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Abstract. Transfer of videos over the Internet has increased considerably during 

the past decade and recent studies indicate that video services represent over half 

of the Internet traffic, with a growing trend. For the user-friendly operation of the 

Internet, it is important to distribute these videos in a proper and efficient way. 

However, no congestion control mechanism suitable and widely used for all 

kinds of video services is available. We have developed a congestion control 

mechanism, which is particularly suitable for long-living video traffic. The ad-

vantage of the proposed mechanism is its dual-priority nature. There is a mode 

for low priority traffic where the bandwidth is given away to other connections 

after the load level of a network exceeds a certain level. On the other hand, the 

real-time mode of the mechanism acquires its fair share of the network capacity. 

The real network tests of this study verify the proper operation of our congestion 

control mechanism. 
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1 Introduction 

Transfer of videos over the Internet has increased considerably during the past decade. 

Cisco forecasts that Internet video traffic play a big role also in the future [1]. It predicts 

that video traffic will form 82 percent of all consumer Internet traffic by 2020. Internet 

video to TV will continue to grow at a rapid pace, increasing 3.6-fold by 2020. Virtual 

reality based applications will also increase the video type traffic of the Internet. Videos 

are widely used because video-based solutions offer advantages and possibilities for 

many application areas. For example, in education, the use of video-based instructional 

materials often produce better learning results compared to the traditional print-based 

materials [2]. In addition, YouTube can be considered as an important tool for educa-

tion [3]. 

Due to high popularity of video traffic, it is also an important cause of network con-

gestions. Network operators have largely relied on overprovisioning and TCP conges-

tion control to avoid congestions in their networks. However, unnecessarily high over-

provisioning with high power consumption does not promote green Internet ideology 

[4]. Although some video services use TCP to implement their transport services in a 
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manner that actually works, TCP’s transport service is not suitable for all video appli-

cations. By implementing retransmissions, TCP offers reliable transport services to ap-

plications. Normally, a real-time video application does not require retransmissions be-

cause this type of applications are often loss-tolerant. Occasional packet drops do not 

degrade the quality of service experienced by the users of these applications. These 

packet drops can be alleviated by using the error correction properties of the applica-

tions. If the application is working in a real-time repeat mode, the order delivery prop-

erty of TCP may cause problems. Due to the head-of-the-line blocking problem, the 

bytes following the missing ones cannot be delivered to the application. TCP's bursty-

like transmission also causes delay jitters and sudden quality degradations because 

there can be abrupt and deep sending rate reductions. For these reasons, real-time video 

applications often prefer to use the unreliable UDP protocol. Unfortunately, UDP does 

not implement congestion control. 

The approach of using congestion control only with TCP traffic has been appropriate 

in the past because TCP has represented major proportion of network traffic. However, 

nowadays UDP based long living communication events are common due to the popu-

larity of various video services among consumers. It makes sense to equip these com-

munication events with congestion control. This may offer new opportunities for old 

and new congestion control mechanisms to become deployed. 

There are different kinds of ways to use video over the Internet. With live broadcast-

ing, only a moderate buffering can be used at the receiver side due to the real time 

requirements. Therefore, delay requirements and bandwidth demands are important. On 

the other hand, in non-real-time applications where extensive buffering can be utilized 

at the receiver side and, therefore, delay and bandwidth demands are not important, 

some kind of background loading may be preferred. For example, the service provider 

can download content to proxy servers by using backward loading. The case can also 

be some kind of intermediate form. At first, the video can be transferred with the high 

speed. When there is enough data in the receive buffer, the transfer mode can be 

switched to the backward loading type.  

So, two different kinds of transfer modes are needed in modern video services: a 

backward loading mode where delay and bandwidth demands are moderate and a real-

time mode where delay and bandwidth demands are of high priority. Based on these 

different kinds of demands, the two modes also need different kinds of congestion con-

trol mechanisms. The backward loading mode has to work like a low-priority service 

in which the bandwidth is given away to other connections when the load level of the 

network is high enough. In contrast, the real-time mode always wants its fair share of 

the bandwidth. 

Many congestion control mechanisms have been developed to be used either with 

low priority or with real-time services. However, little research effort has been put into 

developing a mechanism suitable for both modes. We recently developed this kind of 

integrated mechanism that supports both of these transfer modes. This mechanism was 

named Congestion control for VIdeo to Home Internet Service (CVIHIS). The algo-

rithm was presented in the paper [5], where CVIHIS’s performance was analyzed by 

extensive simulations. In the paper [6], we tested the operation of CVIHIS in real net-

work environments. In these real network tests, CVIHIS was tested against itself more 



comprehensively than in the simulations. This paper re-presents and refines the results 

of the paper [6]. This study takes into account the situations where two congested rout-

ers simultaneously occur on the transmission path. The paper also analyzes how 

CVIHIS will work with the common problems of delay-based congestion control mech-

anisms 

The paper is organized as follows: Section 2 outlines congestion control back-

grounds; Section 3 introduces our dual-mode congestion control algorithm fir video 

services; Section 4 presents the test results and Section 5 concludes the paper. 

2 Congestion Control 

Congestion control principles of the Internet are presented in this section. Congestion 

control is a wide research area and only issues relevant for this study are introduced 

here. 

2.1 Importance of Congestion Control 

In its basic form, the Internet is built upon an assumption of best effort service. This 

means that the network does its best to deliver data packets to receivers as quickly as 

possible. On the other hand, the best effort principle also means that the network does 

not guarantee anything. It is not against Internet's laws that packets are queued or 

dropped inside the network.  Congestion situations handled by queuing and dropping 

of packets are therefore fully acceptable. Of course, from a network user’s point of 

view, congestion is not a desired situation. Therefore, a network claiming to operate in 

a user friendly manner must implement some kind of congestion control.  

If congestion control is implemented in an inoperative way, serious troubles may 

occur. When some part of the network is in a congested state, it queues traffic and 

packets may be dropped. Therefore, receivers do not receive the expected packets in 

time and senders cannot get acknowledgements inside the time limits. After that, send-

ers, which are implementing reliable communication, will start to resend packets caus-

ing further congestion. This can lead to congestion collapse in which case only little 

useful communication is happening through the network [7]. 

Many reasons can lead to a congested network. The paper [8] specifies such kind of 

reasons: limited capacity of the routers, load of the network, link failures, heterogene-

ous bandwidths. The consequences of inoperative congestion control are discussed in 

[9]. They point out that in a congested network large queuing delays are experienced, 

which increases the response times of web services. 

The background of congestion control is in queuing theory [10] as packets move into 

and out of queues when they pass through a network. Therefore, packet-switched net-

works can be considered as networks of queues. However, it is good to remember that 

extensive queuing inside the network is not a desired operation. Queue lengths should 

not reflect the steady condition we want to maintain in the network. Instead, they should 

reflect the size of bursts we need to absorb [11]. The goal of congestion control is to 



avoid a congestion situation in network elements. By another, more sophisticated defi-

nition, the target of congestion control is to adapt the sending rates of senders to match 

the available end-to-end network capacity. This definition emphasizes the fact that net-

work-wide approaches must be used to implement congestion control. Otherwise, con-

gestion is only shifted from one node to another. Therefore, in theory, we should mon-

itor traffic in the whole network. 

2.2 Congestion Control Mechanisms for Video Services 

Because the TCP and UDP protocols are not completely suitable for video services, 

there is the need for a protocol that takes into account the requirements of video traffic. 

In this section, some congestion control algorithms, suitable for video traffic, are pre-

sented. Each of these algorithms is suitable for either a low priority or a real-time ser-

vice. None of them has been developed with both these service types in mind. 

LEDBAT [12] is designed for low priority applications. It has been used in some 

background bulk-transfer applications such as BitTorrent, for example. It provides low 

priority services by using one-way delay measurements to estimate the amount of 

queued data on the data path. When the estimated queuing delay is less than the prede-

termined target, LEDBAT concludes that the network is not yet congested and it in-

creases its sending rate to utilize the free capacity of the network. When the estimated 

queuing delay becomes larger than the predetermined target, LEDBAT decreases its 

sending rate as a response to the potential congestion. The sending rate is increased and 

decreased more aggressively if the queuing delay is far from the target. TCP-LP [13] is 

another delay-based congestion control protocol for low priority services. 

The next two algorithms are suitable for the real-time mode as they want their fair 

share of the bandwidth. The best known proposal for video services is DCCP [14] and 

its TCP Friendly Rate Control version [15], abbreviated as TFRC. DCCP offers con-

gestion control for UDP-like unreliable applications. DCCP can be briefly described as 

TCP without byte-stream semantics and reliability, or as UDP with added congestion 

control, handshakes and acknowledgments for congestion feedbacks. The main issue 

with DCCP’s congestion control is that the congestion control is not a part of DCCP 

itself but DCCP allows applications to choose from a set of congestion control mecha-

nisms. Therefore, different kinds of congestion control mechanisms can be used with 

DCCP, TFRC being one of them. TFRC uses a throughput equation to calculate the 

allowed sending rate. Because DCCP tries to be fair against TCP, it is natural that TFRC 

uses the TCP throughput equation. TFRC is designed for applications that require 

smooth rate. Therefore, TFRC responds to the changes of the available bandwidth more 

slowly than TCP. 

Google Congestion Control for Real-Time Communication [16] is a new proposal 

in this area. It defines two congestion control methods: one for the sender side and 

another for the receiver side.  Either both or only one of these methods can be used. 

The receiver side uses delay gradients in a sophisticated way to detect congestions. The 

sender side method is based on information about round-trip times and packet losses. 

One possibility to achieve a dual-mode congestion control mechanism, such as the 

one presented in this study, would be to put together the best low-priority and real-time 



congestion control algorithms. However, this kind of implementation would be un-

gainly, especially when the mode has to be changed on the fly. The real dual-mode 

mechanism presented in this study allows the change between the modes in a seamless 

way. 

2.3 TCP friendliness 

The real-time mode of CVIHIS aims to share the bandwidth of transmission links in an 

equitable manner. This equal allocation of bandwidth is called friendliness. Often the 

term TCP friendliness is used as in the past years most of the traffic flows were TCP 

flows and the TCP protocol has traditionally been responsible for the congestion control 

of the Internet. Therefore, it is a natural choice to compare a new mechanism against 

the TCP protocol. The basic idea is to protect existing TCP flows from the flows that 

use too aggressive congestion control mechanisms. 

Unfortunately, TCP friendliness is a complicated concept. Even a TCP flow itself is 

not always friendly against another TCP flow. Several versions of the TCP protocol 

exist and these versions are not completely identical in their behaviours. In addition, 

TCP’s throughput degrades in case of higher round-trip times (RTT) [17]. Therefore, 

TCP has a bias against high-RTT connections giving preference to the users with short 

RTTs. Several improvements such as the Delayed ACK mechanism [18], for example, 

have been suggested to make TCP congestion control work in a better way. Unfortu-

nately, only some TCP implementations have adopted these improvements and, there-

fore, different code implementations behave in different ways. Due to this, even iden-

tical TCP implementations are not equal. Another problem is that there is no exact def-

inition for the concept of TCP friendliness. When a new mechanism is developed and 

compared against the TCP protocol, there is always some room for personal opinions. 

3 Dual-Mode Congestion Control Mechanism CVIHIS 

The algorithm of CVIHIS is introduced in this section with brief description of the 

implementation principles of CVIHIS for real network tests. 

3.1 Basic Properties of the Algorithm 

CVIHIS is a receiver-based mechanism so that most of the processing can be done at 

the receiver side instead of the heavy loaded server side. It complies with the end-to-

end approach, which states that complex issues should not reside in routers. Because 

the sending rates of video applications should usually vary in a smooth way, CVIHIS 

is a rate-based congestion control approach. The window-based control is seldom suit-

able for continuous multimedia streaming because it tends to produce bursty-like traffic 

behavior [19]. Exponentially Weighted Moving Average (EWMA) is also used by 

CVIHIS to filter out quick rate changes. 

If the network does not deliver explicit congestion feedbacks, the sending rate ad-

justment can only be based on packet losses or delays. Both indicators are utilized by 



CVIHIS, but the algorithm is somewhat more delay-based than loss-based. The reason 

for emphasizing the delay-based approach is that it generates suitable conditions for 

implementing the low-priority behavior [20]. CVIHIS uses one-way delays in delay 

measurements so that the necessary conclusions can be made at the receiver side. How-

ever, using one-way delays also has other benefits that are explained by the paper [21]. 

3.2 Backward Loading Mode 

Fig. 1 presents the rate adaptation schema of the backward loading mode. The algorithm 

of CVIHIS keeps track of two delay values, minDelay and maxDelay, based on one-

way delay measurements. The minDelay value corresponds to the situation when the 

queues of the routers are empty on the connection path. The minDelay value includes 

only propagation delay components, not queuing delays. The minDelay value is the 

shortest delay value experienced during the lifetime of the connection. Instead, the 

maxDelay value includes the queuing delay component. It corresponds to the situation 

in which the buffer of a router overflows. Therefore, maxDelay is updated every time 

when a packet drop occurs. CVIHIS uses the delay value of the last received packet 

prior to the dropped packet for the maxDelay value. 

 

Fig. 1. Rate adaptation schema of CVIHIS (Source: [5]) 

With the help of these two delay values, the delay space is divided into seven rate ad-

aptation areas. It could also be said that the queue of the router is divided into several 

corresponding parts. The seven rate adaptation areas are used so that sufficiently accu-

rate information about the state of the network can be provided to end-hosts. CVIHIS’ 

objective is that it tries to keep the queue at the level of the target delay area. When 



operating in the upper delay areas, CVIHIS decreases its sending rate and, when oper-

ating in the lower delay areas, CVIHIS increases its sending rate. The positioning fac-

tors for each delay area are presented on the left side of Fig. 1. The targetDelay area is 

not placed in the middle of the delay space but is shifted somewhat downwards so that 

queues can be kept short.   

The black arrow inside some of the delay areas in Fig. 1 represents the delay gradient 

obtained by comparing the delay values of two consecutive packets. If the arrow points 

upwards, delays are increasing, delay gradient is positive, and the queue is filling. If the 

arrow points downwards, delays are decreasing, delay gradient is negative, and the 

queue is emptying. Inside the four delay areas with the arrows, the rate adaptation com-

mand is based on the actual delay value and the value of the delay gradient. The rate 

adaptation scheme tries to achieve two targets: it tries to drive the queue level to the 

target delay area by measuring the actual delay value and, on the other hand, it tries to 

adapt the sending rate according to the bottleneck capacity. This is done by means of 

the delay gradient. If there is a conflict between the delay area and delay gradient ad-

aptation, the gradient adaptation is chosen. The two extreme delay areas do not use 

delay gradients for rate adaptation decisions because these areas are far away from the 

targetDelay area.  

In its additive increase phase, the TCP protocol increases its sending rate by one 

segment for each  round-trip time interval. In its basic form, CVIHIS increases or de-

creases its sending rate by one packet for each square root of a round-trip time interval. 

By using square root, CVIHIS alleviates the favoring behavior of short distance con-

nections. 

CVIHIS adjusts its sending rate through seven adjustment steps.  Six of these steps 

are presented in Fig. 1. Bigger steps are used when the queue level is further away from 

the target. In Fig. 1, the step sizes are denoted by different number of + or – marks. If 

there are three marks, CVIHIS increases or decreases its transmission rate by one packet 

for each square root of the round-trip time. If there are two marks, the adjustment steps 

are smaller. The smallest steps are indicated by one + or – mark. To enter the targetDe-

lay area in a smooth way, CVIHIS uses short steps in the delay areas just beside the 

targetDelay area (rate adaptation feedbacks 2 and 3). The adjustment steps related to 

the delay gradients (rate adaptation feedbacks 6 and 7) are the shortest ones. The sev-

enth adjustment step is a multiplicative decrease step taken after a packet drop.  The 

multiplicative decrease step is taken only once per a round-trip time cycle.   

Table 1 presents the rate adjustment factors of CVIHIS. These factors are set so that 

CVIHIS can compete in a fair manner with the TCP NewReno version. The integer 

values in brackets refer to the rate adjustment commands of CVIHIS presented in Fig. 

1. All decision procedures related to Fig. 1 are implemented at the receiver side. Only 

the rate adaptation commands are transmitted to the sender.  In the case of four leftmost 

columns, the rate adjustment is based on the square root of the round-trip time. The 

factor expresses how many more or less packets will be sent during the next square root 

of the round-trip time than just before. MD is a multiplicative decrease factor used after 

packet drops to increase the sending gap of packets. SF is a smoothing factor used for 

the EWMA filter to filter out quick rate changes. PF is a pushing factor used only by 

the real-time mode. 



Table 1. Adjustment parameters of CVIHIS (Source: [6]) 

---    (1) 

+++ (4) 

--  (2) ++ (3) -   (6) 

+  (7) 

MD (5) SF PF 

1.0 0.7 0.5 0.2 1.10 0.5 * last update 

0.5 * history 

1.05 

 

3.3 Real-Time Mode 

The backward loading mode backs off when it competes with TCP. In order to be suit-

able for the real time mode, the implementation code has to be modified so that it will 

behave in a more aggressive way. On the other hand, it is desirable that the code imple-

mentation of the backward loading mode is modified as little as possible. Both of these 

goals can be achieved in a simple way by using an approach in which the minimum 

delay value is pushed upwards in a continuous manner. This means that the delay areas 

of Fig. 1 are also pushed upwards and, therefore, CVIHIS behaves in a more aggressive 

way. Shifting the delay areas upwards is only done when competing behavior is actually 

needed. If the last measured delay value is smaller than the pushed minimum delay 

value, the minimum delay value is set to the value of the last measured delay. 

This kind of minimum delay pushing means that the real-time mode of CVIHIS is 

not a delay-based congestion control solution any more. The pushing operation shifts 

this version towards loss-based congestion control. Therefore, the real-time mode of 

CVIHIS is a kind of hybrid solution, a delay-loss-based solution. The minimum delay 

value is pushed upwards in a multiplicative way. It was found that the pushing factor 

of 1.05 is suitable. 

It is worth noting that CVIHIS is a pure congestion control mechanism. If the appli-

cation is delay sensitive, delay requirements must be satisfied by Quality-of-Service 

mechanisms [22]. The dual mode mechanism presented in this study can also be 

achieved using Quality-of-Service techniques. In this case, the mechanism could be 

called a dual priority mechanism. However, this kind of mechanism can not be a pure 

end-to-end mechanism as the implementation would require network support at least to 

some extent. 

3.4 Software Implementation 

The code implementation of CVIHIS should be placed somewhere in the protocol stack 

to enable real network tests. There are several possibilities for this placing. For exam-

ple, the kernel implementation of an open source operating system could be modified. 

In this way, the UDP implementation of the operating system could be adjusted to cor-

respond to CVIHIS’ algorithm. Instead of using this kind of elaborate solution, an easier 

implementation option was chosen. CVIHIS was  implemented through a normal socket 

program on top of the UDP protocol. This solution is possible because the UDP proto-

col does not offer any special transport services, which could disturb the operation of 

CVIHIS. Unlike in simulation environment, the real network implementation should 



take into account that the clocks of the source and receiving ends have not been syn-

chronized with each other. Therefore, the real network version has to  obtain round-trip 

times by actual measurements. When a packet is transmitted, the sender side stores the 

transmission timestamp. When the corresponding acknowledgment arrives, the round-

trip time is calculated. 

In addition, this implementation option provides further advantages. Same computer 

can be used to run a few traffic sources in parallel because these traffic sources can be 

separated from each other by means of UDP port numbers. This reduces the number of 

computers needed for the test network. The solution also offers resistance against fire-

wall blocking if large scale real network testing is done in the future. 

4 Test Results 

In this section, the structure of the test network is described and the most relevant results 

of the network tests are presented. This study presents the results related to the paper 

[6] in an extended way. The test results of CVIHIS shows that there is room for im-

provements in some cases. In these cases, there can be present connections which pos-

ses very different round-trip times. As it is mentioned, TCP favors the connections of 

short round-trip times, therefore, it is necessary to adjust the algorithm of CVIHIS to 

favor short round-trip times as well. However, CVIHIS performs this favoring in a more 

moderate way than TCP. In fact, it is not necessarily a bad idea to favor the connections 

of shot round-trip times. Often these short connections consume less network resources 

than long way connections. By favoring connections of short round-trip times, network 

operators can maximize the total traffic volume in their networks. The challenge is to 

find a suitable balance so that fairness does not suffer too much. 

4.1 Test Network 

Fig. 2 presents the structure of the test network. There are four end nodes and three 

routers. The links between the routers form the bottleneck links of the connection path. 

With this simple test network structure, and with the help of the tc (traffic control) 

program, it is possible to emulate different types of networks. Tc [23] is the Linux util-

ity program used to configure the kernel packet scheduler. 

Tc is utilized in two ways to vary the configuration of the test network. Tc is used to 

control the traffic in the Linux routers. In this way, the capacity of the bottleneck link 

and the queue size of the link can be varied. When traffic is controlled, the transmission 

rate of the link is under control. Typically, this means that the available bandwidth is 

decreased. Traffic control can also be used to smooth the burstness of incoming links 

by defining the queue size of the link. If the queue size is exceeded, the incoming pack-

ets are dropped. At the end nodes, tc is used to define the delay characteristics of the 

outgoing links. In this way, it is possible to emulate different round-trip times of con-

nection paths. 



 

Fig. 2. Structure of the test network 

4.2 Backward Loading Mode 

The goal of the backward loading mode is to achieve stable sending rate if there is no 

need for the backoff function. This was ensured by performing twenty tests in the test 

network. In the test cases, the queue size of the bottleneck link varied between 40-60 

packets, the capacity of the bottleneck link varied between 2-4.5 Mbps and the round-

trip time varied between 10-250 milliseconds. The sending rate stabilized in all cases.  

Another objective of this mode is proper backoff behavior. This was verified against 

one TCP NewReno connection by using the same kinds of test setups as in the case of 

the stability check. The proper backoff behavior was observed in all cases. In Fig. 3, 

the sending rates of the CVIHIS connections are presented in test cases, where the 

backoff behavior was verified by using three different round-trip times (10, 100 and 

200 ms) for CVIHIS. TCP used the round-trip time of 200 milliseconds in all these 

cases. The capacity of the bottleneck link was 3 Mbps. The TCP connections were ac-

tive between the test time of about 50-170 seconds. As it can be seen, CVIHIS increases 

its sending rate faster if the round-trip times are short. 
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Fig. 3.  Simulation results of the backward loading (Source: [6]) 

4.3 Real-Time Mode 

The TCP-friendliness of CVIHIS was tested against the TCP NewReno version by per-

forming twenty six tests. The queue size of the bottleneck link was 50 packets and the 

capacity of the bottleneck link varied between 2-4.5 Mbps. Four different round-trip 

times (20, 80, 140 and 200 milliseconds) were used. The starting rates of the connec-

tions also varied among the tests. 

 

Fig. 4. Real-time mode against one TCP connection (Source: [6]) 



Fig. 4 presents the test results. As it can be seen, individual measurements depart 

from the trend due to the phase effect. The figure presents the proportion of the CVIHIS 

connection from the capacity of the bottleneck link. The figure indicates acceptable 

level of averaged fairness. In the worst case, the connection of higher bandwidth gets 

about 1.6 times as much bandwidth as the slower connection. 

As mentioned earlier, TCP favors the connections of short round-trip times while 

CVIHIS does this in a more modest way. The above results confirm this. Round-trip 

times affect CVIHIS less than TCP. CVIHIS manages relatively modestly when round-

trip times are short. When round-trip times are long, CVIHIS manages somewhat better 

than TCP. 

The Linux version used in the real network tests also supports another TCP conges-

tion control mechanism. This version is CUBIC TCP [24]. In fact, CUBIC is the current 

default TCP algorithm of Linux. Therefore, CVIHIS was also tested against the CUBIC 

version. The preliminary results show that CUBIC behaves somewhat more aggres-

sively than NewReno. If CVIHIS is desired to manage in a friendly way against the 

CUBIC version, the rate adjustment parameters of CVIHIS have to be adjusted slightly 

so that CVIHIS would behave more aggressively. 

4.4 CVIHIS Against Itself 

The results of the previous subsection and the paper [5] show that it is challenging to 

attain acceptable level of fairness in heterogeneous network environments. Hence, im-

plementing a well-performing solution for network congestion control might require 

that there are only a few kinds of congestion control mechanisms on the Internet. Thus, 

it is important that CVIHIS behaves in a fair manner also against itself. 

The real-time mode of CVIHS was tested against itself by doing 30 tests. In the test 

cases, the queue size of the bottleneck link varied between 40 and 60 packets, the ca-

pacity of the bottleneck link varied between 2 and 6 Mbps, and the round-trip time of 

the connection path varied between 10 and 240 milliseconds. In some of the tests the 

connections used different round-trip times. Also, the starting rates of the connections 

varied among the tests. Based on these tests, the sending rates indicate good level of 

fairness. In most cases, transmission rates differed less than 10 percent. Only when 

round-trip times were significantly different, the rate differences were larger than 10 

percent. In the worst case, the connection of higher bandwidth got about 1.7 times as 

much bandwidth as the slower connection. In this case, the faster and slower connec-

tions had the round-trip times of 10 and 180 milliseconds, respectively. 

Fig. 5 presents the result of one of the tests. The capacity of the bottleneck link is 4 

Mbps and the round-trip times of the connections are 60 (red) and 180 (blue) millisec-

onds. In this case, the average sending rates are 2.085 Mbps and 1.935 Mbps. The first 

50 seconds where omitted when calculating averaged rates. 



 

Fig. 5. CVIHIS real-time mode against itself (Source: [6]) 

Some tests were made involving four CVIHIS connections in the active state at the 

same time. CVIHIS performed in an acceptable way in these tests although it took more 

time to balance the sending rates when round-trip times were long. Fig. 6 presents the 

result of one such test. In this case, the capacity of the bottleneck link was 10 Mbps and 

the queue size of the bottleneck link was 60 packets. The round-trip time was 30ms. 

The number of connections in the active state is shown at the bottom part of this figure. 

 

Fig. 6. Four real-time mode connections (Source: [6]) 



The backoff behavior of CVIHIS in the backward loading mode was also tested 

when there was a real-time connection on the connection path at the same time. Fifty 

tests were made so that the capacity of the bottleneck link was 2 or 4 Mbps and the 

queue size of the bottleneck link was 60 packets. The round-trip times varied from 10 

to 200 milliseconds. 

When both modes had the same round-trip time, the backoff action was as expected. 

Tests were also performed using different round-trip times for the modes. In these tests, 

the backoff action occurred slowly if the real-time mode connection had significantly 

longer round-trip time than the backward loading mode connection. When the round-

trip times differed considerably, ten times, for example, backoff action did not take 

place at all. Fig. 7 illustrates the above-mentioned behavior. In this figure, the sending 

rate of the backward loading mode is presented in three separate cases. The round-trip 

times of the real-time mode connection are 10, 150, and 200 milliseconds in these cases. 

In all these cases, the round-trip time of the backward loading mode connection is 50 

milliseconds. It is fairly easy to moderate this phenomenon by adjusting the parameters 

of the backward loading mode so that it would behave less aggressively than the real-

time mode. In this study, both modes shared the same parameter set. 

 

Fig. 7. Backoff behavior of the backward loading mode (Source: [6]) 

4.5 Case of Two Queues 

There has been only one non-empty queue on the connection path in the previous test 

cases. As far as this single non-empty queue condition is met, the behaviour of our test 

network structure is compatible with that of more complicated network structures. The 

location of this non-empty queue can change if the size of the queue and the bandwidth 

of the out-going link remain similar. The more complicated network structures have 

been taken into account by using different one-way propagation delay values in the 



previous test cases. However, in real networks, it can happen that there are several non-

empty queues on the connection path at a certain moment. In this subsection, the case 

in which there are two non-empty queues on the connection path is tested. The case of 

two non-empty queues affects especially the maximum delay value so that it is not static 

any more. 

Now there are three end nodes that send traffic by using the real-time mode of 

CVIHIS. The third source is located in Linux Router 2. The receiver of this third con-

nection is located in the receiving hosts L4. This host runs two receiving processes at 

the same time. There are now two bottleneck links which reside in the Linux routers. 

The connection R2-L4 has only one bottleneck while the other two connections have 

two bottlenecks. We want to test the case in which there are occasionally two non-

empty queues on the connection path. So, the capacity of the second bottleneck link 

should be 1.5 times as much as the capacity of the first bottleneck link, or a little bit 

more. This is because the first link has two connections and the second link three con-

nections. 

Six tests were made to study CVIHIS’ fairness against itself. The queue sizes of the 

bottleneck links were 40 packets and one-way propagation delays were 50 ms in all the 

cases. The results of these tests are presented in Table 2. The second and third columns 

present the capacity of the bottleneck links. The actual test results are presented in the 

last three columns. These columns present the sending rates of the connections and the 

standard deviations of CVIHIS’ sending rates. The standard deviations are presented 

inside the parentheses. Based on these results, it can be said that the sending rates indi-

cate good level of fairness. We also carried out tests, in which one of these three con-

nections owned the one-way propagation delay value of 150 ms. These tests also indi-

cated good level of fairness. In the worst cases, the faster comparable connection gets 

about 1.15 times as much bandwidth as the slower connection. 

Table 2. Ten tests for testing CVIHIS’ friendliness with two queues 

 Capacity of 

link R1-R2  

[kbps] 

Capacity of 

link R2-R3 

[kbps] 

CVIHIS 1  

L1-L3 

[ kbps] 

CVIHIS 2 

L2-L4 

  [kbps] 

CVIHIS 3 

R2-L4 

[kbps] 

1 4000 6000 2008 (33) 2050 (32) - 

2 4000 6000 2005 (47) 2045(42) 2040 (53) 

3 4000 6500 1929 (76) 2005 (86) 2646 (75) 

4 6000 9000 3049 (58) 3053 (57) - 

5 6000 9000 3047 (82) 3042 (87) 3048 (60) 

6 6000 10000 3081 (83) 3014 (84) 3968 (168) 

 

The results indicate that CVIHIS’ sending rate varies more in the case of two queues 

than in the case of one queue. This can be seen when comparing the results of the rows 

1 and 2 to each other. The same is also true for the rows 4 and 5. This is because the 

maximum delay value related to the packet drop situations is not static any more. The 

maximum delay value varies according to the level of the non-full queue. This CVIHIS’ 

sending rate fluctuation can also be seen in Fig. 8. In this figure, the third sending node 



is sending between 70 and 170 seconds. As can be seen, the sending rates of the two 

other connections vary more in the middle phase of the test when there are three con-

nections and two bottleneck links in the active state. 

 

Fig. 8. Test case considering two bottleneck links 

4.6 Advantages of the Minimum Delay Value Pushing 

Delay-based congestion control mechanisms have some well-known problems which 

can affect their performance. The papers [25] and [26] list and analyze these problems. 

Based on these papers, the common problems of delay-based congestion control mech-

anisms are:  

 inability to compete fairly against loss-based congestion control protocols  

 persistent congestion 

 clock synchronization problem if one-way delay measurements are used 

 rerouting problem.  

In this subsection, CVIHIS’ capability to cope with these problems is explained, alt-

hough CVIHIS’ real-time mode is not a pure delay-based mechanism. It is important to 

note that these problems can be solved with the help of the minimum delay value push-

ing in CVIHIS. 

Competing against loss-based congestion control protocols is not a big problem for 

the real-time mode of CVIHIS. Here, CVIHIS was tested against the loss-based TCP 

protocol. It was observed that the real-time mode of CVIHIS is actually capable in 

competing against TCP. This mode can compete against loss-based algorithms because 

CVIHIS shifts its target delay area upwards when competing behavior is needed. 

In persistent congestion, the queue of the router is occupied all the time. As a result, 

delay-based congestion control mechanisms cannot obtain proper value of the mini-

mum delay. The paper [25] suggest that shifting of the minimum delay value alleviates 



the persistent congestion problem. CVIHIS pushes its delay areas upwards by shifting 

the minimum delay value. This increases the congestion level of the network leading 

finally to packet drops. Many connections back off after these packet drops. They re-

duce their sending rates in a multiplicative manner and the congestion level of the net-

work alleviates. This allows CVIHIS to estimate the correct value of the minimum de-

lay. 

The problem with measuring one-way delays is that the clocks of the devices are 

typically not synchronized accurately in the Internet. Therefore, the one-way delay 

measurement includes the corresponding one-way delay and the clock offset between 

the nodes. Even if initially accurately synchronized, two clocks will differ after some 

time due to clock drift. Due to clock offset and clock drift, one-way delay measurements 

are challenging. 

For CVIHIS, clock offset is not a problem as CVIHIS probes two delay values, min-

Delay and maxDelay (see Fig. 1) and divides the delay space between these values into 

several delay areas. CVIHIS can do this correctly if maxDelay is greater than minDelay 

even if these delay values are negative due to the clock offset. The actual one-way delay 

measurement related to a certain packet includes the same clock offset and, therefore, 

the calculated delay is within the minDelay-maxDelay area. 

Clock drift, however, can cause problems for CVIHIS. If the measured delay value 

is increasing due to clock drift, the minDelay value will become outdated. After a cer-

tain period of time, the minDelay value does not correspond to the actual propagation 

delay of the connection path any more. In an extreme situation, the measured delay 

value including only the propagation delay component may reside closer to maxDelay 

than minDelay. This means that the connection makes a conclusion that there is an 

incipient congestion in the network although the queues of the routers are completely 

empty. This problem can be solved by updating the minDelay value from time to time. 

In this way, pushing the minimum delay value upwards helps to cope with the clock 

drift problem. The maxDelay value will be updated after every packet drop, therefore, 

the clock drift is not critical for the maxDelay. The real network tests of CVIHIS indi-

cated that the clock synchronization problem is not harmful for CVIHIS because the 

tests were carried out without the synchronization of clocks. 

If the route of a connection is changed without an explicit signal from the network, 

the end host cannot detect it. If the new route has a shorter propagation delay, this does 

not cause any serious problem for CVIHIS as some packets will probably experience 

shorter one-way delay values and the minimum delay value will be updated. The max-

imum delay value will also be updated after the next packet drop. On the other hand, if 

the new route has a longer propagation delay than the original one, it can pose a problem 

to CVIHIS. The connection cannot know whether the increase in the delay is due to a 

congestion in the network or change of the route. Without this knowledge, the end host 

will interpret the increased delay as a signal of a congestion and the host will decrease 

its sending rate. 

In the following, the rerouting properties of CVIHIS are tested using a simulation. 

This test uses the real-time mode version of CVIHIS. The ability of CVIHIS to discover 

rerouting is based on pushing of the minimum delay value and updating the maximum 



delay value. The maximum delay value is updated after every packet drop. In the sim-

ulation, there are two possible routes between the end nodes. There is a direct default 

route, which is switched off two times during the simulation. So, the traffic has to be 

switched to the backup route, which has longer propagation delay than the default route. 

The default route is switched off between seconds 80-150 and 220-320. The capacity 

of the default route is 700 kbps and the capacity of the backup route is 400 kbps. The 

simulation result is presented in Fig. 9. As can be seen, CVIHIS can observe the route 

changes and it can accommodate its sending rate according to the new route. 

 

Fig. 9. Rerouting test of the real-time mode 

The problems of delay-based congestion control mechanisms suggest that it is per-

haps useful to update the minimum delay value from time to time also in the backward 

loading mode. Continuous shifting of the minimum delay value could be used also with 

the backward loading mode. Of course, the shifting factor of this mode should be only 

slightly over one as we do not want to compete against other connections with this 

mode. The paper [25] introduce another kind of solution for updating the minimum 

delay value. After receiving a certain number of data packets, the receiver can check 

the smallest delay value among these packets. If the difference between the smallest 

delay value and the current minimum delay value is larger than a certain threshold for 

a certain number of consecutive times, the receiver interprets this as a change of the 

propagation delay. 



5 Conclusions 

During the last decade, video-type data services in their various forms have become 

increasingly common. In certain parts of the network, this type of data transmission 

generates considerably more than half of the total network traffic. We have developed 

a congestion control mechanism, which is particularly suitable for long-living video 

transfer. This mechanism includes two modes, the backward loading mode and the real-

time mode.  

The main objective of the backward loading mode is to back off when there are 

bandwidth demands from other connections. Based on the test cases, we can conclude 

that the backward loading mode operates primarily as expected. This mode gives band-

width away to other connections when the load level of the network is high enough. 

The main objective of the real-time mode is that it should be TCP-friendly. At the same 

time, however, it is desirable that the sending rate of this mode would vary in a much 

smoother way than TCP’s sending rate. Based on the tests, it can be said that these 

objectives are met, however, as usually with this kind of solutions, not in a perfect way. 

The developed mechanism could manage better regarding TCP friendliness when short 

or long round-trip times are considered. On the other hand, it is a deliberate decision to 

change the sending rate of CVIHIS based on the square root of the round-trip time 

instead of using TCP’s round-trip time approach. 

The current state of the Internet presents challenges related to the proper operation 

of Internet congestion control. The Internet is a very heterogeneous environment with 

different types of applications sending different amounts of data through different kinds 

of network paths. Based on our research results, relatively small differences between 

the TCP versions can challenge TCP friendliness. For this kind of heterogeneous envi-

ronment, the only well-functioning congestion control solution seems to be the cur-

rently widely used network overprovisioning. Based on our research we suggest that 

Internet congestion control can be put into practice in a well-functioning way if there 

are only a few compatible congestion control mechanisms present. Thus, it is important 

that a congestion control mechanism behaves against itself in a fair manner. The results 

of this study show that the CVIHIS connections are able to share the network capacity 

with each other in a fair manner. 

Several research directions can be mentioned for future work. In all the test cases of 

this study, fixed packet size was used. There is a need to take into consideration heter-

ogenous packet sizes. For example, rate adaptation could be based on the number of 

bytes rather than the number of packets. There is also a need for research collaboration 

with specialists of other research areas. One such kind of problem is how the rate ad-

aptation behavior of the application could be integrated with the mechanism of 

CVIHIS. It is an application specific issue if the real-time mode is smooth enough for 

the needs of a particular application, because the sending rate of this mode oscillates 

slightly due to the pushing of the minimum delay value. 
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