.

It has been shown in [1] that a system is secure if the

capacity of the legitimate user is higher than that of the wiretap

channel. However, in practical scenarios, the main channel

does not always have a higher capacity. Therefore, in order

to realize the secrecy of a communication system, several

techniques have been proposed in the literature, including,

(i) exploiting a friendly jammer to transmit artificial noise to

malicious eavesdroppers, (ii) using cooperative transmission

through one or multiple relays, or (iii) using multi-antenna

nodes.

The friendly jammer approach has not been widely used

in cognitive radio networks. In [2], the authors considered

a direct communication between multiple source-destination

pairs with two jammer selection strategies, namely random

and optimal jammer selection. In [3], the authors considered

a cooperative communication network in which one relay is

selected to forward the transmitted information to the intended

destination and another relay is selected as a friendly jammer

to disrupt the eavesdropper. The authors derived the secrecy

outage probability (SOP) over Rayleigh fading channels for

different relay selection policies. However, these works have

not considered the power constraints of the SUs, despite that

this condition is of paramount importance in order to avoid

interference with PUs.

Physical-layer security in cooperative networks was con-

sidered in [4-6]. The secrecy performance was investigated

by deriving the closed-form expression for the secrecy outage

probability (SOP) as well as its asymptotic expression over

either Nakagami-m [4] and Rayleigh [5] fading channels. The

authors of [4] investigated the optimal and suboptimal relay

selection schemes and compared them with multiple relays

combining scheme. In [5], the authors considered the presence

of multiple PUs and multiple eavesdroppers. In [6], closed-
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form and asymptotic expressions of the intercept probability

were derived for Rayleigh fading channels.

A non-cooperative CRN in the presence of a direct com-

munication link between the source and destination has been

considered in [7-10]. In these works, the nodes are assumed

to be equipped with multiple antennas and perform different

diversity technique. For instance, the authors of [7, 8] con-

sidered that the source is equipped with only one antenna,

whereas the destination and the eavesdropper have multiple

antennas. In [9], all nodes are assumed to be equipped with

multiple antennas and perform different techniques namely,

(i) the optimal antenna selection at the source node and (ii)

the generalized selection combining at the destination and

eavesdropper. In [10], the authors considered an eavesdropper

accordingly, the primary network and another one listening to

the SUs transmission. The SOP and its asymptotic expressions

have been derived as a performance metric for Rayleigh [7,10]

as well as Nakagami-m [8,9] fading channels.

Motivated by above, we investigate, in this paper, the phys-

ical layer security of an underlay CRN undergoing Rayleigh

fading channels. The main contributions of this paper are:

• We derive a closed-form expression for the SOP by

considering the power adaptation constraint of the SUs

as well as the presence of multiple eavesdroppers that are

intercepting the transmitted data at both communication

hops.

• Differently from the previous works, we combine, in

this paper, two techniques (i) using a friendly jammer to

enhance the security at the first hop, and (ii) considering

a multi-antenna destination node that performs MRC

technique to improve the security at the second hop as

well.

• We give deep useful insights into the secrecy performance

of the considered communication system.

The rest of this paper is organized as follows. The system

and channel models are described in Section II. In Section

III, the closed-form expression for the SOP is derived. The

numerical and simulation results are provided and discussed

in Section IV. Finally, we conclude this paper and point out

some possible research directions in Section V.

II. SYSTEM AND CHANNEL MODELS

The considered two-hops CRN, represented in Fig. 1, con-

sists of multiple sources (Si)i=1,..,n, one relay R, multiple

eavesdroppers (Ek)k=1,..,m, one L-antennas destination D

performing MRC diversity technique, one PU transmitter

(PUTx), and one PU receiver (PURx). In this scheme, all the

nodes except D are assumed to be equipped with only one

antenna. Moreover, we consider a multi-user scheduling such

that, at the moment t, only one user is transmitting its data. We

assume that the source nodes are taking rounds in accessing

the spectrum and a friendly jammer SJ is randomly selected

among n−1 source nodes in order to send an artificial noise to

the eavesdroppers. We assume that the primary receiver PURx
and the relay R are able to cancel out that noise, while the

eavesdroppers are not.

In this scheme, we are considering Rayleigh fading model

for all links in which the channel gains are exponentially

distributed. The channel coefficients of links Si → R, R→ D,

Si → Ek, R → Ek, PUTx → PURx, R → PURx,

Si → PURx are denoted by hSiR, hRD, hSiEk
, hREk

,

hP ,hRP , hSiP , respectively. The received signals at R, Ek at

the first and second hop, D, and the primary receiver PURx
are, respectively, expressed as

yR =
√

PSi
hSiRxSi

+ nR i = 1, .., n (1)

y
(i)
1Ek

=
√

PSi
hSiEk

xSi
+ ǫ
√

PSJ
hSJEk

xSJ
+ nEk

, (2)

k = 1, ..,m i = 1, .., n i 6= J

yD =
√

PR||hRD||xR + wDnD, (3)

y2Ek
=
√

PRhREk
xr + nE , k = 1, ..,m (4)

where

ǫ =

{

0, absence of jammer

1, presence of jammer
,

and PSi
, PR, and PSJ

are the transmission power of Si, R,

and SJ , respectively. The transmitted signals of Si, R, and SJ
are xsi , xR, and xSj

, respectively. nR, nD, nE , denote the

additive white Gaussian noise at R, D, and Ek, respectively,

wD =
h
†
RD

||hRD|| , while hRD denotes L×1 channel vector of the

links R-(Dj)j=1,..,L, and the symbol † denotes the transpose

conjugate.

For the sake of simplicity, we denote the channel power

gains by gq = |hq|2 and their corresponding coefficients are

λq where q = {SiR, SiEk, SiP, RDj , REk, RP, P}. As

the fading amplitudes of all links are Rayleigh distributed, it

follows that the channel gains are exponentially distributed.

During transmission, the nodes Si, SJ , and R have to set

their transmission power in order to avoid causing harmful

interference to the PUs. Thus, the transmission power of the

source Si, the jammer SJ , and the relay R can be, respectively,

expressed as

PSi
= min

(

PmaxSi
,
PI

gSiP

)

; i = 1, .., n, (5)

and

PR = min

(

PmaxR ,
PI

gRP

)

, (6)

where PmaxSi
, and PmaxR are the maximal transmit power at

Si, and R, respectively, while PI accounts for the maximum

tolerated interference power at PURx. It is clearly seen from

(5), and (6) that when PI increases, the nodes Si, SJ , and

R will be allowed to use their maximal transmission power.

Consequently, the signal-to-noise ratio (SNR) at both R and

D will increase while the SNR at eavesdroppers will decrease

leading to a system security improvement.
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Fig. 1: System setup.

III. SECRECY CAPACITY

The secrecy capacity was first introduced by Wyner [1]. It

can be defined as the maximum rate at which the transmitted

information can confidentially reach its intended destination.

In our considered communication system, we are using a

decode-and-forward relaying protocol. Consequently, the se-

crecy capacity of the ith source when SJ is selected as a

friendly jammer can be expressed by

C(i,J)
s = min

k=1,..,m

(

C
(i, k,J)
1S , C

(k)
2S

)

, (7)

where

• C
(i, k,J)
1S denotes the secrecy capacity of the first link,

i.e, the difference between the capacity of the main link

Si − R and the one of the wiretap channel Si − Ek in

the presence of the jammer SJ , and can be written as

C
(i, k,J)
1S =

[

C
(i)
1M − C

(i,k,J)
1E

]+

(8)

=

{

log2

(

γ
(i,J)
1k

)

, γ
(i)
R > γ

(i,k,J)
1E

0, elsewhere
,

where γ
(i)
R and γ

(i,k,J)
1E denote the instantaneous SNR at

the relay R and the kth eavesdropper Ek, respectively,

and are given as

γ
(i)
R =

PSi
gSiR

NR
, (9)

γ
(i,k,J)
1E =

PSi
gSiEk

PSJ
gSJEk

+NE
, (10)

and

γ
(i,J)
1k =

1 + γ
(i)
R

1 + γ
(i,k,J)
1E

. (11)

• C
(k)
2S is the secrecy capacity of the second hop, represent-

ing the difference between the capacity of the link R−D
and the one of the wiretap channel R− Ek

C
(k)
2S =

{

log2 (γ2k) , γD > γ
(k)
2E

0, elsewhere
, (12)

where γD, and γ
(k)
2E denote the instantaneous SNR of the

main link R −D and the channel R − Ek, respectively

and are given as

γD =
PR
∑L
t=1 gRDt

ND
, (13)

γ
(k)
2E =

PRgREk

NE
, (14)

and

γ2k =
1 + γD

1 + γ
(k)
2E

. (15)

IV. SECRECY OUTAGE PROBABILITY

To evaluate the security level of the considered CRN, we

consider the SOP as a performance criterion. This metric

accounts for the probability that the secrecy capacity is less

than a given secrecy rate Rs which can be can be expressed

as

SOP =
1

n(n− 1)

n−1∑

i=1

n∑

J=1
J 6=i

SOP
(J)
i , (16)

where

SOP
(J)
i = Pr

(

C(i,J)
s < Rs

)

, (17)

It is clearly seen from (17) that as C
(i,J)
s increases SOP

decreases resulting in performance enhancement of the system.

So, in order to investigate the system’s security, it is sufficient

to determine the CDF of C
(i,J)
s .

Substituting (7) into (17), yields

SOP
(J)
i = 1−

m∏

k=1

Pr
(

min(C
(i, k,J)
1S , C

(k)
2S ) ≥ Rs

)

= 1−
m∏

k=1

[

1− F
γ
(i,J)
1k

(γ)
]

[1− Fγ2k(γ)] , (18)

where γ = 2RS .

One can see from (18) that the computation of SOP
(J)
i

requires the knowledge of the CDFs of both γ
(i,J)
1k and γ2k.

Theorem 1. The CDFs of the random variables (RVs) γ
(i,J)
1k

and γ2k are given by (19) and (20), respectively, as shown at

the top of the next page, where

Ξ
(J)
i,k (γ) =

e−ϕJ

hi,k
−χ(J)

i,k

{

Υ
(J)
i,k

[
e−ϕJ − 1

]
− e̟

(J)
i,k

−ϕJΛ
(J)
i,k

}

,

ϕJ =
λSJPPI

PmaxSJ

,

hi,k = λSiEk
NE + λSiRNRγ,

χ
(J)
i,k =

λSJEk

λSiEk
PmaxSJ

,

Υ
(J)
i,k = G

2,1
1,2

(

̟
(J)
i,k

∣
∣
∣
∣

0;−
0, 0;−

)

,



F
γ
(i,J)
1k

(γ) = 1−







(

1− λSiRNRγΞ
(J)
i,k (γ)

)

e
−

λSiR
NR(γ−1)

Pmax
Si




1− e

−
λSiP

PI

Pmax
Si

λSiP
PI

λSiR
NR(γ−1) + 1












. (19)

Fγ2k(γ) = 1−
L∑

h=1

L∏

l=1
l 6=h

(
λRDl

λRDl
− λRDh

)
e
−

λRDh
ND(γ−1)

Pmax
R

λRDh
NDγ

λREk
NE

+ 1



1− e
−

λRP PI
Pmax
R

λ
RP

PI

λRDh
ND(γ−1) + 1



 . (20)

̟
(J)
i,k = χ

(J)
i,k hi,k,

Λ
(J)
i,k =

A
(i,k,J)
1

ϕJ
−A

(i,k,J)
0 ,

A(i,k,J)
p =

(

β
(J)
i,k

)p+1

G
2,2
2,2

(

β
(J)
i,k

∣
∣
∣
∣
∣

(0, 0), (−p,̟(J)
i,k );−

(0, 0), (0, 0);−

)

,

and

β
(J)
i,k =

ϕJ

χ
(J)
i,k hi,k

,

where Gm,np,q

(

z

∣
∣
∣
∣

(av)v≤p
(bw)w≤q

)

denotes the Meijer-G’s function

[11, Eq. (07.34.02.0001.01)] and Gm,np,q

(

z

∣
∣
∣
∣

(al, αl)l≤p
(br, βr)r≤q

)

accounts for the upper incomplete Meijer-G’s function [12,

Eq. (1.1.1)].

Proof:

A. CDF of γ
(i,J)
1k

The CDF of γ
(i,J)
1k can be expressed as

F
γ
(i,J)
1k

(γ) = Pr

(

PSi

[
gSiR

NR
− γW

(J)
i,k

]

≤γ − 1

)

= Pr
((

PSi
≤ Z

(J)
i,k and Z

(J)
i,k ≥ 0

)

or Z
(J)
i,k ≤ 0

)

=

∫ ∞

0

FPSi
(z)f

Z
(J)
i,k

(z)dz+

∫ 0

−∞

f
Z

(J)
i,k

(z)dz,

(21)

where W
(J)
i,k =

gSiEk

PSJ
gSJEk

+NE
and Z

(J)
i,k = γ−1

gSiR

NR
−γW

(J)
i,k

.

According to (21), it follows that the derivation of F
γ
(i,J)
1k

(γ)

requires the knowledge of the CDFs of both PSi
and Z

(J)
i,k .

Doing some computations, the CDF of PSi
can be easily

shown to be given

FPSi
(z) =







1 : PmaxSi
≤ z

F PI
gSiP

(z) : PmaxSi
> z

, (22)

where the CDF of PI

gSiP
can be obtained as

F PI
gSiP

(z) = e
−λ

SiP

PI
z . (23)

On the other hand, the CDF of Q
(J)
i,k =

1

Z
(J)
i,k

can be expressed

for positive values of ψ as

F
Q

(J)
i,k

(ψ) = Pr
(

gSiR ≤ NR

[

ψ (γ − 1) + γW
(J)
i,k

])

=

∫ ∞

0

FgSiR
(NR [ψ (γ − 1) + γz]) f

W
(J)
i,k

(z) dz.

(24)

In order to derive F
Q

(J)
i,k

(ψ) we have to derive the CDF of the

RV W
(J)
i,k

F
W

(J)
i,k

(ξ) = Pr (gSiEk
≤ ξ (gSJEk

PSJ
+NE))

=

∫ ∞

0

FgSiEk
(ξ (z +NE))

× fPSJ
gSJEk

(z) dz. (25)

By using integration by parts, we get

F
W

(J)
i,k

(ξ) = 1−ξ
∫ ∞

0

fgSiEk
(ξ (z +NE))FPSJ

gSJEk
(z) dz.

(26)

By definition, the CDF of the RV PSJ
gSJEk

can be written

as
FPSJ

gSJEk
(z) = Pr

(

gSJEk
≤ z

PmaxSJ

,
PI

gSJP

≥ PmaxSJ

)

︸ ︷︷ ︸

I
(k,J)
1

+ Pr

(
gSJEk

gSJP

≤ z

PI
,
PI

gSJP

≤ PmaxSJ

)

︸ ︷︷ ︸

I
(k,J)
2

,(27)

As the two RVs gSJEk
and gSJP are independent, the first

term I(k,J)
1 in (27) can be written as

I(k,J)
1 = Pr

(

gSJEk
≤ z

PmaxSJ

)

Pr

(

gSJP ≤ PI

PmaxSJ

)

= FgSJEk

(
z

PmaxSJ

)

FgSJP

(
PI

PmaxSJ

)

, (28)

while, the second term I(k,J)
2 can be easily expressed as

I(k,J)
2 =

∫ ∞

PI
Pmax
SJ

fgSJP
(y)

∫ z
PI
y

0

fgSJEk
(x)dxdy

= e−ϕJ − e
−ϕJ

(

z̺
(J)
k

+1
)

z̺
(J)
k +1

, (29)



where ̺
(J)
k =

λSJEk

λSJPPI
. Then, by plugging (28) and (29) into

(27) we obtain

FPSJ
gSJEk

(ϑ) = 1+e−ϕJ̺
(J)
k
ϑ
(
e−ϕJ − 1

)
− e

−ϕJ

(

ϑ̺
(J)
k

+1
)

ϑ̺
(J)
k +1

.

(30)

Now, the CDF of W
(J)
i,k can be obtained by incorporating (30)

into (26), as

F
W

(J)
i,k

(ξ) = 1− e−λSiEk
ξNE














1 +
λSiEk

ξ(e−ϕJ−1)
ϕJ̺

(J)
k

+λSiEk
ξ

− ξλSiEk
e−ϕJ

̺
(J)
k

×
∫ ∞

0

e−̺
(J)
k
δ
(J)
i,k
z

z + 1

̺
(J)
k

dz

︸ ︷︷ ︸

I
(i,k,J)
3














,

(31)

where δ
(J)
i,k =

ϕJ̺
(J)
k

+λSiEk
ξ

̺
(J)
k

.

Making use of [11, Eq. (07.34.03.0456.01)] alongside with

[11, Eq. (07.34.21.0088.01)], we have

I(i,k,J)
3 = δ

(J)
i,k

∫ ∞

0

G
1,2
2,2

(

z

∣
∣
∣
∣

1, 1;−
1; 0

)

e
−δ

(J)
i,k

z

dz

= G
1,3
3,2

(

1

δ
(J)
i,k

∣
∣
∣
∣

0, 1, 1;−
1; 0

)

. (32)

Furthermore,

G
1,3
3,2

(

1

δ
(J)
i,k

∣
∣
∣
∣

0, 1, 1;−
1; 0

)

= G
3,1
2,3

(

δ
(J)
i,k

∣
∣
∣
∣

0; 1
1, 0, 0;−

)

=
1

2πj

∫

C

Γ (s+ 1)Γ2 (s)

Γ (s+ 1)

×Γ (1− s)
(

δ
(J)
i,k

)−s

ds

= G
2,1
1,2

(

δ
(J)
i,k

∣
∣
∣
∣

0;−
0, 0;−

)

,

(33)

with j =
√
−1 and C represents a complex contour of

integration ensuring the convergence of the Mellin-Barnes

integral.

Then, by performing the substitution (32) into (31 ) yields

F
W

(J)
i,k

(ξ) = 1− e−λSiEk
ξNE

×










1 +
λSiEk

ξ(e−ϕJ−1)
ϕJ̺

(J)
k

+λSiEk
ξ

− ξλSiEk
e−ϕJ

̺
(J)
k

×G2,1
1,2

(

ϕJ + ϕJξ

χ
(J)
i,k

∣
∣
∣
∣

0;−
0, 0;−

)










,

(34)

It follows, by substituting (34) into (24) that

F
Q

(J)
i,k

(ψ) = 1− e−φi(ψ)
(

1− λSiRNRγΞ
(J)
i,k (γ)

)

, (35)

where

Ξ
(J)
i,k (γ) =

∫ ∞

0

e−hi,kzdz+
(
e−ϕJ − 1

)
Θ

(i,k)
1J −ϕJe

−ϕJ

χ
(J)
i,k

Θ
(i,k,J)
2 ,

(36)

Θ
(i,k)
1J =

∫ ∞

0

ze−hi,kz

χ
(J)
i,k + z

dz, (37)

Θ
(i,k)
2J =

∫ ∞

0

ze−hi,kzG
2,1
1,2

(

ϕJ

(

1 +
z

χ
(J)
i,k

)∣
∣
∣
∣

0;−
0, 0;−

)

dz,

(38)

and

φi (ψ) = λSiRNRψ (γ − 1) . (39)

The term Θ
(i,k)
1J can be expressed using the identities (36) and

(37) as

Θ
(i,k)
1J =

∫ ∞

0

e−hi,kzdz − χ
(J)
i,k

∫ ∞

0

e−hi,kz

χ
(J)
i,k + z

dz

=
1

hi,k
− χ

(J)
i,k G

2,1
1,2

(

hi,kχ
(J)
i,k

∣
∣
∣
∣

0;−
0, 0;−

)

,(40)

while the term Θ
(i,k)
2J can be rewritten, using a change of

variable, as

Θ
(i,k)
2J =

χ
(J)
i,k

ϕJ
eχ

(J)
i,k
hi,k

∫ ∞

ϕJ

(
y

ϕJ
− 1

)

e
−

χ
(J)
i,k

hi,k

ϕJ
y

×G2,1
1,2

(

y

∣
∣
∣
∣

0;−
0, 0;−

)

dy

= η
(J)
i,k

[

A
(i,k,J)
1

ϕJ
−A

(i,k,J)
0

]

, (41)

where η
(J)
i,k =

χ
(J)
i,k

ϕJ
eχ

(J)
i,k
hi,k , and the function

(

A
(i,k,J)
p

)

p=0,1
is defined by

A(i,k,J)
p =

∫ ∞

ϕJ

ype
−

χ
(J)
i,k

hi,k

ϕJ
y
G

2,1
1,2

(

y

∣
∣
∣
∣

0;−
0, 0;−

)

dy (42)

=
1

2πj

∫

C

Γ2 (s) Γ (1− s) ds

∫ ∞

ϕJ

yp−se
−

χ
(J)
i,k

hi,k

ϕJ
y
dy

=

(

β
(J)
i,k

)p+1

2πj

∫

C

Γ2 (s) Γ (1− s) Γ
(

ςp,s, ̟
(J)
i,k

)(

β
(J)
i,k

)−s

ds,

where ςp,s = p + 1 − s. Then, by substituting (42) into (41)

alongside with (40), we get the expression of the function

Ξ
(J)
i,k (γ) defined above.

In contrast, the CDF of Z
(J)
i,k is expressed in terms of the

one of its inverse as

F
Z

(J)
i,k

(x) = 1− F
Q

(J)
i,k

(
1

x

)

+ F
Q

(J)
i,k

(0). (43)

By using (35), the CDF of Z
(J)
i,k can be rewritten as

F
Z

(J)
i,k

(x) = e−
λSiR

NR(γ−1)

x (1− λSiRNRγΞ
(J)
i,k (γ))

+λSiRNRγΞ
(J)
i,k (γ). (44)



Then, by performing the appropriate substitutions in (21 ),

we obtain (19).

Remark 1. For the scenario without any jammer source and

by performing some computation we can get easily the CDF

at the first hop as

F
γ
(i)
1k

(γ) = 1 +
e−Φi

λSiR
NRγ

λ
SiEk

NE
+ 1

[
Φie

−Ωi

Ωi +Φi
− 1

]

, (45)

where Ωi =
λSiP

PI

Pmax
Si

and Φi =
λSiR

NR(γ−1)

Pmax
Si

.

B. CDF of γ2k

Using (14), the CDF of γ2k is given as

Fγ2k (γ) = Pr

(

PR

[
YRD

ND
− γgREk

NE

]

≤ γ − 1

)

= Pr (PR ≤ VR,k, VR,k ≥ 0) + Pr (VR,k ≤ 0)

=

∫ ∞

0

FPR
(z)fVR,k

(z)dz +

∫ 0

−∞

fVR,k
(z),(46)

where YRD =
∑L
v=1 gRDv , and VR,k = γ−1

(

YRD
ND

−γ
gREk

NE

) .

In a similar manner, we have to derive first the CDF of the

RV VR,k = 1
UR,k

.

FUR,k
(ϑ) = Pr

(

YRD ≤ ND

(

ϑ (γ − 1) + γ
gREk

NE

))

=

∫ ∞

0

FYRD
(θ(z)) fgREk

(z) dz, (47)

where θ(z) = ND

(

ϑ (γ − 1) + γ
z

NE

)

.

According to [6], the CDF of YRD in the case of i.n.i.d RVs

can be expressed as

FYRD
(x) =

L∑

h=1

ψh
(
1− e−λRDh

x
)
, (48)

where ψh =
L∏

l=1
l 6=h

(
λRDl

λRDl
−λRDh

)

.

By substituting the PDF of the exponential RV and (48) into

(47), the CDF of UR,k can be derived as

FUR,k
(ϑ) =

L∑

h=1

ψh






1− e−λRDh

NDϑ(γ−1)

λRDh
NDγ

λREk
NE

+ 1






. (49)

Similarly to (43), and making use of (49) yields

FZR,k
(x) = 1−

L∑

h=1

ψh

(

1− e−
λRDh

ND(γ−1)

x

)

λRDh
NDγ

λREk
NE

+ 1

. (50)

TABLE I: Simulation parameters.

Parameter λq m n RS NR

value 0.5 2 2 1 2

Parameter ND NE Pmax
Si

Pmax
R

Pmax
SJ

value 2 2 8 8 8

As the CDF of PR can be expressed similarly to the one

of PSi
given by (22) and (23), the CDF of γ2k can be now

rewritten as

Fγ2k(γ) =

∫ Pmax
R

0

F PI
gRP

(t)fVR,k
(t) dt (51)

+

∫ ∞

Pmax
R

fVR,k
(t) dt+

∫ 0

−∞

fVR,k
(t) dt

︸ ︷︷ ︸

=1−
∫ Pmax

R
0 fVR,k

(t)dt

,

Finally, by substituting CDF of PI

gRP
, that is similarly to

(23), and (50) into (51), we obtain (20) which concludes the

proof of Theorem 1.

V. RESULTS AND DISCUSSION

In this section, we present the analytical and the simulation

results for the considered CRN. The setting parameters of the

simulation experiment are summarized in Table 1 where the

powers are given in dBW.

As seen in Figs. 2-4, all analytical and simulation curves

are perfectly matched over the entire ranges of the considered

parameters.

Fig. 2 shows the secrecy outage probability as a function of

the secrecy rate Rs for various values of destination’s antennas

number. It can clearly be seen that the SOP increases with the

increasing values of Rs, as also noticed by (17). This can be

interpreted by the fact that when a high secrecy rate is adopted

for a better performance, it is less likely to achieve a perfect

secure transmission. Furthermore, the security is enhanced

when using multiple antennas at the destination instead of

employing only a single one. For instance, for Rs = 1 bit/s/Hz

we have SOP ≃ 0.85 and SOP = 0.94 for L = 4 and L = 2,

respectively.

Rs(bit/s/Hz)
1 1.5 2 2.5 3 3.5 4

S
O

P

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Analytical

SimulationL=2

L=3

L=4

Fig. 2: SOP vs secrecy rate for different values of antennas at

the destination.
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Fig. 3: SOP vs maximum transmission power of the jammer

SJ for different values of antennas at the destination.

PI(dBW)
0 5 10 15 20 25 30

S
O

P

0.7

0.75

0.8

0.85

0.9

0.95

1

Analytical with jammer

Simulation with jammer

Analytical without jammer

Simulation without jammer

L=1

L=3
L=4

Fig. 4: SOP vs maximum tolerated interference power PI at

PURx for different values of antennas at the destination.

The SOP versus the transmission power of the selected

jammer PmaxSJ
is illustrated in Fig. 3 for various values of

branches number L at the node D. It can be noticed that, the

higher PmaxSJ
the smaller the SOP and therefore the system

security becomes more reliable. This can be construed as

increasing PmaxSJ
leads to a decrease of eavesdroppers’ SNRs

as it can be seen in (10). Consequently, the wiretap link

capacity decreases as well leading to the improvement of the

first hop secrecy capacity. Additionally, increasing the number

of antennas at the destination enhances the SNR as shown in

(13) leading to the enhancement of the main link capacity i.e.,

R−D, and consequently the secrecy performance gets better.

Fig. 4 depicts the SOP versus PI for different scenarios

namely (i) either absence or presence of a friendly jammer

and (i) single and multiple antennas destination. It can be

noticed that the greater the PI , the smaller the SOP. This can

be justified, from (5) and (6), as increasing PI above certain

threshold, push the sources as well as the relay to transmit

with their maximal powers. Also, it is clearly seen that a better

secrecy is achieved when using a friendly jammer at the first

hop and a destination with multiple antennas. Moreover, it

can be noticed that the scenario with absence of jammer and

L antennas destination (L > 2) is better than the one with

presence of friendly jammer and a single antenna destination.

VI. CONCLUSIONS

The secrecy outage probability of a CRN under decode-and-

forward relaying scheme is investigated by considering either

the presence or absence of a friendly jammer at the first hop

and a multi-antenna destination at the second hop. A closed-

form expression for the SOP is derived, in terms of the upper

incomplete Meijer’s G-function, based on which the impact of

key system parameters on the secrecy performance is investi-

gated. The obtained numerical and simulation results showed

that the system’s secrecy is enhanced with the increase of

both the destination antennas’ number and the friendly jammer

transmission power. Moreover, it is shown that increasing the

number of antennas at the destination without using a friendly

jammer yields a more secure communication, compared to the

scenario employing a single-antenna destination along with a

friendly jammer.
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