
Congestion Control Supported Dual-mode Video

Transfer

Juha Vihervaara, Teemu Alapaholuoma, Tarmo Lipping and Pekka Loula

Pori Campus, Tampere University of Technology, Pori, Finland

juha.vihervaara@tut.fi

Abstract. Transfer of videos over the Internet has increased considerably during

the past decade and recent studies indicate that video services represent over half

of the Internet traffic, with a growing trend. For the user-friendly operation of the

Internet, it is important to distribute these videos in a proper and efficient way.

However, no congestion control mechanism suitable and widely used for all

kinds of video services is available. We have developed a congestion control

mechanism, which is particularly suitable for long-living video traffic. The ad-

vantage of the proposed mechanism is its dual-priority nature. There is a mode

for low priority traffic where the bandwidth is given away to other connections

after the load level of a network exceeds a certain level. On the other hand, the

real-time mode of the mechanism acquires its fair share of the network capacity.

The real network tests of this study verify the proper operation of our congestion

control mechanism.

Keywords: Congestion control · Video transfer

1 Introduction

Transfer of videos over the Internet has increased considerably during the past decade.

Cisco forecasts that Internet video traffic play a big role also in the future [1]. It predicts

that video traffic will form 82 percent of all consumer Internet traffic by 2020. Internet

video to TV will continue to grow at a rapid pace, increasing 3.6-fold by 2020. Virtual

reality based applications will also increase the video type traffic of the Internet. Videos

are widely used because video-based solutions offer advantages and possibilities for

many application areas. For example, in education, the use of video-based instructional

materials often produce better learning results compared to the traditional print-based

materials [2]. In addition, YouTube can be considered as an important tool for educa-

tion [3].

Due to high popularity of video traffic, it is also an important cause of network con-

gestions. Network operators have largely relied on overprovisioning and TCP conges-

tion control to avoid congestions in their networks. However, unnecessarily high over-

provisioning with high power consumption does not promote green Internet ideology

[4]. Although some video services use TCP to implement their transport services in a

mailto:juha.vihervaara@tut.fi

manner that actually works, TCP’s transport service is not suitable for all video appli-

cations. By implementing retransmissions, TCP offers reliable transport services to ap-

plications. Normally, a real-time video application does not require retransmissions be-

cause this type of applications are often loss-tolerant. Occasional packet drops do not

degrade the quality of service experienced by the users of these applications. These

packet drops can be alleviated by using the error correction properties of the applica-

tions. If the application is working in a real-time repeat mode, the order delivery prop-

erty of TCP may cause problems. Due to the head-of-the-line blocking problem, the

bytes following the missing ones cannot be delivered to the application. TCP's bursty-

like transmission also causes delay jitters and sudden quality degradations because

there can be abrupt and deep sending rate reductions. For these reasons, real-time video

applications often prefer to use the unreliable UDP protocol. Unfortunately, UDP does

not implement congestion control.

The approach of using congestion control only with TCP traffic has been appropriate

in the past because TCP has represented major proportion of network traffic. However,

nowadays UDP based long living communication events are common due to the popu-

larity of various video services among consumers. It makes sense to equip these com-

munication events with congestion control. This may offer new opportunities for old

and new congestion control mechanisms to become deployed.

There are different kinds of ways to use video over the Internet. With live broadcast-

ing, only a moderate buffering can be used at the receiver side due to the real time

requirements. Therefore, delay requirements and bandwidth demands are important. On

the other hand, in non-real-time applications where extensive buffering can be utilized

at the receiver side and, therefore, delay and bandwidth demands are not important,

some kind of background loading may be preferred. For example, the service provider

can download content to proxy servers by using backward loading. The case can also

be some kind of intermediate form. At first, the video can be transferred with the high

speed. When there is enough data in the receive buffer, the transfer mode can be

switched to the backward loading type.

So, two different kinds of transfer modes are needed in modern video services: a

backward loading mode where delay and bandwidth demands are moderate and a real-

time mode where delay and bandwidth demands are of high priority. Based on these

different kinds of demands, the two modes also need different kinds of congestion con-

trol mechanisms. The backward loading mode has to work like a low-priority service

in which the bandwidth is given away to other connections when the load level of the

network is high enough. In contrast, the real-time mode always wants its fair share of

the bandwidth.

Many congestion control mechanisms have been developed to be used either with

low priority or with real-time services. However, little research effort has been put into

developing a mechanism suitable for both modes. We recently developed this kind of

integrated mechanism that supports both of these transfer modes. This mechanism was

named Congestion control for VIdeo to Home Internet Service (CVIHIS). The algo-

rithm was presented in the paper [5], where CVIHIS’s performance was analyzed by

extensive simulations. In the paper [6], we tested the operation of CVIHIS in real net-

work environments. In these real network tests, CVIHIS was tested against itself more

comprehensively than in the simulations. This paper re-presents and refines the results

of the paper [6]. This study takes into account the situations where two congested rout-

ers simultaneously occur on the transmission path. The paper also analyzes how

CVIHIS will work with the common problems of delay-based congestion control mech-

anisms

The paper is organized as follows: Section 2 outlines congestion control back-

grounds; Section 3 introduces our dual-mode congestion control algorithm fir video

services; Section 4 presents the test results and Section 5 concludes the paper.

2 Congestion Control

Congestion control principles of the Internet are presented in this section. Congestion

control is a wide research area and only issues relevant for this study are introduced

here.

2.1 Importance of Congestion Control

In its basic form, the Internet is built upon an assumption of best effort service. This

means that the network does its best to deliver data packets to receivers as quickly as

possible. On the other hand, the best effort principle also means that the network does

not guarantee anything. It is not against Internet's laws that packets are queued or

dropped inside the network. Congestion situations handled by queuing and dropping

of packets are therefore fully acceptable. Of course, from a network user’s point of

view, congestion is not a desired situation. Therefore, a network claiming to operate in

a user friendly manner must implement some kind of congestion control.

If congestion control is implemented in an inoperative way, serious troubles may

occur. When some part of the network is in a congested state, it queues traffic and

packets may be dropped. Therefore, receivers do not receive the expected packets in

time and senders cannot get acknowledgements inside the time limits. After that, send-

ers, which are implementing reliable communication, will start to resend packets caus-

ing further congestion. This can lead to congestion collapse in which case only little

useful communication is happening through the network [7].

Many reasons can lead to a congested network. The paper [8] specifies such kind of

reasons: limited capacity of the routers, load of the network, link failures, heterogene-

ous bandwidths. The consequences of inoperative congestion control are discussed in

[9]. They point out that in a congested network large queuing delays are experienced,

which increases the response times of web services.

The background of congestion control is in queuing theory [10] as packets move into

and out of queues when they pass through a network. Therefore, packet-switched net-

works can be considered as networks of queues. However, it is good to remember that

extensive queuing inside the network is not a desired operation. Queue lengths should

not reflect the steady condition we want to maintain in the network. Instead, they should

reflect the size of bursts we need to absorb [11]. The goal of congestion control is to

avoid a congestion situation in network elements. By another, more sophisticated defi-

nition, the target of congestion control is to adapt the sending rates of senders to match

the available end-to-end network capacity. This definition emphasizes the fact that net-

work-wide approaches must be used to implement congestion control. Otherwise, con-

gestion is only shifted from one node to another. Therefore, in theory, we should mon-

itor traffic in the whole network.

2.2 Congestion Control Mechanisms for Video Services

Because the TCP and UDP protocols are not completely suitable for video services,

there is the need for a protocol that takes into account the requirements of video traffic.

In this section, some congestion control algorithms, suitable for video traffic, are pre-

sented. Each of these algorithms is suitable for either a low priority or a real-time ser-

vice. None of them has been developed with both these service types in mind.

LEDBAT [12] is designed for low priority applications. It has been used in some

background bulk-transfer applications such as BitTorrent, for example. It provides low

priority services by using one-way delay measurements to estimate the amount of

queued data on the data path. When the estimated queuing delay is less than the prede-

termined target, LEDBAT concludes that the network is not yet congested and it in-

creases its sending rate to utilize the free capacity of the network. When the estimated

queuing delay becomes larger than the predetermined target, LEDBAT decreases its

sending rate as a response to the potential congestion. The sending rate is increased and

decreased more aggressively if the queuing delay is far from the target. TCP-LP [13] is

another delay-based congestion control protocol for low priority services.

The next two algorithms are suitable for the real-time mode as they want their fair

share of the bandwidth. The best known proposal for video services is DCCP [14] and

its TCP Friendly Rate Control version [15], abbreviated as TFRC. DCCP offers con-

gestion control for UDP-like unreliable applications. DCCP can be briefly described as

TCP without byte-stream semantics and reliability, or as UDP with added congestion

control, handshakes and acknowledgments for congestion feedbacks. The main issue

with DCCP’s congestion control is that the congestion control is not a part of DCCP

itself but DCCP allows applications to choose from a set of congestion control mecha-

nisms. Therefore, different kinds of congestion control mechanisms can be used with

DCCP, TFRC being one of them. TFRC uses a throughput equation to calculate the

allowed sending rate. Because DCCP tries to be fair against TCP, it is natural that TFRC

uses the TCP throughput equation. TFRC is designed for applications that require

smooth rate. Therefore, TFRC responds to the changes of the available bandwidth more

slowly than TCP.

Google Congestion Control for Real-Time Communication [16] is a new proposal

in this area. It defines two congestion control methods: one for the sender side and

another for the receiver side. Either both or only one of these methods can be used.

The receiver side uses delay gradients in a sophisticated way to detect congestions. The

sender side method is based on information about round-trip times and packet losses.

One possibility to achieve a dual-mode congestion control mechanism, such as the

one presented in this study, would be to put together the best low-priority and real-time

congestion control algorithms. However, this kind of implementation would be un-

gainly, especially when the mode has to be changed on the fly. The real dual-mode

mechanism presented in this study allows the change between the modes in a seamless

way.

2.3 TCP friendliness

The real-time mode of CVIHIS aims to share the bandwidth of transmission links in an

equitable manner. This equal allocation of bandwidth is called friendliness. Often the

term TCP friendliness is used as in the past years most of the traffic flows were TCP

flows and the TCP protocol has traditionally been responsible for the congestion control

of the Internet. Therefore, it is a natural choice to compare a new mechanism against

the TCP protocol. The basic idea is to protect existing TCP flows from the flows that

use too aggressive congestion control mechanisms.

Unfortunately, TCP friendliness is a complicated concept. Even a TCP flow itself is

not always friendly against another TCP flow. Several versions of the TCP protocol

exist and these versions are not completely identical in their behaviours. In addition,

TCP’s throughput degrades in case of higher round-trip times (RTT) [17]. Therefore,

TCP has a bias against high-RTT connections giving preference to the users with short

RTTs. Several improvements such as the Delayed ACK mechanism [18], for example,

have been suggested to make TCP congestion control work in a better way. Unfortu-

nately, only some TCP implementations have adopted these improvements and, there-

fore, different code implementations behave in different ways. Due to this, even iden-

tical TCP implementations are not equal. Another problem is that there is no exact def-

inition for the concept of TCP friendliness. When a new mechanism is developed and

compared against the TCP protocol, there is always some room for personal opinions.

3 Dual-Mode Congestion Control Mechanism CVIHIS

The algorithm of CVIHIS is introduced in this section with brief description of the

implementation principles of CVIHIS for real network tests.

3.1 Basic Properties of the Algorithm

CVIHIS is a receiver-based mechanism so that most of the processing can be done at

the receiver side instead of the heavy loaded server side. It complies with the end-to-

end approach, which states that complex issues should not reside in routers. Because

the sending rates of video applications should usually vary in a smooth way, CVIHIS

is a rate-based congestion control approach. The window-based control is seldom suit-

able for continuous multimedia streaming because it tends to produce bursty-like traffic

behavior [19]. Exponentially Weighted Moving Average (EWMA) is also used by

CVIHIS to filter out quick rate changes.

If the network does not deliver explicit congestion feedbacks, the sending rate ad-

justment can only be based on packet losses or delays. Both indicators are utilized by

CVIHIS, but the algorithm is somewhat more delay-based than loss-based. The reason

for emphasizing the delay-based approach is that it generates suitable conditions for

implementing the low-priority behavior [20]. CVIHIS uses one-way delays in delay

measurements so that the necessary conclusions can be made at the receiver side. How-

ever, using one-way delays also has other benefits that are explained by the paper [21].

3.2 Backward Loading Mode

Fig. 1 presents the rate adaptation schema of the backward loading mode. The algorithm

of CVIHIS keeps track of two delay values, minDelay and maxDelay, based on one-

way delay measurements. The minDelay value corresponds to the situation when the

queues of the routers are empty on the connection path. The minDelay value includes

only propagation delay components, not queuing delays. The minDelay value is the

shortest delay value experienced during the lifetime of the connection. Instead, the

maxDelay value includes the queuing delay component. It corresponds to the situation

in which the buffer of a router overflows. Therefore, maxDelay is updated every time

when a packet drop occurs. CVIHIS uses the delay value of the last received packet

prior to the dropped packet for the maxDelay value.

Fig. 1. Rate adaptation schema of CVIHIS (Source: [5])

With the help of these two delay values, the delay space is divided into seven rate ad-

aptation areas. It could also be said that the queue of the router is divided into several

corresponding parts. The seven rate adaptation areas are used so that sufficiently accu-

rate information about the state of the network can be provided to end-hosts. CVIHIS’

objective is that it tries to keep the queue at the level of the target delay area. When

operating in the upper delay areas, CVIHIS decreases its sending rate and, when oper-

ating in the lower delay areas, CVIHIS increases its sending rate. The positioning fac-

tors for each delay area are presented on the left side of Fig. 1. The targetDelay area is

not placed in the middle of the delay space but is shifted somewhat downwards so that

queues can be kept short.

The black arrow inside some of the delay areas in Fig. 1 represents the delay gradient

obtained by comparing the delay values of two consecutive packets. If the arrow points

upwards, delays are increasing, delay gradient is positive, and the queue is filling. If the

arrow points downwards, delays are decreasing, delay gradient is negative, and the

queue is emptying. Inside the four delay areas with the arrows, the rate adaptation com-

mand is based on the actual delay value and the value of the delay gradient. The rate

adaptation scheme tries to achieve two targets: it tries to drive the queue level to the

target delay area by measuring the actual delay value and, on the other hand, it tries to

adapt the sending rate according to the bottleneck capacity. This is done by means of

the delay gradient. If there is a conflict between the delay area and delay gradient ad-

aptation, the gradient adaptation is chosen. The two extreme delay areas do not use

delay gradients for rate adaptation decisions because these areas are far away from the

targetDelay area.

In its additive increase phase, the TCP protocol increases its sending rate by one

segment for each round-trip time interval. In its basic form, CVIHIS increases or de-

creases its sending rate by one packet for each square root of a round-trip time interval.

By using square root, CVIHIS alleviates the favoring behavior of short distance con-

nections.

CVIHIS adjusts its sending rate through seven adjustment steps. Six of these steps

are presented in Fig. 1. Bigger steps are used when the queue level is further away from

the target. In Fig. 1, the step sizes are denoted by different number of + or – marks. If

there are three marks, CVIHIS increases or decreases its transmission rate by one packet

for each square root of the round-trip time. If there are two marks, the adjustment steps

are smaller. The smallest steps are indicated by one + or – mark. To enter the targetDe-

lay area in a smooth way, CVIHIS uses short steps in the delay areas just beside the

targetDelay area (rate adaptation feedbacks 2 and 3). The adjustment steps related to

the delay gradients (rate adaptation feedbacks 6 and 7) are the shortest ones. The sev-

enth adjustment step is a multiplicative decrease step taken after a packet drop. The

multiplicative decrease step is taken only once per a round-trip time cycle.

Table 1 presents the rate adjustment factors of CVIHIS. These factors are set so that

CVIHIS can compete in a fair manner with the TCP NewReno version. The integer

values in brackets refer to the rate adjustment commands of CVIHIS presented in Fig.

1. All decision procedures related to Fig. 1 are implemented at the receiver side. Only

the rate adaptation commands are transmitted to the sender. In the case of four leftmost

columns, the rate adjustment is based on the square root of the round-trip time. The

factor expresses how many more or less packets will be sent during the next square root

of the round-trip time than just before. MD is a multiplicative decrease factor used after

packet drops to increase the sending gap of packets. SF is a smoothing factor used for

the EWMA filter to filter out quick rate changes. PF is a pushing factor used only by

the real-time mode.

Table 1. Adjustment parameters of CVIHIS (Source: [6])

--- (1)

+++ (4)

-- (2) ++ (3) - (6)

+ (7)

MD (5) SF PF

1.0 0.7 0.5 0.2 1.10 0.5 * last update

0.5 * history

1.05

3.3 Real-Time Mode

The backward loading mode backs off when it competes with TCP. In order to be suit-

able for the real time mode, the implementation code has to be modified so that it will

behave in a more aggressive way. On the other hand, it is desirable that the code imple-

mentation of the backward loading mode is modified as little as possible. Both of these

goals can be achieved in a simple way by using an approach in which the minimum

delay value is pushed upwards in a continuous manner. This means that the delay areas

of Fig. 1 are also pushed upwards and, therefore, CVIHIS behaves in a more aggressive

way. Shifting the delay areas upwards is only done when competing behavior is actually

needed. If the last measured delay value is smaller than the pushed minimum delay

value, the minimum delay value is set to the value of the last measured delay.

This kind of minimum delay pushing means that the real-time mode of CVIHIS is

not a delay-based congestion control solution any more. The pushing operation shifts

this version towards loss-based congestion control. Therefore, the real-time mode of

CVIHIS is a kind of hybrid solution, a delay-loss-based solution. The minimum delay

value is pushed upwards in a multiplicative way. It was found that the pushing factor

of 1.05 is suitable.

It is worth noting that CVIHIS is a pure congestion control mechanism. If the appli-

cation is delay sensitive, delay requirements must be satisfied by Quality-of-Service

mechanisms [22]. The dual mode mechanism presented in this study can also be

achieved using Quality-of-Service techniques. In this case, the mechanism could be

called a dual priority mechanism. However, this kind of mechanism can not be a pure

end-to-end mechanism as the implementation would require network support at least to

some extent.

3.4 Software Implementation

The code implementation of CVIHIS should be placed somewhere in the protocol stack

to enable real network tests. There are several possibilities for this placing. For exam-

ple, the kernel implementation of an open source operating system could be modified.

In this way, the UDP implementation of the operating system could be adjusted to cor-

respond to CVIHIS’ algorithm. Instead of using this kind of elaborate solution, an easier

implementation option was chosen. CVIHIS was implemented through a normal socket

program on top of the UDP protocol. This solution is possible because the UDP proto-

col does not offer any special transport services, which could disturb the operation of

CVIHIS. Unlike in simulation environment, the real network implementation should

take into account that the clocks of the source and receiving ends have not been syn-

chronized with each other. Therefore, the real network version has to obtain round-trip

times by actual measurements. When a packet is transmitted, the sender side stores the

transmission timestamp. When the corresponding acknowledgment arrives, the round-

trip time is calculated.

In addition, this implementation option provides further advantages. Same computer

can be used to run a few traffic sources in parallel because these traffic sources can be

separated from each other by means of UDP port numbers. This reduces the number of

computers needed for the test network. The solution also offers resistance against fire-

wall blocking if large scale real network testing is done in the future.

4 Test Results

In this section, the structure of the test network is described and the most relevant results

of the network tests are presented. This study presents the results related to the paper

[6] in an extended way. The test results of CVIHIS shows that there is room for im-

provements in some cases. In these cases, there can be present connections which pos-

ses very different round-trip times. As it is mentioned, TCP favors the connections of

short round-trip times, therefore, it is necessary to adjust the algorithm of CVIHIS to

favor short round-trip times as well. However, CVIHIS performs this favoring in a more

moderate way than TCP. In fact, it is not necessarily a bad idea to favor the connections

of shot round-trip times. Often these short connections consume less network resources

than long way connections. By favoring connections of short round-trip times, network

operators can maximize the total traffic volume in their networks. The challenge is to

find a suitable balance so that fairness does not suffer too much.

4.1 Test Network

Fig. 2 presents the structure of the test network. There are four end nodes and three

routers. The links between the routers form the bottleneck links of the connection path.

With this simple test network structure, and with the help of the tc (traffic control)

program, it is possible to emulate different types of networks. Tc [23] is the Linux util-

ity program used to configure the kernel packet scheduler.

Tc is utilized in two ways to vary the configuration of the test network. Tc is used to

control the traffic in the Linux routers. In this way, the capacity of the bottleneck link

and the queue size of the link can be varied. When traffic is controlled, the transmission

rate of the link is under control. Typically, this means that the available bandwidth is

decreased. Traffic control can also be used to smooth the burstness of incoming links

by defining the queue size of the link. If the queue size is exceeded, the incoming pack-

ets are dropped. At the end nodes, tc is used to define the delay characteristics of the

outgoing links. In this way, it is possible to emulate different round-trip times of con-

nection paths.

Fig. 2. Structure of the test network

4.2 Backward Loading Mode

The goal of the backward loading mode is to achieve stable sending rate if there is no

need for the backoff function. This was ensured by performing twenty tests in the test

network. In the test cases, the queue size of the bottleneck link varied between 40-60

packets, the capacity of the bottleneck link varied between 2-4.5 Mbps and the round-

trip time varied between 10-250 milliseconds. The sending rate stabilized in all cases.

Another objective of this mode is proper backoff behavior. This was verified against

one TCP NewReno connection by using the same kinds of test setups as in the case of

the stability check. The proper backoff behavior was observed in all cases. In Fig. 3,

the sending rates of the CVIHIS connections are presented in test cases, where the

backoff behavior was verified by using three different round-trip times (10, 100 and

200 ms) for CVIHIS. TCP used the round-trip time of 200 milliseconds in all these

cases. The capacity of the bottleneck link was 3 Mbps. The TCP connections were ac-

tive between the test time of about 50-170 seconds. As it can be seen, CVIHIS increases

its sending rate faster if the round-trip times are short.

L1
Linux with tc

R1
Linux with tc

Router

R3
Cisco

CVIHIS receiver
FTP client

L3
Linux

CVIHIS receiver

tc = traffic control program

Router

L2
Linux with tc

R2
Linux with tc

L4
Linux

CVIHIS sender
FTP server

CVIHIS sender

Router

Bottleneck link 1 Bottleneck link 2

Fig. 3. Simulation results of the backward loading (Source: [6])

4.3 Real-Time Mode

The TCP-friendliness of CVIHIS was tested against the TCP NewReno version by per-

forming twenty six tests. The queue size of the bottleneck link was 50 packets and the

capacity of the bottleneck link varied between 2-4.5 Mbps. Four different round-trip

times (20, 80, 140 and 200 milliseconds) were used. The starting rates of the connec-

tions also varied among the tests.

Fig. 4. Real-time mode against one TCP connection (Source: [6])

Fig. 4 presents the test results. As it can be seen, individual measurements depart

from the trend due to the phase effect. The figure presents the proportion of the CVIHIS

connection from the capacity of the bottleneck link. The figure indicates acceptable

level of averaged fairness. In the worst case, the connection of higher bandwidth gets

about 1.6 times as much bandwidth as the slower connection.

As mentioned earlier, TCP favors the connections of short round-trip times while

CVIHIS does this in a more modest way. The above results confirm this. Round-trip

times affect CVIHIS less than TCP. CVIHIS manages relatively modestly when round-

trip times are short. When round-trip times are long, CVIHIS manages somewhat better

than TCP.

The Linux version used in the real network tests also supports another TCP conges-

tion control mechanism. This version is CUBIC TCP [24]. In fact, CUBIC is the current

default TCP algorithm of Linux. Therefore, CVIHIS was also tested against the CUBIC

version. The preliminary results show that CUBIC behaves somewhat more aggres-

sively than NewReno. If CVIHIS is desired to manage in a friendly way against the

CUBIC version, the rate adjustment parameters of CVIHIS have to be adjusted slightly

so that CVIHIS would behave more aggressively.

4.4 CVIHIS Against Itself

The results of the previous subsection and the paper [5] show that it is challenging to

attain acceptable level of fairness in heterogeneous network environments. Hence, im-

plementing a well-performing solution for network congestion control might require

that there are only a few kinds of congestion control mechanisms on the Internet. Thus,

it is important that CVIHIS behaves in a fair manner also against itself.

The real-time mode of CVIHS was tested against itself by doing 30 tests. In the test

cases, the queue size of the bottleneck link varied between 40 and 60 packets, the ca-

pacity of the bottleneck link varied between 2 and 6 Mbps, and the round-trip time of

the connection path varied between 10 and 240 milliseconds. In some of the tests the

connections used different round-trip times. Also, the starting rates of the connections

varied among the tests. Based on these tests, the sending rates indicate good level of

fairness. In most cases, transmission rates differed less than 10 percent. Only when

round-trip times were significantly different, the rate differences were larger than 10

percent. In the worst case, the connection of higher bandwidth got about 1.7 times as

much bandwidth as the slower connection. In this case, the faster and slower connec-

tions had the round-trip times of 10 and 180 milliseconds, respectively.

Fig. 5 presents the result of one of the tests. The capacity of the bottleneck link is 4

Mbps and the round-trip times of the connections are 60 (red) and 180 (blue) millisec-

onds. In this case, the average sending rates are 2.085 Mbps and 1.935 Mbps. The first

50 seconds where omitted when calculating averaged rates.

Fig. 5. CVIHIS real-time mode against itself (Source: [6])

Some tests were made involving four CVIHIS connections in the active state at the

same time. CVIHIS performed in an acceptable way in these tests although it took more

time to balance the sending rates when round-trip times were long. Fig. 6 presents the

result of one such test. In this case, the capacity of the bottleneck link was 10 Mbps and

the queue size of the bottleneck link was 60 packets. The round-trip time was 30ms.

The number of connections in the active state is shown at the bottom part of this figure.

Fig. 6. Four real-time mode connections (Source: [6])

The backoff behavior of CVIHIS in the backward loading mode was also tested

when there was a real-time connection on the connection path at the same time. Fifty

tests were made so that the capacity of the bottleneck link was 2 or 4 Mbps and the

queue size of the bottleneck link was 60 packets. The round-trip times varied from 10

to 200 milliseconds.

When both modes had the same round-trip time, the backoff action was as expected.

Tests were also performed using different round-trip times for the modes. In these tests,

the backoff action occurred slowly if the real-time mode connection had significantly

longer round-trip time than the backward loading mode connection. When the round-

trip times differed considerably, ten times, for example, backoff action did not take

place at all. Fig. 7 illustrates the above-mentioned behavior. In this figure, the sending

rate of the backward loading mode is presented in three separate cases. The round-trip

times of the real-time mode connection are 10, 150, and 200 milliseconds in these cases.

In all these cases, the round-trip time of the backward loading mode connection is 50

milliseconds. It is fairly easy to moderate this phenomenon by adjusting the parameters

of the backward loading mode so that it would behave less aggressively than the real-

time mode. In this study, both modes shared the same parameter set.

Fig. 7. Backoff behavior of the backward loading mode (Source: [6])

4.5 Case of Two Queues

There has been only one non-empty queue on the connection path in the previous test

cases. As far as this single non-empty queue condition is met, the behaviour of our test

network structure is compatible with that of more complicated network structures. The

location of this non-empty queue can change if the size of the queue and the bandwidth

of the out-going link remain similar. The more complicated network structures have

been taken into account by using different one-way propagation delay values in the

previous test cases. However, in real networks, it can happen that there are several non-

empty queues on the connection path at a certain moment. In this subsection, the case

in which there are two non-empty queues on the connection path is tested. The case of

two non-empty queues affects especially the maximum delay value so that it is not static

any more.

Now there are three end nodes that send traffic by using the real-time mode of

CVIHIS. The third source is located in Linux Router 2. The receiver of this third con-

nection is located in the receiving hosts L4. This host runs two receiving processes at

the same time. There are now two bottleneck links which reside in the Linux routers.

The connection R2-L4 has only one bottleneck while the other two connections have

two bottlenecks. We want to test the case in which there are occasionally two non-

empty queues on the connection path. So, the capacity of the second bottleneck link

should be 1.5 times as much as the capacity of the first bottleneck link, or a little bit

more. This is because the first link has two connections and the second link three con-

nections.

Six tests were made to study CVIHIS’ fairness against itself. The queue sizes of the

bottleneck links were 40 packets and one-way propagation delays were 50 ms in all the

cases. The results of these tests are presented in Table 2. The second and third columns

present the capacity of the bottleneck links. The actual test results are presented in the

last three columns. These columns present the sending rates of the connections and the

standard deviations of CVIHIS’ sending rates. The standard deviations are presented

inside the parentheses. Based on these results, it can be said that the sending rates indi-

cate good level of fairness. We also carried out tests, in which one of these three con-

nections owned the one-way propagation delay value of 150 ms. These tests also indi-

cated good level of fairness. In the worst cases, the faster comparable connection gets

about 1.15 times as much bandwidth as the slower connection.

Table 2. Ten tests for testing CVIHIS’ friendliness with two queues

 Capacity of

link R1-R2

[kbps]

Capacity of

link R2-R3

[kbps]

CVIHIS 1

L1-L3

[kbps]

CVIHIS 2

L2-L4

 [kbps]

CVIHIS 3

R2-L4

[kbps]

1 4000 6000 2008 (33) 2050 (32) -

2 4000 6000 2005 (47) 2045(42) 2040 (53)

3 4000 6500 1929 (76) 2005 (86) 2646 (75)

4 6000 9000 3049 (58) 3053 (57) -

5 6000 9000 3047 (82) 3042 (87) 3048 (60)

6 6000 10000 3081 (83) 3014 (84) 3968 (168)

The results indicate that CVIHIS’ sending rate varies more in the case of two queues

than in the case of one queue. This can be seen when comparing the results of the rows

1 and 2 to each other. The same is also true for the rows 4 and 5. This is because the

maximum delay value related to the packet drop situations is not static any more. The

maximum delay value varies according to the level of the non-full queue. This CVIHIS’

sending rate fluctuation can also be seen in Fig. 8. In this figure, the third sending node

is sending between 70 and 170 seconds. As can be seen, the sending rates of the two

other connections vary more in the middle phase of the test when there are three con-

nections and two bottleneck links in the active state.

Fig. 8. Test case considering two bottleneck links

4.6 Advantages of the Minimum Delay Value Pushing

Delay-based congestion control mechanisms have some well-known problems which

can affect their performance. The papers [25] and [26] list and analyze these problems.

Based on these papers, the common problems of delay-based congestion control mech-

anisms are:

 inability to compete fairly against loss-based congestion control protocols

 persistent congestion

 clock synchronization problem if one-way delay measurements are used

 rerouting problem.

In this subsection, CVIHIS’ capability to cope with these problems is explained, alt-

hough CVIHIS’ real-time mode is not a pure delay-based mechanism. It is important to

note that these problems can be solved with the help of the minimum delay value push-

ing in CVIHIS.

Competing against loss-based congestion control protocols is not a big problem for

the real-time mode of CVIHIS. Here, CVIHIS was tested against the loss-based TCP

protocol. It was observed that the real-time mode of CVIHIS is actually capable in

competing against TCP. This mode can compete against loss-based algorithms because

CVIHIS shifts its target delay area upwards when competing behavior is needed.

In persistent congestion, the queue of the router is occupied all the time. As a result,

delay-based congestion control mechanisms cannot obtain proper value of the mini-

mum delay. The paper [25] suggest that shifting of the minimum delay value alleviates

the persistent congestion problem. CVIHIS pushes its delay areas upwards by shifting

the minimum delay value. This increases the congestion level of the network leading

finally to packet drops. Many connections back off after these packet drops. They re-

duce their sending rates in a multiplicative manner and the congestion level of the net-

work alleviates. This allows CVIHIS to estimate the correct value of the minimum de-

lay.

The problem with measuring one-way delays is that the clocks of the devices are

typically not synchronized accurately in the Internet. Therefore, the one-way delay

measurement includes the corresponding one-way delay and the clock offset between

the nodes. Even if initially accurately synchronized, two clocks will differ after some

time due to clock drift. Due to clock offset and clock drift, one-way delay measurements

are challenging.

For CVIHIS, clock offset is not a problem as CVIHIS probes two delay values, min-

Delay and maxDelay (see Fig. 1) and divides the delay space between these values into

several delay areas. CVIHIS can do this correctly if maxDelay is greater than minDelay

even if these delay values are negative due to the clock offset. The actual one-way delay

measurement related to a certain packet includes the same clock offset and, therefore,

the calculated delay is within the minDelay-maxDelay area.

Clock drift, however, can cause problems for CVIHIS. If the measured delay value

is increasing due to clock drift, the minDelay value will become outdated. After a cer-

tain period of time, the minDelay value does not correspond to the actual propagation

delay of the connection path any more. In an extreme situation, the measured delay

value including only the propagation delay component may reside closer to maxDelay

than minDelay. This means that the connection makes a conclusion that there is an

incipient congestion in the network although the queues of the routers are completely

empty. This problem can be solved by updating the minDelay value from time to time.

In this way, pushing the minimum delay value upwards helps to cope with the clock

drift problem. The maxDelay value will be updated after every packet drop, therefore,

the clock drift is not critical for the maxDelay. The real network tests of CVIHIS indi-

cated that the clock synchronization problem is not harmful for CVIHIS because the

tests were carried out without the synchronization of clocks.

If the route of a connection is changed without an explicit signal from the network,

the end host cannot detect it. If the new route has a shorter propagation delay, this does

not cause any serious problem for CVIHIS as some packets will probably experience

shorter one-way delay values and the minimum delay value will be updated. The max-

imum delay value will also be updated after the next packet drop. On the other hand, if

the new route has a longer propagation delay than the original one, it can pose a problem

to CVIHIS. The connection cannot know whether the increase in the delay is due to a

congestion in the network or change of the route. Without this knowledge, the end host

will interpret the increased delay as a signal of a congestion and the host will decrease

its sending rate.

In the following, the rerouting properties of CVIHIS are tested using a simulation.

This test uses the real-time mode version of CVIHIS. The ability of CVIHIS to discover

rerouting is based on pushing of the minimum delay value and updating the maximum

delay value. The maximum delay value is updated after every packet drop. In the sim-

ulation, there are two possible routes between the end nodes. There is a direct default

route, which is switched off two times during the simulation. So, the traffic has to be

switched to the backup route, which has longer propagation delay than the default route.

The default route is switched off between seconds 80-150 and 220-320. The capacity

of the default route is 700 kbps and the capacity of the backup route is 400 kbps. The

simulation result is presented in Fig. 9. As can be seen, CVIHIS can observe the route

changes and it can accommodate its sending rate according to the new route.

Fig. 9. Rerouting test of the real-time mode

The problems of delay-based congestion control mechanisms suggest that it is per-

haps useful to update the minimum delay value from time to time also in the backward

loading mode. Continuous shifting of the minimum delay value could be used also with

the backward loading mode. Of course, the shifting factor of this mode should be only

slightly over one as we do not want to compete against other connections with this

mode. The paper [25] introduce another kind of solution for updating the minimum

delay value. After receiving a certain number of data packets, the receiver can check

the smallest delay value among these packets. If the difference between the smallest

delay value and the current minimum delay value is larger than a certain threshold for

a certain number of consecutive times, the receiver interprets this as a change of the

propagation delay.

5 Conclusions

During the last decade, video-type data services in their various forms have become

increasingly common. In certain parts of the network, this type of data transmission

generates considerably more than half of the total network traffic. We have developed

a congestion control mechanism, which is particularly suitable for long-living video

transfer. This mechanism includes two modes, the backward loading mode and the real-

time mode.

The main objective of the backward loading mode is to back off when there are

bandwidth demands from other connections. Based on the test cases, we can conclude

that the backward loading mode operates primarily as expected. This mode gives band-

width away to other connections when the load level of the network is high enough.

The main objective of the real-time mode is that it should be TCP-friendly. At the same

time, however, it is desirable that the sending rate of this mode would vary in a much

smoother way than TCP’s sending rate. Based on the tests, it can be said that these

objectives are met, however, as usually with this kind of solutions, not in a perfect way.

The developed mechanism could manage better regarding TCP friendliness when short

or long round-trip times are considered. On the other hand, it is a deliberate decision to

change the sending rate of CVIHIS based on the square root of the round-trip time

instead of using TCP’s round-trip time approach.

The current state of the Internet presents challenges related to the proper operation

of Internet congestion control. The Internet is a very heterogeneous environment with

different types of applications sending different amounts of data through different kinds

of network paths. Based on our research results, relatively small differences between

the TCP versions can challenge TCP friendliness. For this kind of heterogeneous envi-

ronment, the only well-functioning congestion control solution seems to be the cur-

rently widely used network overprovisioning. Based on our research we suggest that

Internet congestion control can be put into practice in a well-functioning way if there

are only a few compatible congestion control mechanisms present. Thus, it is important

that a congestion control mechanism behaves against itself in a fair manner. The results

of this study show that the CVIHIS connections are able to share the network capacity

with each other in a fair manner.

Several research directions can be mentioned for future work. In all the test cases of

this study, fixed packet size was used. There is a need to take into consideration heter-

ogenous packet sizes. For example, rate adaptation could be based on the number of

bytes rather than the number of packets. There is also a need for research collaboration

with specialists of other research areas. One such kind of problem is how the rate ad-

aptation behavior of the application could be integrated with the mechanism of

CVIHIS. It is an application specific issue if the real-time mode is smooth enough for

the needs of a particular application, because the sending rate of this mode oscillates

slightly due to the pushing of the minimum delay value.

References

1. Cisco: Cisco Visual Networking Index: Forecast and Methodology, 2015-2020. Retrieved

02.02.2016 from http://www.cisco.com/c/en/us/solutions/service-provider/visual-net-

working-index-vni/index.html. (2016).

2. Donkor, F.: The comparative instructional effectiveness of print-based instructional and

video-based materials for teaching practical skills at a distance. International Review of Re-

search in Open and Distance Learning, 11(1), Pages 96-115. (2010).

3. Pandey, A., Patni, N., Singh, M., Sood, A. and Singhd, G.: YouTube As a Source of Infor-

mation on the H1N1 Influenza Pandemic. American Journal of Preventive Medicine, Vol

38, Issue 3, Pages 1-3. (2010).

4. Bianzino, M. Chaudet, C., Rossi D. and Rougier J.: “A survey of green networking re-

search,” IEEE Commun. Surveys & Tutorials, Vol. 14, Issue 1, Pages 3-20. (2013)

5. Vihervaara, J. and Loula, P.: Dual-Mode Congestion Control Mechanism for Video Service.

ICIMT 2015, 7th International Conference on Information and Multimedia Technology,

Pages 50-56. (2015).

6. Vihervaara, J., Alapaholuoma, T. and Loula, P.: Dual-Priority Congestion Control Mecha-

nism for Video Services, Real Network Tests of CVIHIS. Proceedings of the 8th Interna-

tional Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge

Management, Vol. 3: KMIS. Pages 51-59. (2016).

7. Floyd, S. and Fall, K.: Promoting the Use of End-to-End Congestion Control in the Internet.

IEEE/ACM Transactions on Networking, Vol. 7, No. 4, pp. 458-472. (1999).

8. Singh, K., Yadav, R., Manjul, M. and Dhir, R.: Bandwidth Delay Quality Parameter Based

Multicast Congestion Control. IEEE ADCOM 2008, 16th International Conference on Ad-

vanced Computing and Communications, Pages 399-405. (2008).

9. Kurose J, Ross K. 2012. Computer Networking: A Top-Down Approach. 6th Edition, Pear-

son International Edition, 888 pages. (2006).

10. Lakshmi, G. and Bindu, C.: A Queuing Model for Congestion Control and Reliable Data

Transfer in Cable Access Networks. IJCSIT, International Journal of Computer Science and

Information Technologies, Vol. 2, Issue 4, Pages 1427-1433. (2011).

11. Braden, R., Clark, D., Crowcroft, J., David, B., Deering, S., Estrin, D., Floyd, S., Jacobson,

V., Minshall, G., Partridge, C., Petterson, L., Ramakrisman, K., Shenker, S., Wroclawski, J.

and Zhang, L.: Recommendations on Queue Management and Congestion Avoidance in the

Internet. IETF RFC 2309, Informational, 17 pages. (1998).

12. Shalunov, S., Hazel, G., Iyengar, J. and Kuehlewind, M.: “Low Extra Delay Background

Transport (LEDBAT)”. IETF RFC6817. Retrieved 06.06.2016 from

https://tools.ietf.org/html/rfc6817. (2012).

13. Kuzmanovic, A. and Knightly, E.: “TCP-LP: low-priority service via end-point congestion

control,” IEEE/ACM Transactions on Networking, vol. 14, pp. 739-752. (2006).

14. Kohler, E., Handley, M. and Floyd, S.: “Datagram Congestion Control Protocol (DCCP),”

IETF RFC4340, Available: https://www.ietf.org/rfc/rfc4340.txt. (2006).

15. Floyd, S., Handley, M., Padhye, J. and Widmer, J.: “TCP Friendly Rate Control (TFRC):

protocol specification”. IETF RFC5348. Retrieved 06.06.2016 from

https://www.ietf.org/rfc/rfc5348.txt. (2008).

16. Holmer, S., Lundin, H., Carlucci, G., De Cicco, L. and Mascolo, S.: “A Google congestion

control algorithm for real-time communication on the World Wide Web”. IETF informa-

tional Internet draft, Retrieved 02.02.2017, https://tools.ietf.org/html/draft-alvestrand-

rmcat-congestion-03. (2015).

https://www.ietf.org/rfc/rfc4340.txt

17. Widmer, H., Denda, R. and Mauve, M.: A Survey on TCP-Friendly Congestion Control.

IEEE Network, Vol. 15, Issue 3, Pages 28-37. (2001).

18. Braden, R.: Requirements for Internet Hosts -- Communication Layers. IETF RFC 1122,

116 pages. (1989).

19. Akan, Ö.: On the throughput analysis of rate-based and window-based congestion control

schemes. Computer Networks, vol. 44, Pages 701-711. (2004).

20. Ros, D. and Welzl, M.: Less-than-best-effort service: A survey of end-to-end approaches.

IEEE Communications Surveys & Tutorials, Vol. 15, No. 2, Pages 898- 908. (2013).

21. Almes, G., Kalidindi, S. and Zekauskas, M.: A One-way Delay Metric for IPPM. IETF RFC

2679, 19 pages. (1999).

22. Meddeb, A.: "Internet QoS: Pieces of the Puzzle". IEEE Communication. Magazine, Vol.

48, Issue 2, Pages 86-94. (2010).

23. tc: tc(8) - Linux manual page. Retrieved 06.06.2016 from http://man7.org/linux/man-

pages/man8/tc.8.html. (2016).

24. Ha, S., Rhee, I. and Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM

SIGOPS Operating Systems Review - Research and developments in the Linux kernel. Vol.

42 Issue, Pages 64-74. (2008).

25. La, R., Walrand, J. and Anantharam, V.: Issues in TCP Vegas. Retrieved 02.03.2017 from

http://www.eecs.berkeley.edu/~ananth/1999-2001/Richard/IssuesInTCPVegas.pdf, 17

pages. (1999).

26. Rodríguez-Pérez, M., Herrería-Alonso, S., Fernández-Veiga, M. and López-García, C.:

Common problems in delay-based congestion control algorithms: a gallery of solutions. Eu-

ropean Transactions on Telecommunications, Vol. 22, Issue 4, Pages 168-178. (2011).

