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Abstract. The acceleration of mobile data tra�c and the shortage of
available spectral resources create new challenges for the next-generation
(5G) networks. One of the potential solutions is network o✏oading that
opens a possibility for unlicensed spectrum utilization. Heterogeneous
networking between cellular and WLAN systems allows mobile users to
adaptively utilize the licensed (LTE) and unlicensed (IEEE 802.11) radio
technologies simultaneously. At the same time, softwarized frameworks
can be employed not only inside the network controllers but also at
the end nodes. To operate with the corresponding policies and interpret
them e�ciently, a signaling processor has to be developed and equipped
with a fast packet parsing mechanism. In this scenario, the reaction time
becomes a crucial factor, and this paper provides an overview of the
existing parsing libraries (Scapy and dpkt) as well as proposes a flexible
parsing tool that is capable of reducing the latency incurred by analyzing
packets in a softwarized network.
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1 Introduction and Overview

Today, continuously growing numbers of interconnected devices push the telecom-
munication community towards developing new technologies for improved net-
working. Although several solutions have been proposed and implemented to ad-
dress a steady increase in the mobile data consumption (e.g., the introduction of
IPv6), they are still not ready for billions of new users/devices that are expected
to join the network over a short period of time [1]. This projected acceleration
suggests that the current and emerging (5G) mobile networks should evolve to
become more “intelligent”, e�cient, secure, and, most importantly, scalable to
enable future data communication that is incredibly diverse in nature [2, 3].

The Open Networking Foundation (ONF) [4] is a nonprofit consortium dedi-
cated to the development, standardization, and commercialization of one of the
5G enablers – Software Defined Networks (SDNs). The ONF provided the most



explicit and well-received definition of SDN [5] as follows: “SDN is an emerging
network architecture where network control is decoupled from forwarding and is
directly programmable”. Per this formulation, the SDN is shaped by main char-
acteristics [6]: decoupling of control and data planes as well as programmability
on the control plane. However, neither of these two SDN features is entirely new
in the network architecture.

There is a pressing need to provide more capacity to the end users [7]. For
this reason, LTE and WLAN integration may be attempted to improve the e�-
ciency of mobile data o✏oading, which is a promising and low-cost solution to
reduce the load on the cellular networks [8]. Further, the aggregate capacity of
a heterogeneous network can be increased by utilizing short-range radio tech-
nologies [9] residing e.g., in unlicensed 2.4 GHz and 5 GHz spectrum [10]. This
requires that two wireless interfaces are available on the smart phones [11].

Moreover, service operators have identified that o✏oading of bulky Internet
tra�c onto alternative access technologies constitutes a viable solution to relieve
the high infrastructure costs [12]. Since 2000, there has been an extraordinary
growth of research on SDN, initially in the area of wired networks and subse-
quently towards wireless technologies [13, 14]. SDN can be utilized to configure
not only the radio side of access points but also the end-user terminals. While
not explicitly mentioned as SDN, injecting operator-specific o✏oading policies
into the end-user terminals is also possible. Abstraction of such policies from the
terminal side constitutes an important strategy for SDN deployment.

There are several technologies that aggregate LTE and WLAN, such as Ac-
cess Network Discovery and Selection Function (ANDSF) [15], LTE WLAN in-
tegration with IPsec tunnel (LWIP), and LTE-WLAN Aggregation (LWA) [16].
Furthermore, network-assisted device-to-device (D2D) o✏oading enables user
equipment to communicate directly with each other, without relying on the con-
ventional infrastructure of APs or BSs [17, 18]. 3GPP had invested considerable
e↵ort to ratify the IP tra�c o✏oading solutions for the EPC: these approaches
rely on tight cellular operator control and integration into the 3GPP network
architecture.

Overall, rule-based policies like ANDSF are insu�cient to represent the com-
plex and/or stateful operation, such as in LWA and LWIP. For this reason, there
is a need to introduce an appropriate finite state machine (FSM), which allows
creating the desired stateful protocol operation via simple primitives (e.g., trans-
mit a message, establish an IPsec tunnel, associate with an AP, etc.) that are
pre-implemented in the device. Notably, the SDN technology evolved further due
to the utilization of OpenFlow as a realistic and viable platform to the switch
hardware [19]. The heart of OpenFlow is the “match/action” abstraction, which
comprises {rule, action} pairs: if a rule is matched by the incoming packet, an
action associated with this rule is executed.

There are three main operations that correspond to the said abstraction:
(i) selection of the fields to be matched; (ii) query in the MAT (Match-Action
Table) being e�ciently supported in hardware by Ternary Content Addressable
Memories (TCAMs); and (iii) execution of the corresponding action(s) selected



among a fixed set of the standardized ones. Lately, the need for a more flexible
OpenFlow emerged. It is thus vital to improve the programmability and the flex-
ibility of the matching procedure, as well as the way we analyze the packets [20,
21]. It is possible to develop a packet processor, and it is easy to understand that
it can represent a bottleneck with respect to the delay of entry/exit of packets,
as it is shown in Fig. 1.

Fig. 1. A typical OpenFlow pipeline architecture

In this work, we evaluate the existing software libraries that allow for dy-
namic packet analysis and modification. We also elaborate on the development
of flexible tools that enable fast and straightforward packet parsing, which may
play a significant role in future softwarized networks. The rest of this paper is
organized as follows. Section 2 outlines the design of the proposed parsing tool-
box, which enables fast and reliable software oriented packet parsing. Further,
the main functionality is detailed in Section 3. Section 4 provides a comparison
of several existing parsers with the developed one. The main conclusions are
drawn in the last section.

2 Design of Parsing Software for SDN

The best way to capture packets, analyze them, and understand which kinds
of packets are to be processed is through a dynamic parser. Numerous packet
parsers have been developed over the years, but it is still di�cult to find not a

machine-oriented one. For this reason, there is a need to develop a new more
flexible parser. Our goal is to create a framework that is easily modifiable (in-
cluding the source code), machine-oriented, and friendly to use. The developed
parser should be compatible with any existing packet.

Our parser is written in Python, which contains all of the necessary functions
required to analyze a packet (e.g., read data, compare data, convert data, etc.).
It has a JSON “instruction file”, which contains all the needed instructions and
details to analyze the protocols as well as extract the requested conditions (see
Fig. 2). Here, JSON was selected for its broad adoption. The purpose is to store
primitive types as supported by JSON in a human-readable and straightforward
format.

The bottleneck with parsing JSON and XML usually is not the parsing itself,
but the interpretation/representation of the data. An event-based XML parser
is typically very fast, but constructing a complex DOM tree with thousands of
small objects is not. If it is necessary to parse XML to the nested native data



structures, such as lists and dictionaries, the slow part will be the interpretation
of the parsing results, not the actual string analysis. Since JSON parses directly
into those primitive types rather than a complex object tree, it will likely be
faster.

Fig. 2. Diagram of a custom parser

2.1 Configuration File Structure

Essentially, a JSON file that we need for retrieving the fields from the packets
is divided into three blocks, and an example is given in Fig. 3.

Fig. 3. MAC address retrieval example

Explanation of “enc type” is a field, which contains the encapsulation type
of the entire capture. An integer within this field must be provided, which should



correspond to the encapsulation type from the pcap file. In a logical order, it is
actually the first parameter that the algorithm checks. Table 1 represents a part
of the list of possible types of encapsulation.

Table 1. Examples of possible types of encapsulation

LINKTYPE name enc type DLT name Description

LINKTYPE ETHERNET 1 DLT EN10MB IEEE 802.3 Ethernet (10Mb,
100Mb, 1000Mb, and higher).

LINKTYPE IEEE802 11 105 DLT IEEE802 11 IEEE 802.11 WLAN.

Explanation of “objects” is an array containing the definitions and instruc-
tions of the objects. Inside this JSONObject, there are two mandatory fields and
one optional field, as it is possible to observe in Table 2.

Table 2. List of fields inside “objects”

Name Type Mandatory

name String Yes

read from int/JSONArray No

read to int/JSONArray No

match JSONArray No

match or JSONArray No

properties JSONArray Yes

Further, we describe the meaning of the following fields:

– “name” contains an easy to read string for the object to find;
– “read from” and “read to” indicate the position of bytes, which should be

read from the packets;
– “match” and “match or” check if the data extracted matches the chosen

interval data;
– “properties” contains additional properties of the object.

Fields “read from” and “read to” represent the precise relative bytes where
the parser can start (or stop) reading data (e.g., if TCP payload starts at the
50th byte, but it is only the 20th byte in an IP packet, “read from” should be
20). For more complex protocols, there is no fixed position to start (or stop)
reading, so we have to acquire this value from the packet itself. In this case, we



can use a JSONObject instead of a simple integer number, which can contain all
of the information to obtain the read from value. The “convert” field can convert
the read data (usually obtained in a byte format) into one of these formats: int ;
int-DWORD (it is an int value multiplied by four); string ; or binary.

For more complex situations (e.g., IP header length), we have to use another
parameter, “edit selection”, which contains a JSON Object required to extract
information from data. For example, an IP PDU starts after an IP header. The
IP header length is stored inside the second half of the first IP byte, and the
value is stored as an int-DWORD. Hence, one has to extract the first byte and
convert it into a binary format. Then, one needs to acquire the last 4 bits, convert
them into an integer, and multiply by four. The JSON code for this situation is
represented in Fig. 4.

Fig. 4. Example of read from and edit selection fields

Field “properties” is a JSONArray containing all the snippets of information
that one desires to extract from a packet. When a property has been extracted,
it can be overwritten or printed (see below). It is composed of the following
parameters: “name”; “read from”; “read to”; or “convert”.

Explanation of “zones” Further, we have to define the relative properties of
an object required to be found inside a packet. We should also consider how to
nest one object inside another. For example, if the parser is attempting to find
an IP packet inside a TCP packet, there will be no output. Every zone must
have the fields within Table 3.

While “name” is but a simple label for the zone to find, “read from” behaves
precisely as demonstrated in the previous text.

The field “find” is basically a JSONObject or a JSONArray of objects con-
structed with the parameters within Table 4. Here, “object” can set the name of
the object to find inside this data interval. It must be one of the object names
that have been declared previously; “multiple” is useful when multiple instances
of the same object need to be found. For example, it can be used when multiple
tags do not have a fixed length and position; “label” is printed when the parser
finds the required object. It is useful for debugging purposes; “print” prints the



Table 3. List of fields inside “zones”

Name Type Mandatory

name String Yes

read from int/JSONArray Yes

find int/JSONArray Yes

properties of an object. The array of strings must contain only the valid property
names from the object zone, or a string “all” to print all of the packet sections.

Table 4. List of fields inside “find”

Name Type Mandatory

object String Yes

multiple Boolean Yes

label String No

print JSONArray No

3 Main Algorithm Functionality

Among the several developed functions, the most important one inside our main
is parseZones(). This function, which is called from the main function, calls oth-
ers two crucial functions, readData() and findInData(). These will be explained
in the following text.

Function parseZones() divides a packet into one or more zones as well as
performs operations on them by following the instructions in the JSON.

Fig. 5. Representation of parseZones() function



The term “zone” refers to one or more parts of a packet separated from each
other, where it is possible to perform operations defined by the JSON file. The
partitions can be useful if there is a need to divide a packet and perform di↵erent
operations for each of the corresponding zones. For example, a hypothetical 100-
byte packet can be divided into four equal parts, but the payload may be located
in a di↵erent position in each of them. Relying on the concept of zones, one can
search for a specific payload in each partition – e�ciently and timely.

Essentially, the said function performs the following two steps:

– reading the bytes obtained from the function readData();
– processing the information contained by the JSON from the function find-

InData().

This procedure is performed cyclically for each zone described in the JSON
file. At the end of a cycle, the modified package is returned if specified by the
JSON file. Otherwise, a complete copy of the original package is obtained. Addi-
tionally, the script has the functionality to overwrite the original zone with that
eventually modified according to the instructions.

Function readData() is used to read the bytes of a packet. Locating the zones
from which it is possible to read the desired bytes is done by the getReadFrom()

and getReadTo() methods. These two methods return an integer that represents
the index where to start reading and the index where to finish reading the packet,
respectively.

Fig. 6. Representation of readData() function

After that, any checks are performed by using the methods matchData() and
matchDataOr(), which verify that a certain part of the packet is equal to a certain



value present in the JSON file. At this point, the function extracts the real bytes
from a packet and converts them, if necessary, into another format (e.g., byte 
string) via the convertData() function. After this conversion, it may be necessary
to extract an even smaller part of the selection; in these cases, the editSelection()
function is used.

Function findInData() allows to search for the objects specified in the JSON
file within a zone. This search can be of either type: single or multiple.

Fig. 7. Representation of findInData() function

In the first case, the search stops when an object is found for the first time
in the specified range of bytes, and then only a range is returned where to
perform all of the following operations – as specified by the JSON file – using
the findObjectsInDataAndDoThings() function. In the second case, the search
stops when the last byte of the search interval has not arrived. In this way, if
n intervals corresponding to the search terms are found, all of the subsequent
procedures specified by the JSON for each of these n intervals are performed
using findObjectsInDataAndDoThings().

4 Performance Evaluation and Benchmarks

One of the goals of this work was to develop a fast parser to reduce the analysis
time and overall delay as much as possible. A major challenge in this scenario
is a large number of packets that can arrive simultaneously. The first version
of the developed parser only includes analysis from a pcap file to evaluate the
maximum reachable processing speed. Further versions will include the feature
of directly scanning the interface (e.g., from a rooted Android smartphone one
can access LTE or WLAN interfaces).

To evaluate the performance of the developed packet processor, simulations
have been conducted with a pcap file composed of 1,000 DNS packets (UDP);



10,000 TCP packets; and 100 HTTP packets. To confirm the usability of our
tool, we compared it with the well-known parsing libraries: dpkt4 and Scapy5.
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Fig. 8. Initialization and total time comparison

Initialization phase Before proceeding with the actual results, it is impor-
tant to analyze the initialization time of the parsing software, see Fig. 8. Here,
it is easy to see that the Scapy library is operating in the ‘o✏ine’ mode, i.e.,
while working with a pcap file, it executes the actual parsing during the file read
procedure. Our custom framework operates similarly to the dpkt tool, i.e., the
actual parsing occurs when a standalone packet is analyzed. Hence, the initial-
ization phase is high-speed. Another e↵ect shown in this figure is a comparison
of the total parsing time for the same set. The developed software demonstrates
a relative gain even compared to dpkt.

Comparison of parsers Further, we analyze di↵erent packets per parser in the
form of a cumulative distribution function (CDF). As it is displayed in Fig. 9(a),
the parsing time for most of the packets is relatively similar. This is due to the
e↵ect of pre-parsing during the file read procedure. However, TCP parsing is
consuming the most e↵ort.

Further, the dpkt framework is analyzed. As it is shown in Fig. 9(b), this
parser operates under entirely di↵erent conditions. Since dpkt conducts parsing
based on a pre-validation of the packet type, each of those provides completely
di↵erent results. At the same time, the behavior in case of TCP remains the
fastest.
4 “dpkt 1.9.1”, 2018: https://pypi.python.org/pypi/dpkt
5 “Scapy library”, 2018: http://www.secdev.org/projects/scapy/
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Fig. 9. Parsing time comparison

Finally, we evaluate our developed tool, and the results are collected in
Fig. 9(c). The fluctuating behavior of CDFs may be explained as a result of
the di↵erent payloads of packets involved in the analysis. Overall, we conclude
that the custom parser operates faster than Scapy or dpkt.

Comparison of packet types Here, the focus is set on the packet parsing time
comparison per parser. We show which one to select for the corresponding needs
of a developer. As it is demonstrated in Fig. 10, UDP, DNS, and HTTP packets
all confirm the benefits of utilizing our custom parser over the conventional
alternatives. Only for TCP in case of dpkt, some di↵erence in the execution
speed is present. However, it can be considered negligible.

5 Conclusions

Wireless networks are constantly evolving in the o↵ered connectivity levels, thus
strongly consolidating in our lives as a necessity. More and more devices are join-
ing the networks to request continuous high-quality service and produce a vast
amount of mobile data, which poses unprecedented challenges for the network



Fig. 10. Parsing time per packet comparison

design and implementation in the upcoming 5G era. Transformation of mobile
user experience demands complex changes in both network infrastructure and
device operation, where user experience is optimized by taking into account the
surrounding network context.

Along these lines, Software Defined Networking can become essential to mit-
igate the network overload due to its programmable and centralized controller
features, which decide – via the use of a finite state machine – how to manage the
network o✏oading e�ciently. The software libraries that exist today (e.g., Scapy
and dpkt) may not be e↵ective enough to support the requirements of emerging
systems. In contrast, our proposed parser may be employed on any machine to
help improve the SDN performance as well as introduce new features due to
its universal compatibility with any packet. It demonstrates significant benefits
over the counterpart parsing libraries with respect to the execution times.
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