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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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interdependencies of design variables and manufacturing parameters in achieving suitable part quality, modelling methods are necessary to 
provide simulation capabilities for part quality analysis at early stages of product development. A systematic methodology is proposed to extract 
cause-effect relationships among variables and to transform this causal model into a Bayesian network. The Bayesian network is then used to 
predict the effect of specific design and manufacturing parameters on part defects and to estimate the needed input parameters backwards, based 
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1.  Introduction 

Additive manufacturing (AM) processes have transitioned 
from production of prototypes to functional products, serving 
various industries, such as automotive, aerospace, machinery, 
electronics, and medical. Specifically, AM of metal products 
has seen increased adoption as industrial production systems 
due to the steady decline in the price of machines and materials 
[1]. However, AM products have been riddled with defects due 
to the lack of process knowledge and control systems. In 
addition, the lack of interoperability in machines has made it 
difficult to create models that can reduce variations in 
properties and quality across materials and machine types [2]. 
Thus, product and process qualification efforts are required to 
improve product quality and meet industry standards. Part-by-
part evaluations are time intensive and new research must focus 
on creating alternatives to existing conventional qualification 

methods with the use of validated models and probabilistic 
methods [3].   

AM product quality largely depends on the interactions 
between design geometry, AM technology, and AM specific 
process parameters. Metal AM processes, such as laser 
sintering, function as a multi-parameter dependent process, 
which require an understanding of the process physics to 
control variations in final product [4]. In selective laser 
sintering, a laser beam scans over metal powders, melting and 
forming layers [4]. However, the lack of high-fidelity models 
for AM processes results in users choosing parameters based 
on experimental data collection and expertise. Hence, a non-
homogenous temperature gradient is often created, which can 
lead to spheroidization of the liquid melt pool and residual 
stress formation, causing cracking, warping, and curling 
defects in the part [5]. These geometric defects are unavoidable 
without the use of proper process tuning and control strategies. 
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To help prevent such defects, in-situ monitoring and control 
systems have been proposed in literature [6], [7]. An increase 
in the number of control variables is required due to the multi-
parameter-dependent nature of powder bed AM. 

Toward this end, efforts must be focused on early design 
stage modeling techniques that can evaluate the interactions 
between geometry and process parameters early in the design 
process and aid in informed decision making during process 
parameter tuning. Such models can help fix high-latency 
variables in the system at values that minimize their impact on 
product quality, eliminating the need to control them. Towards 
that goal, a probabilistic modeling method using Bayesian 
networks is proposed to model defects in AM parts during laser 
sintering. The developed model characterizes the effect of 
geometric and manufacturing parameters on part geometry 
defects. This model will help designers and manufacturers 
evaluate the probability of occurrence and the magnitude of 
defects during manufacturing and support effective tuning of 
parameters to reduce or eliminate such defects. The method is 
demonstrated for a case study to model the curling defect in an 
L-shaped block made of titanium alloy, Ti-6Al-4V, using laser 
sintering.  

The remainder of the manuscript is organized as follows. 
Section 2 provides a background on defect modeling in laser 
sintering. Section 3 describes the methodology for the additive 
manufacturing case study. Section 4 discusses the results of the 
simulation using the developed Bayesian network for the case 
study. Section 5 presents the conclusions. 

2.  Background 

Defect modeling for laser powder-bed AM processes is 
necessary to enable simulations, improve product quality, and 
eliminate or reduce reject/waste. In laser AM, the temperature-
rich environment can result in thermal residual stress 
formation, leading to geometric errors such as distortion, 
warping, curing, and spalling. These geometric errors can cause 
unfinished products and premature failure of product [8]. 

Research in AM defect modeling has investigated several 
ways to reduce thermally-induced residual stress and its 
associated geometric tolerance losses. Vasinota et al. [9] 
performed thermomechanical modeling and simulation of the 
laser engineered net shaping process with the help of process 
maps. They found that uniform preheating of the base plate 
could reduce residual stresses and achieve optimum melt pool 
length. Similar research have verified that preheating of the 
base plate is one of most effective means to reducing residual 
stresses in AM [10], [11]. In addition to preheating, research 
has focused on optimizing scan patterns and weld deposition 
paths to reduce residual stress and deflection. Pohl et al. [5] 
investigated the effect of processing conditions and material on 
thermal stresses and part deflection during laser sintering. They 
found that density or strength of laser-sintered products might 
contradict the goal of reduced thermal stresses. They also found 
that different scanning patterns, especially direction of line 
scan and short raster pattern could reduce deflections in the 
product.  

Nickel et al. [12] investigated the effect of deposition 
patterns on deflection of the part using finite element modeling. 

Their study showed that deposition patterns had a significant 
effect on dimensional quality of the part. They found raster 
patterns with lines perpendicular to the laser beam’s long axis 
yielded low deflections in the part. More recent research has 
focused on building support structures to prevent residual 
stress-induced curling and distortion. Calignano [13] 
investigated the use of supports for overhang features in 
selective laser sintering. He posited that additional support is 
required for overhang features to reduce geometric distortions. 
However, he suggested that it is necessary to use minimal 
support structure to obtain the best trade-off between time, cost, 
and accuracy of production.  

Cheng and Chou [14] also investigated overhang support 
patterns to reduce deformation of overhang parts. They 
developed a thermomechanical model to simulate deformation 
in overhang structures in electron beam melting. They found 
that solid support columns could reduce overhang defect. They 
also reinforced the notion that a trade-off must be met between 
reducing deformations and reducing the amount of support 
materials used to maintain low production costs. In the research 
presented herein, the use of supports and the effect of support 
geometry on part deformation is evaluated using a Bayesian 
network model.   

3.  Case Study and Methodology  

Curling is a recurring defect in laser-based metal AM. It 
predominantly occurs on overhang surfaces that are not 
supported by enough material from previous layers. Excessive 
heat energy input (overheating) leads to a cumulative thermal 
constraint on the part being processed, resulting in an upward 
deflection of overhanging features. Suppressing the curling 
defect entails exploring the design space among parameters 
related to part geometry, part orientation, support structure, and 
manufacturing process parameters.  

The case study presented here aims at developing a 
probabilistic model to explore the design space of an L-shaped 
geometry and to characterize the effect of design parameters on 
the curling defect during early design stage. The case study 
follows the workflow shown in Fig. 1. The generic workflow 
includes three main stages: 1) using the dimensional analysis 
conceptual modeling (DACM) framework to generate a causal 
graph of the phenomenon and the associated governing 
equations, 2) translating the causal graph  into directed acyclic 
graphs (DAGs) for Bayesian network model development, and 
3) probabilistic modeling of the curling defect in BayesiaLab 
software. These stages proceed through five steps, as discussed 
below. 

Step 1: The aim of DACM modeling stage is to extract 
causal rules and establish governing equations among the 
variables in the problem using the DACM framework [15], 
[16]. The problem is evaluated from a functional perspective; a 
systematic approach to extract causal rules and establish 
governing equations from a functional model is followed. Fig. 
2 shows a functional model where the design space is divided 
into three domains: cyclic functions of the AM process, useful 
functions of the support structure, and non-desired functions. 
The support structure comprises two main functions: the 
function ‘to dissipate’ heat energy, similar to a heat sink, and 
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the function ‘to increase inertia’. Heat energy dissipation is 
defined here by cooling rate (CR), which depends on the 
geometry of the support and heat transfer variables. Inertia 
depends on the geometry of the supports and material density. 
The non-desired functions of the supports characterize the 
generation of a thermal constraint that results in the bending 
moment and the function ‘to resist’ the deflection.  

Step 2: Once the functional model is established and 
variables characterizing those functions are assigned, the 
algorithms developed in DACM lead to systematic extraction 
of the cause-effect relationships between the variables and to 
establishing behavioral laws using dimensional analysis (DA) 
principles. Fig. 3 represents the extracted causal rules between 
the variables (nodes) in the form of a causal graph, where 
independent design variables are shown in green, exogenous 
variables are shown in gray, and performance variables are 
shown in red. DA uses cause-effect relationships in the form of 
(1, as well as dimensions of variables to provide the 
mathematical relationship among variables in the form of (2, 
where {xi1, xi2, …, xin} are the influencing (cause) variables, yi 
is the performance (effect) variable, and {αij |1≤ j ≤ n} are the 
exponents of the variables. DA seeks for finding suitable 
exponents for the variables to respect the dimensional 
homogeneity principle [17]. 

  (1) 

 
(2) 

The DACM framework also enables integration of existing 
equations directly to the functional model and causal graph. (3 
approximates the temperature difference between layers as a 
function of heating rate (HR), cooling rate (CR), part geometry 
variables (W, L, and b), and process parameters (dl, lt, v, and 
tw). 

 
Fig. 1. Methodology workflow. 

 
Fig. 2. Functional model for curling defect using DACM Framework. 

The equations associated with the functional model shown 
in Fig. 2 are listed in (3 through (7.  

Step 3: This step defines the valid value ranges for the 
independent variables of the functional model. These ranges 
are then divided into several intervals, or states. For providing 
marginal probability tables (MPT) to each interval of the 
independent variables, it is possible either to assign a random 
probability of occurrence to each variable interval or to 
integrate expert knowledge and preferences [18]. 

 
Fig. 3. Causal graph for curling defect (represented in BayesiaLab). 
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In this study, the analytical hierarchy process (AHP) is used 
to capture experts’ knowledge and preferences in the Bayesian 
network model [19]. AHP is an efficient tool to deal with 
complex decision-making problems involving multiple experts 
and comparisons, since it reduces the complexity of a decision 
to a series of pairwise comparisons. In this study, experts 
answered a series of questions by filling AHP tables associated 
to the required comparisons. The aim was to capture the 
experts’ preferences over different intervals for each 
independent variable. To enhance this process, AHP tables 
were transformed into a series of questions. For instance, 
supposing four intervals (i=4) were defined for the number of 
supports (n), the questions would be formulated to capture 
expert preferences over the intervals two-by-two (e.g., interval 
1 vs. interval 2), as follows: ‘Considering all conditions for 
printing a desired part, what is your preference of interval 1 
compared to interval 2?’ The questions were repeated ((i2-i)/2) 
times to obtain two-by-two comparisons of all intervals for all 
independent variables.  

Once all preferences were captured from pairwise 
comparisons, AHP was used to generate a weight for each 
interval, in a way that the sum of all individual interval weights 
is equal to one. Hence, the weights generated by AHP are 
equivalent to the probability of selection of that interval by 
experts. The process of capturing experts’ preferences 
continues to cover all independent variables. Table 1 provides 
the list of variables of the case study with their associated units, 
ranges of values, marginal probabilities, and equations. 

Step 4: The causal graph extracted by DACM is a directed 
acyclic graph (DAG) as an initial Bayesian network 
prerequisite. However, a few systematic modifications need to 
be carried out to adapt the DACM causal graph to the Bayesian 
network model. 

First, exogenous variables have a fixed value and do not 
vary in the system. Therefore, they should be removed from the 
causal graph. The effect of exogenous variables is not 
eliminated from the model, since they are considered in the 
equations as constants. The second modification involves 
defining the constraints and filter state among variables, which 
is necessary to avoid impossible combinations of values for 
independent variables and also to limit the design space. 
Constraints are defined between parent nodes, and filter states 
are used as an interval/state within child nodes. The geometric 
parameters in the case study have been limited using 
constraints in terms of ratio to avoid the simulation of 
undesirable geometries. Table 2 represents the acceptable 
ranges for the design parameters for this case study.  

Once the MPTs are established for the independent 
variables, conditional probability tables (CPTs) are then 
populated using a sampling technique. The sampling technique 
starts with calculating the range for the child nodes based on 
the maximum and minimum value of the parents and the 
governing equations. The range of values for CPT is then 
divided into several intervals. The sampling technique 
continues by taking a number of samples from the parent nodes. 
The process uses the governing equations for each interval in 
parent node(s) to calculate the corresponding value in the child 
node(s). Finally, filtering the impossible values for each child 
node is essential to avoid propagation of error in the network. 

Table 1.  List of case study variables with range of values and equations. 

Variable (Symbol) Unit (Range of values)/Equations 
Marginal Probability (%) 

Part length (L) mm (15, 45) (45, 75) (75, 120) 
  11.11 66.67 22.22 
Part height (H) mm (3, 9) (9, 18) (18, 36) 
  9.53 24.99 65.48 
Part width (W) mm (3, 9) (9, 18) (18, 36) 
  23.85 62.50 13.65 
Part base (C) mm (4, 12) (12, 21) (21, 33) 
  10.95 30.90 58.16 
Part thickness (b) mm (2, 6) (6, 12) (12, 18) 
  19.63 65.71 14.66 
Support thickness (t) mm (0.3, 1) (1, 1.8) (1.8, 3) 
  65.86 26.28 7.86 
Number of supports (n) ---  (1, 5) (6, 10) (11, 15) (16, 20) 
Cooling rate (CR) °C/s  (18, 25) 
Heating rate (HR) °C/s  35 
Elasticity modulus (E)  MPa  113.8 * 103 [20] 
Thermal expansion (α) 1/K  8.6 * 10-6 [20] 
Density (ρ) g/mm3  4.43 * 10-3 [20] 
Powder layer thickness (lt) mm  0.1  
Laser diameter  mm  0.115 
Laser scan velocity (v) mm/s  1000 [14] 
Temperature difference (ΔT) K   Calculated by Eq. 3  
Thermal constraint (σ) MPa  Calculated by Eq. 4 
Thermal constraint moment (M) N.mm  Calculated by Eq. 5 
Curling defect (δ) mm  Calculated by Eq. 6 
Total support mass (ms) g   Calculated by Eq. 7 

Step 5: Bayesian inference for the case study is 
implemented in BayesiaLab software. The software uses a 
sampling technique to calculate all possibilities for the 
variables in the network. The Bayesian inference mechanism 
enables simulations to observe the effect of user preferences or 
evidence across a developed network. The simulation of the 
developed network is presented in Section 4.  

Table 2. Initial and defined acceptable value ranges for geometric constraint 
ratios to limit the design space. 

Constraint Ratio  Initial Range Acceptable Range 
C1=b/L    (0.016, 1.2)    (0.1, 0.2) 
C2=W/L    (0.025, 2.4)    (0.16, 0.5) 
C3=C/L     (0.033, 2.2)    (0.25, 0.5) 
C4=H/L    (0.025, 2.4)    (0.2, 1) 
C5=n.t/L    (0.0025, 4.0)    (0.0025, 0.5) 

4.  Results and Discussion   

With the aid of the Bayesian inference mechanism, the 
designer can use the developed model in two directions: (1) for 
predicting the effect of specific design and manufacturing 
parameters on defects (forward simulation) and (2) for 
diagnosing the independent variables’ most probable value for 
particular results in performance (backward simulation). 
Designers are able to visualize the cascading impacts of choices 
for design variables in real time. This enables the designer to 
utilize expert knowledge embedded in the model and make a 
better-informed decision early in the design process. 

4.1.  Forward simulation  

Fig. 4 shows the effect of the design variables on the 
resulting curling defect for manufacturing of the L-shaped part. 
During simulation, the values for part height (H, 9-18 mm), 
width (W, 9–18 mm), length (L, 45-75 mm), and thickness (b, 
12-18 mm) are set as evidence for the Bayesian network model.  
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Fig. 4. Predicted effect of part geometric dimensional features on the 
probability of curling defects for medium-sized parts (45 < L < 75). 

For these part dimensions, it is seen that the probability of 
curling increases in the high value state of the variable (curling 
<=1.0) to 44.78%.  In order to reduce the value of curling 
defect, the influence of two design variables, part height and 
part width are investigated. The individual effects of width and 
height on the curling defect are shown in Figure 5. It is seen 
that increasing part width is predicted to result in an increased 
curling defect. Lower range values for part height (3-18 mm) 
are predicted to increase the magnitude of curling, while high 
range values (18–36 mm) would reduce the curling defect, due 
to its non-linear relationship with part curling defect. The non-
linearity arises due to the design constraints imposed during 
modelling. The values for curling defect in Figure 5 are 
calculated using Eqs. 3-7. The knowledge from Figure 5 can be 
used to set evidence to the Bayesian Network model and/or 
inversely to validate the results of the Bayesian inference. 

The results obtained from Figure 5 are compared with the 
result of the Bayesian Network. In Fig. 6, new evidence for part 
width (W, 18–36 mm) and part height (H, 18-36 mm) are 
presented to characterize the effect of these changes on the 
curling defect. 

 
Fig. 5. Effect of part height and part width on the curling defect. 

 
Fig. 6. Predicted effect of part width and part height on the probability of 
curling defects for medium-sized parts (45 < L < 75) compared to Figure 4. 

It is seen that the changes reduced value for curling defect. 
The probability that the curling defect lies in low value states 
of the variable (<=0.025, <=0.038, and <=0.05) increased to 
22.97%, 21.68%, and 14%, respectively, representing 
significant decrease in the value of curling defect from the 
range (0.1 mm - 1 mm) to range (0.013 mm to 0.038 mm). It is 
to be noted that the Bayesian Network results also highlight the 
relative importance of design variables on the curling defect. 
The increase in width increases the curling defect as seen in 
Figure 5 however, the influence of height on curling defect 
overshadows the influence of width as seen in Figure 6. 

4.2.  Backward simulation  

During backward simulation, the curling defect was set to 
be in a low state (<=0.013) and the total mass of supports was 
set in the low range (<=80 g) for small parts (15< L<45). The 
effect of this evidence is shown in Fig. 7, where the most 
probable states for the part and support dimensions are found 
for the set evidences for length of part, curling defect, and the 
total mass of supports. For low curling defect and low total 
mass of supports, the model predicts that part height must be in 
the high value state (0.3-1.0 mm, with a probability of 72.47%), 
part thickness in the low value state (2-6 mm, with a probability 
of 71.31%), part width in medium value state (9-18 mm, with 
a probability of 74.21%), and the number of supports must be 
less than or equal to five (with a probability of 57.78%).  

5.  Conclusion     

Bayesian network based defect modelling is beneficial for 
characterizing complex systems such as the design and 
production of metal parts through additive manufacturing. The 
foregoing research develops and demonstrates an approach to 
generate and explore a Bayesian network model characterizing 
the influence of design and manufacturing parameters on the 
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curling defect in laser-based additive manufacturing for an L-
shaped part.  

 

 
Fig. 7. Backward simulation to minimize curling defect and supports’ mass 
for small-sized parts (15< L <45). 

The methodology developed herein is generic and could be 
expanded to include other geometric defects resulting from 
non-homogenous temperature gradient in laser additive 
manufacturing. The Bayesian network allows for two-way 
monitoring of the modelled system. First, the model estimates 
the values for targets based on fixed design parameters. 
Second, it allows the user to set evidence for known targets and 
then uses the model to backtrack and identify the most probable 
value ranges for the part geometric dimensions to attain those 
targets. The simulation of the model helps designers make 
conscious decisions about changes in product geometry early 
in the design stage. Such evaluations will eliminate steep costs 
associated with making design changes late in the production 
process.   

In addition, the results of this study must be used as prior 
knowledge to calibrate the model with experimental data. For 
instance, the curling defect is a recursive phenomenon, thus the 
equations used to model the curling defect uses recursive 
computation. The model in this research uses approximation to 
avoid loops in the Bayesian network. Hence, to improve 
accuracy of the model, future work will focus on training the 
Bayesian network using data generated through constraint 
programming for the same governing equations.   
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