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Modeling and Estimation of Signal-Dependent
and Correlated Noise

Lucio Azzari, Lucas Rodrigues Borges, Alessandro Foi

Abstract The additive white Gaussian noise (AWGN) model is ubiquitous in signal
processing. This model is often justified by central-limit theorem (CLT) arguments.
However, whereas the CLT may support a Gaussian distribution for the random er-
rors, it does not provide any justification for the assumed additivity and whiteness.
As a matter of fact, data acquired in real applications can seldom be described with
good approximation by the AWGN model, especially because errors are typically
correlated and not additive. Failure to model accurately the noise leads to inaccu-
rate analysis, ineffective filtering, and distortion or even failure in the estimation.
This chapter provides an introduction to both signal-dependent and correlated noise
and to the relevant models and basic methods for the analysis and estimation of
these types of noise. Generic one-parameter families of distributions are used as
the essential mathematical setting for the observed signals. The distribution fami-
lies covered as leading examples include Poisson, mixed Poisson-Gaussian, various
forms of signal-dependent Gaussian noise (including multiplicative families and ap-
proximations of the Poisson family), as well as doubly censored heteroskedastic
Gaussian distributions. We also consider various forms of noise correlation, encom-
passing pixel and readout cross-talk, fixed-pattern noise, column/row noise, etc., as
well as related issues like photo-response and gain nonuniformity. The introduced
models and methods are applicable to several important imaging scenarios and tech-
nologies, such as raw data from digital camera sensors, various types of radiation
imaging relevant to security and to biomedical imaging.
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1 Introduction: Acquisition Devices and Noise Sources

A digital image is generated by converting the light coming from a natural scene to
numerical pixel values. In particular, a typical camera performs this conversion us-
ing a semiconducting array of sensing elements positioned after an aperture: when
the shutter opens, the light from the scene goes through the lenses and the aperture,
finally colliding with the sensor array. Each element in the array converts the energy
of the incident light beam to electric charges that are successively accumulated in an
electric potential. The electric potentials are then converted to digital values, and fi-
nally stored collectively as a raw image, whose pixel values are ideally proportional
to the intensity of the light that shone onto the corresponding sensing elements.

The most common digital camera sensors are Charge Coupled Semiconductor
Devices (CCD) and Complementary Metal-Oxide Semiconductor (CMOS). While
CCD used to be the most common technology, nowadays CMOS sensors dominate
the market, being the preferred capture technology for smartphones and digital cam-
eras. The main difference between the two is that, while in CCD arrays the charge of
a row of sensors is transported via the same circuit, sharing also the same amplifier,
CMOS arrays are based on the Active Pixel Sensor (ASP) technology, for which
every single sensor is treated independently, having a unique transport line [Jdhne,
2004].

To get a basic understanding of the nature of the noise in imaging sensors, let
us consider the acquisition of a still scene; although the average incident energy
over a relatively long period of time might be virtually constant, the amount of
photons incident on the camera sensors during the exposure fluctuates in time. Fur-
thermore, not all the incident photons are converted to electric charge. This whole
phenomenon is known as shot noise, and it is well modeled by the family of Poisson
distributions [Mandel, 1959]. An important feature of this type of noise is that it is
signal-dependent, in the sense that the electric charge fluctuates in time with a vari-
ance that is proportional to the photon flux. Thus, different parts of a captured scene
are subject to different noise strengths with the stronger noise affecting the brighter
content.

Another relevant source of noise is the so-called thermal noise. Thermal noise is
generated by thermal agitation [Nyquist, 1928; Johnson, 1928] and is due to the fact
that at any given temperature (except absolute zero), conductors have a probability
to emit charges due to heat, even when there is no electric potential to stimulate
them. This results in a background current, present also in the absence of input sig-
nals (dark current) [Jdhne, 2004], which alters the measurements of the sensors. The
inevitable fluctuations of this current are thus modeled as noise. By definition, this
type of noise is proportional to the working temperature of the device, and it can
therefore be reduced by decreasing the temperature of sensor. In high-end devices
for scientific applications (e.g., optical astronomy), this is achieved by means of a
thermoelectric cooler such as a Peltier heat pump; however, in most consumer ap-
plications, sensor cooling is not feasible and thermal noise, suitably modeled by
a Gaussian distribution, becomes a significant component of the measurement er-
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rors. Particularly when capturing scenes in low-light conditions, thermal noise can
dominate the overall noise.

Furthermore, there is a possibility that the charges accumulated by neighboring
sensor elements coupled with each other introducing correlation between measured
quantities. In other words, the charge accumulated by a sensor element is influenced
not only by the number of incident photons, but also by the charges accumulated
by the surrounding sensor elements. Analogously, during the readout phase, when
the device reads and transports the charges from the sensor elements, there could be
some electrical coupling of the quantities. This introduces an error in the acquisition
process that is commonly referred to as cross-talk, and it is usually well modeled
by the adoption of correlated noise, in which the measurement error for a pixel is
influenced also by the surrounding errors.

Finally, the electric potential is often amplified (analog gain) before being con-
verted to a digital value by an analog-to-digital converter. This analog amplification
may introduce further noise and, because the digital values are discrete with a cer-
tain bit depth, we eventually encounter also quantization noise, which is sometimes
approximated by uniformly distributed errors over one quantization step, or as a
generic additive noise with comparable variance (i.e., one-twelfth of the quantiza-
tion step, as per basic properties of the uniform distribution).

2 Additive White Gaussian Noise

As highlighted above, a signal acquired by a digital device is affected by noise from
several sources. It is often difficult to separate and treat each noise source individ-
ually, as this requires in-depth knowledge of the device and direct access to some
of its inner components; therefore, the various sources are conventionally grouped
together and addressed as a single noise process. This procedure is encouraged by
the central-limit theorem (CLT) [Tijms, 2007; Papoulis and Pillai, 2002]: for a set of

N independent random variables X, ..., Xy, with respective means Uy, ..., Uy and
standard deviations o7y,...,0y, as N — c we have
1 N d N
=Y (Xi—w) = A (0,1) with  s=4/) o?, (D)
S

i=1 i=1

where % denotes the convergence in distribution, and .4"(0, 1) indicates a Gaussian
(also called normal) random variable with mean and variance equal, respectively,
to the first and second arguments within parenthesis (in this case 0 and 1). In other
words, we can represent the sum of various random noise sources as a Gaussian
random variable, irrespective of the noise distribution of the individual sources. The
CLT establishes the importance of the Gaussian distribution in modeling complex
physical processes.
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The Gaussian noise is further commonly assumed additive, zero-mean, indepen-
dent, and identically distributed (i.i.d.); under these extra assumptions, a captured
image z is modeled as

2(x) =y (x)+1(x), 2)

where y is the underlying deterministic noise-free image, x € Q C Z? is the pixel
coordinate, and 1 (+) ~ A" (O, 02) is the zero-mean Gaussian random variable with
variance ¢2. Each coordinate x results in an independent (hence different) realiza-
tion of the random variable 1 (x), which collectively for all x € Q yields the addi-
tive white Gaussian noise (AWGN) field corrupting y. The term white is inspired
by spectroscopy: like white light dispersed through a prism reveals components for
every frequency in the visible spectrum (from 400 THz of red to 789 THz of violet),
Fourier analysis of white noise reveals components for every frequency within the
Fourier spectrum. Specifically, when working on a 2D rectangular image domain
of Ni x N, pixels, i.e., x = (x1,x2) € 2 =[0,...,N; — 1] x [0,...,N, — 1], a generic
Fourier coefficient of 1) can be written as

Ny—1N -1 . X X
n&.é&) =Y, Z 2m<5' N—11+52N—22)n(x17x2)’ (3)
xp=0 x;=

where % denotes the Fourier transform and &;, &, are spatial frequencies. The noise
power spectrum (also called power spectral density, PSD) corresponds to the vari-
ance of .% [n], which can be computed as

N—1N;—1 727”(&1&%22)

var {7 [n] (&1, &)} = ¥ z{ e n(xl,m} @
X2=0X1=0

No—1N;—1

_xzz=’0xlz=’o

No—1N;—1

=Y Y var{n(x;,x)}= (6)

x2=0 x1=0
Na—1N;—1

Y Y *=NNo?, @

x2:0 x1:0

. X X 2
e EHER) = ®)

i.e., the power (variance) of the noise is constant in the Fourier domain and di-
rectly proportional to the variance in the pixel domain. We can say that the Fourier
spectrum of white noise is flat. Equalities (4)-(7) leverage few basic properties:
(1) n is independently distributed; (2) multiplication of 1 by a deterministic func-
tion (i.e., the complex exponential) does not affect the independence; hence (3) the
Fourier coefficient % [n] (&1,&;) (3) is simply a sum of independent random vari-
ables; (4) the variance of the sum of independent random variables is the sum of
their variances (4); (5) multiplication of a random variable by a deterministic factor
scales the variance by the squared modulus of the factor (5); (6) complex exponen-
tials are always on the unit circle of the complex plane, i.e., they have unit modulus
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(6); (7) n is identically distributed with constant variance 62 (7). We can see that of
the i.i.d. hypothesis, the independence alone is sufficient to reach (6) and that having
identical distributions (hence, identical variance 62 for every x € Q) is used only
for obtaining (7). Already (6) shows that the Fourier spectrum of the noise is flat,
since var {.Z [n] (&1, &)} no longer depends on &; or &,. Indeed, we can have white
noise with a flat Fourier power spectrum for models different from the AWGN (2).

At this point, it is important to emphasize that although theoretically the CLT
justifies using a Gaussian distribution for modeling the measurement random errors,
it does not provide arguments supporting the additional assumptions of the AWGN
model, namely, that the errors are independent and identically distributed over the
image. Indeed, in (1), we can observe that the term on the left-hand side is essentially
a standardization of the errors, which thus explicitly depends on the means ; and
variances Gl-z of the individual contributors. In general, we have that each noisy pixel
z(x) results from its own sequence X; (x), i = 1,...,N, where the means and the
variances of these contributors can be different at different pixels; in other words, the
errors may not be identically distributed and even when a Gaussian model (as per the
CLT) may be appropriate, then mean and (most often) the variance of such Gaussian
errors may change from pixel to pixel. Furthermore, contributors of different pixels
can be subject to a mutual interaction, possibly resulting in a statistical dependence
between the measurement errors at different pixels; in other words, the errors may
not be independently distributed over the image.

It is clear from these premises and from the summary in Sect. 1 that the AWGN
model is not suitable for modeling the above measurement errors, first because it
inherently uses a single distribution, and second because it assumes independent
errors.

In Sect. 4, we begin from generalizing the observation model to accommodate a
multiplicity of distributions. Specifically, we adopt the formalism of one-parameter
families of distributions, where the observation at each pixel follows a specific dis-
tribution that depends on a known or unknown univariate parameter. Further, in
Sect. 6.1, we address the issue of correlation in the errors.

3 Raw Image Dataset

Throughout this chapter, we use real sensor raw data to validate the presented mod-
els and methods. As leading example, we use a dataset consisting of M = 30 raw
images of the same still scene acquired repeatedly in a short time interval (at a rate of
about 1 frame/s) under identical capture settings. We identify the individual images
in the set as Z(’”>, m=1,...,30, while 7 denotes a generic such image; the reason for
using the tilde decoration here will become clear in the further sections. The images
have been captured by a Samsung SSK2L2 CMOS ISOCELL sensor with a 1.4um
pixel size at ISO 1250; this type of sensor can be found in modern mobile devices
such as the Samsung Galaxy S8 smartphone. Raw images from this sensor are stored
in 10-bit format, which we normalize to the range [0, 1] by dividing the raw integer
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Capture #5 Capture #10

Capture #15 Capture #20

Fig. 1: Examples from the dataset of 30 raw images captured under identical settings
with a Samsung SSK2L2 CMOS ISOCELL sensor at ISO 1250.

Capture #15 Capture #30

Fig. 2: Two raw images of the same scene, captured under identical settings. A total
of 30 images like these were captured.

values by 2'° — 1. Four images from the dataset are reported in Fig. 1: the scene fea-
tures a dark background with two bananas in the foreground. The presence of both
dark and bright regions makes the dataset suitable for validating the noise models
described in the following sections. Even though these sensors are typically used in
conjunction with a color filter array such as the RGGB Bayer filter mosaic, for the
sake of simplicity of presentation we consider only single-channel monochromatic
(green) acquisition.
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Pixelwise sample mean Pixelwise sample standard deviation

0.08 :
oo4i .
0

Fig. 3: Pixelwise sample mean (left) and sample standard deviation (right) across all
the captured images of the dataset.

0.8 i
0.6
0.4

0.2

Cross section

Fig. 4: Left: detail from the dataset with highlighted cross section. Right: cross

section (red line) plotted against its expectation E{Z(x)} (in blue). Note how the
noise is signal-dependent, with different variance at each pixel x depending on the
value of the underlying expectation.

In the top row of Fig. 2, we show two images of the dataset. By inspecting the
enlarged fragments, we can observe how the two images are practically equal except
for the individual noise realizations. Indeed, we can formally define the image noise
as the difference between the captured images and their mathematical expectation,
i.e., the average of infinitely many images like those captured in the dataset, where
the latter, denoted by ¥, can be treated as the ideal noise-free image. Since the dataset
contains only finitely many images (M = 30), we can approximate the mathematical
expectation by the pixelwise sample average,
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M —_—
¥(x) =E{z(x)} ~ % 2:,1 2" (x) =E{z(x)}, ®)

resulting in the image in the left-hand side of Fig. 3. Note in the enlarged fragments
how the noise is virtually removed everywhere.

The cross section shown in Fig. 4 introduces the reader to a main feature that
is shared by most of the noise types under consideration: noise affecting the bright
parts of the image is significantly stronger (i.e., larger errors) compared to the noise
affecting dark regions. This can be quantified as the standard deviation of the noise at
each pixel (again, computed over infinitely many such captured images), which we
can approximate by the pixelwise sample standard deviation over the finite dataset,

M M 2 .
mﬁ@“jnflﬁwa—;wa>:m&wL ©

which is shown in the image in the right-hand side of Fig. 3. To provide a visual
exploration of the relation between the expectation and the standard deviation of
the noisy raw pixels, Fig. 5 shows a scatterplot where each red dot represents a

—

(E {Z(x)}, st@)}) pair for x € Q. The scatterplot can be interpreted as a cloud

of points about an unknown smooth curve that describes the noise standard deviation
as function of the signal expectation. However, this interpretation is admissible only
if the dispersion of the scatterpoints is compatible with the existence of such curve.
Indeed, leveraging the CLT and the first-order Taylor expansion of the square root

—

at var {7 (x)}, the distributions of E{Z(x)} and st(i/{ZE)} can be approximated for
large M as

—

B0}~ (BG)  parlz)}). (10)

std{Z(x)} ~ AN (std{ax)},i;‘var{z(x)}) : (11)

where K is the excess kurtosis of Z(x). Taking into account the sample histograms
plotted in Fig. 6, the distributions (10)-(11) fully explain the dispersion visible in the
scatterplot and suggest a functional relation between E {Z (x)} and std {Z (x) }, which
may be obtained, e.g., by processing the scatterplot with a smoother. The histograms
also illustrate that 7 is not identically distributed and that its distribution varies from
pixel to pixel according to the expectation.

Another important feature that can be ascertained from Fig. 2 and Fig. 3 is the
fact that the brightest areas of the image saturate to white. This phenomenon is
commonly referred to as clipping and results, in particular, in the drop of sample
standard deviation that can be observed in Fig. 3 and Fig. 5, and in the lack of
Gaussianity in some of the histograms in Fig. 6.
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0.08 — —
(EG@)stdz@))]

—

Fig. 5: Scatterplot of the pairs (E {Z(x)},std{z (x)}) drawn as red dots. The dis-

persion visible in the scatterplot is described by the distributions (10)-(11) of the
estimated pairs.

—— — — —

E{z(x)} ~ 0.025 E{z(x)} =~ 0.3 E{z(x)} ~ 0.7 E{z(x)} ~ 0.95

{ ﬂ m ettt

‘ [
0.4 0.6 0.7 0.8 0.85 095 1

I

00.025 0.075 O‘.2 0.‘3

o2 =0.0002 02 =0.0014 02 =0.0029 02 =0.0024
Kk =0.71 k=0.12 kK =0.014 Kk =0.032

Fig. 6: Histograms of the pixels Z(x) from the dataset with pointwise sample mean

E{Z(x)} ~[0.025,0.3,0.7,0.95]. Below each histogram we report its variance ¢>
and excess kurtosis K.

Overall, the above analysis indicates that the noise affecting the dataset images
is signal-dependent in the sense that its characteristics at each pixel x depend on the
value of the underlying noise-free image, i.e., on §(x) = E{Z(x)}.

In the next section, we will derive, step-by-step, a simple yet effective mathemat-
ical model that accurately describes the behavior of the points of the scatterplot in
Fig. 5, that provides a direct functional relation between E {7 (x)} and std {Z(x)} and
that explains the shape and moments of the histograms as a function of E{Z(x)}.
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= ¢|6]

pmf [z (x)

Fig. 7: Illustration of the family of Poisson distributions (12). We show the distribu-
tions with mean y (x) = 6 = 1,3, 10,20, 30.

>

4 One-Parameter Families of Distributions

A one-parameter family of distributions {Zg }4.¢ is a collection of distributions,
each of which is identified by the value of a univariate parameter 8 € ® C R.

Let z be a random variable distributed according to a one-parameter family of
distributions {Zg }gcg: this means that for each individual 6 € @, the conditional
distribution of z given 0 is %y, i.e., 7|60 ~ Py. Hence, the conditional expectation
and the conditional standard deviation of z given 0, i.e., E{z|6} and std {z|6}, are
two functions of 8.

In the following sections, we cover some of the most important one-parameter
families of distributions for modeling noise of digital imaging sensors, describing
them in detail through the corresponding probability density functions (PDFs) or
probability mass functions (PMFs), and their mean and variances.

4.1 Poisson Noise and Poisson Family of Distributions

The simplest way to model an image captured by a photodetector array is to repre-
sent it as a realization of independent Poisson random variables. In particular, the
captured image z is modeled as



Modeling and Estimation of Signal-Dependent and Correlated Noise 11
2(x) ~ Z(y(x)),
yx)fe (12)
=~ e NU{0
pmf[z(x)—my(x)}—{ & eNUiD)

0 elsewhere,

where y > 0 is the noise-free image, which can be thought as a proxy for the photon
flux, and the symbol & denotes the Poisson family of distributions. This is a one-
parameter family of distributions with parameter & = y (x), which coincides with
the mean and variance of the conditional distributions:

E{z(x) [y(x)} =var{z(x) | y(x)} =y (x). (13)

Figure 7 shows examples of distributions from the Poisson family.

Poisson noise can be formally defined as z —y. It is clear from (13) that the
mean of Poisson noise is zero, i.e., E{z(x) —y(x) | y(x)} = 0, and its variance is y,
ie., var{z(x) —y(x) | y(x)} = var{z(x) | y(x)} = y (x). From (13), we can also ob-
serve an important property of Poisson noise: since the variance is equal to the mean
of the signal, there is a square root relation between mean and standard deviation.
This implies that the signal-to-noise ratio SNR

sNR— BE® Y@} v

y _
Vvar{z(x) [y} oy () B

increases when the intensity of the noise-free signal y increases and converges to
zero when y approaches zero. This means that Poisson images captured at lower in-
tensities, even though in absolute terms feature a lower variance, they are in practice
noisier relative to their mean intensity, and when y < 1 they are effectively domi-
nated by noise. Such conditions correspond to what is commonly termed photon-
limited imaging, which is one of the most challenging imaging scenarios, requir-
ing binning or special denoising procedures (see, e.g., [Azzari and Foi, 2016]). Al-
though infrequent in the context of consumer imaging and photography, photon-
limited imaging is an increasingly important scenario in scientific imaging, partic-
ularly in astronomical imaging, fluorescence microscopy, and low-dose radiation
imaging for medicinal diagnostics.

y(x) (14)

4.2 Scaled Poisson Distribution Family

In many cases, it is convenient to use the so-called scaled Poisson distributions,
where a positive scaling parameter controls the noise variance relative to the signal
mean. Such scaling factor is commonly used to model the quantum efficiency of the
imaging sensor, i.e., the ratio between the (average) number of converted electrons
to the number of incident photons.

A scaled Poisson distribution with scale parameter a > 0 and mean y (x) > 0 is
of the form
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alz(x)~ 2 (afly(x)) , )
(y(x)/a)s/4e=()/a
me[Z(X):CU(x)]:{O)(C/a)! $ e€{0,a,2a,3a,...} a6)

elsewhere.

The resulting family of distributions can be parametrized by 6 = y (x). The mean
and variance of the scaled Poisson distributions are

Efz(x) [y(0)} =y(x)

var {2 (x) | ()} = a (x). 4"

Observe that the parameter a scales only the variance but does not affect the ex-
pectation; hence, it controls the relative strength of the noise, and in particular we
have

SNR— _EE@[yF v (18)

var {z(x) [y (x)} a

4.3 Poisson-Gaussian Noise

The Poisson-Gaussian noise model is given by the sum of two independent sources
of noise: Poisson or scaled Poisson, whose variance is signal-dependent (and pro-
portional to the signal mean) and Gaussian, whose variance is signal-independent.
Its formal model is

z(x) =ap(x)+n(x), (19)

where
px)~P (afly(x)) and n(x) ~ A (0,b), (20)

and the constants a > 0 and b > 0 are, respectively, the scaling factor for the scaled
Poisson addend ap and the variance of the Gaussian addend n. We have

& ) /a)f e/ I
pdfz(9) [y (€)= X, A X e . ey

which also corresponds to a one-parameter family of distributions with parameter
0 =y (x). The conditional mean and variance of z are

E{z(x) [y(x)} =y (x)
var{z(x) | y(x)} = ay (x) +b.

(22)

The Poisson-Gaussian noise is formally defined as z(x) — y(x), and by (22) it has
zero-mean and affine variance on y.
The SNR is calculated as
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0.7 T T 0.5 T T 0.2 T T T

0.35 - N 0.25 - N 0.1 N

-2 0 2 -2 0 2 4 -5 0 5 10 15

Fig. 8: Gaussian approximation of the Poisson distribution. From left to right we
draw in red the discrete Poisson distributions &7 (i), and in blue their Gaussian
approximations .4 (1, it) for three different mean values p = [0.5,1,5]. Note how
the accuracy of the approximation improves as [ increases.

E{(0) [y()} Y ()
SNR = = . 23
VarE@ ] Va6 @y

4.4 Gaussian Approximation of the Poisson Distribution

For large mean values, the Poisson distribution is well approximated by a Gaus-
sian distribution with mean and variance equal to the mean of the Poisson random
variable:

P ()~ N (u,u). (24)

Here, we derive an intuitive proof based on the CLT and on the fact that the Poisson
distributions are closed family with respect to summation of variables.

Let us consider two independent Poisson random variables X; and X5, and their
sum Y = X; +X5. Assuming that X; and X, have means px, and Lix,, respectively,
the probability that the sum X; + X; takes a given value { € N is the sum of the
probabilities that X; takes value i € N and 0 < i < { and X; takes value { —i (thus
summing up to §):

IJXE —Hx, HC oMy

¢
pmf[X; + X, =] = mef[Xl =ipmfXp = —i] = Z

i=0 = (€ —1i)!
¢ ui ”C—i ¢ .
e X%
e (1, %)i;) ﬁ_ (hx, ;) Z( )lelixz
(x, + poy) e 5 %)
= C! 3
(25)

which shows that ¥ = X 4+ X5 is a Poisson random variable with mean and variance
Ux, + Wx,, i.e., Y ~ & (ux, + U, ). Hence, any Poisson random variable with large
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‘ 0.95
0.5} i
0 1 | 0.05
=10 2 10 20 40 60

Fig. 9: Cumulative distribution functions of the Poisson & (i) and of the Gaussian
A (U, ), o =2,10,20,40, showing convergence in distribution for large u.

enough mean can be expressed by a summation of many Poisson random variables
with smaller means. Therefore, according to the CLT, as the mean value increases,
the Poisson distribution converges in distribution to a Gaussian distribution with
mean and variance equal to the mean of the Poisson random variable. Figure 8
shows in red three Poisson distributions with means y = [0.5,1,5] overimposed
to three Gaussian distributions, blue lines, with means and variances equal to U.
We can observe that already for u = 5 the Gaussian provides a relatively good ap-
proximation of the Poisson distribution. This is further illustrated by the cumulative
distribution functions shown in Fig. 9 for u = 2,10,20,40. Most imaging applica-
tions deal with Poisson models well above such values and can thus leverage the
approximation (24).

With the above approximation in mind, in many applications, it is possible to
replace the family of Poisson distributions with a family of Gaussian distributions
with nonconstant variance that depends on the signal expectation. This approxima-
tion in the modeling is appealing as it often results in simplification of analysis and
processing operations such as noise estimation and denoising.

4.5 Signal-Dependent Heteroskedastic Gaussian Models

As a consequence of (24), we can approximate the Poisson-Gaussian model (19)
by the sum of a deterministic signal y(x) and two zero-mean Gaussian random
variables, one with signal-independent variance b and one with signal-dependent
variance ay(x). Since the sum of two zero-mean Gaussian random variables is still
a zero-mean Gaussian random variable with variance equal to the sum of the vari-
ances, we have

() =y(x)+0o(y(x)&x), (26)
where & (x) ~ .47(0,1) and
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Fig. 10: Homoskedastic Gaussian distributions .4 (/.1,52) (drawn in blue); het-
eroskedastic Gaussian distributions with affine variance (drawn in green) from the
family of distributions .4 (u, 1t); heteroskedastic multiplicative Gaussian distribu-

tions (drawn in red) from the family of distributions .4 (,u7 (0.5 [,L)z). We show the
distributions with means y = [2, 10,20, 30,40).

o (y(x)) = Vay(x) +b, @7

6 :R — [0,1) being a univariate function (so-called standard deviation function")
that gives the signal-dependent standard deviation of the noise as a function of the
deterministic noise-free signal y (x). Hence, z(x) ~ A4 (y(x),02 (y(x))), i.e.,

_(C*WO)
pdffe(0) |y (0] () = spbime O 8)

which constitutes a one-parameter family of distributions that depends only on the
location parameter 6 = y (x) that consequently defines the standard deviation of the
noise. Trivially,

Efz(x|y())}=y(x) and  sdfz(x)[y()}=0((). (29

It is evident that this model is extremely general and not limited to ¢ in the
affine-variance form (27), but can adopt arbitrary nonnegative standard deviation

! Throughout the chapter, we use the expressions standard deviation function and standard de-
viation curve interchangeably; similarly for the variance we consider the equivalent concepts of
variance function or variance curve.
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Cross section

Fig. 11: Example of a clipped noisy signal. Left: clipped detail from one of the
images of the sample dataset with highlighted cross section in red. Right: plot of the
cross section. Note how the signal is clipped about the boundaries [0, 1].

functions. We call these noise models signal-dependent heteroskedastic Gaussian,
meaning that the variance of the Gaussian noise is not constant and depends directly
on the noise-free signal. When o is fixed and constant, i.e., such as when a = 0
in (27), (26) trivially reduces to the AWGN model (2), where the noise is signal-
independent and homoskedastic (constant variance).

Figure 10 illustrates three different families of distributions of the form (28):
homoskedastic Gaussian distribution with constant ¢ = 5, i.e., A4 (1,5%); het-
eroskedastic Gaussian distributions approximating the Poisson family, i.e., .4 (1, 1),
where the variance is equal to the mean; and the multiplicative noise with .4 ( u, c/.tz) ,
where the standard deviation is proportional to the mean.

To clarify why the third case is multiplicative, we note that if & (y(x)) = /cy(x)
we can rewrite (26) as

) =y()nx), Nk ~A(c). (30)

4.6 Doubly Censored Heteroskedastic Gaussian Noise: A Model
Jor Clipped Noisy Data

All acquisition devices have a finite dynamic range that may not represent the large
variation in luminosity in the scene. The device (typically at the analog-to-digital
conversion stage) replaces values of intensities that exceed the range with the bound-
ary values; in other words, the captured image can be modeled as
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7 =max (0,min(1,z)), (31

where the range of the captured image 7 is normalized to [0, 1] and where the im-
age before the min and max operations is denoted by z and is modeled as in (26).
This procedure is commonly known as clipping. In Fig. 11 we show an example
of clipped noisy signal: see how the values that exceed 0 and 1 are replaced by
these bounds. The assumption that the image range in normalized to [0, 1] is made,
without loss of generality, for the sake of mathematical simplicity. It is clear that
the noise statistics of a clipped image are not preserved by the clipping operator; in
other words, if for example the acquired image z is affected by Poisson-Gaussian
noise, the statistics of the noise affecting the clipped image 7 are not the same.
Thus, 7 follows a different one-parameter family of distribution and is subject to a
different noise model than z. In what follows, we use the tilde decoration to denote
variables directly related to clipped observations, following the main development
and notation from Foi et al. [2008] and Foi [2009].
The corresponding noise model for the clipped observations (31) is

X)) =5(x)+6(F)EK), (32)

where § (x) =E{Z(x)}, 6 : § — R" gives the standard deviation of the clipped noisy
data as a function of their expectation, i.e., & (¥ (x)) =std{Z(x)}, and E{€ (x) } =0,
std{& (x)} = 1. Because of clipping, in general, we have that

F) =B{Z(0) [y(0)} #E{z(x) [y(0)} =y (x)
6 (¥(x)) =std{Z(x) |y(x)} #std{z(x) | y(x)} =0

and y # 7 C [0, 1]. Rewriting (32) as

; (33)
&), (34)

Z(x) =y () + [§(x) =y (¥) + 6 (7 (x)) € (¥)]

we can see that, with respect to the underlying noise-free signal y, the clipped ob-
servations Z are corrupted by a random error (the term in square brackets) which has
nonzero mean. Observe also that, even though std{& (x) } =std {& (x)} = 1, the dis-
tributions of & and & are different. In particular, assuming & (x)~.4" (0,1), we have
that <§ (x) follows a doubly censored Gaussian distribution [Cohen, 1991] supported

on |55 535 |
6(3)’ 6(9)

Figure 13 shows an example of the curves (y,0 (y)) and (¥,6 (9)), for o (y) =
+/0.01y+0.042. We emphasize that each curve is drawn in the corresponding ex-
pectation/standard deviation Cartesian plane (i.e., we plot the “non-clipped” o (y)
against the y, o axes and the “clipped” & (¥) against the 7, & axes). The figure illus-
trates the correspondence between points on the two curves given by Egs. (31)-(33).
Note that the curves from Fig. 13 are extremely similar to the scatterplot in Fig. 5,
hinting that our dataset is effected by clipping.
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Fig. 12: Examples of doubly censored Gaussian distributions drawn in blue, and
underlying uncensored Gaussian probability density function (PDF) drawn in red.
Top row: the standard deviation ¢ of the uncensored Gaussian PDF is fixed and
equal to 0.4. Bottom row: the standard deviation of the uncensored Gaussian PDF
varies according to the function o (y) = 1/0.01y+ 0.042, as illustrated in Fig. 13.
Compare with the empirical histograms in Fig. 6.
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Fig. 13: Standard deviation function & (y) = 1/0.01y+0.042 (solid line) and the
corresponding standard deviation curve & (¥) (dashed line). The gray segments il-
lustrate the mapping & (y) — & (¥). The small black triangles A indicate points
(¥,6 (¥)) which correspond to y = 0 and y = 1. Distributions corresponding to these
curves are shown in the bottom row of Fig. 12.
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4.6.1 Expectations and Standard Deviations of Clipped Variables and Their
Transformations

A crucial point when working with clipped noisy signals is to understand how the
variables and functions of the observation model (26) relate to those of the clipped
observations’ model (32). In particular, it is important to compute the functions
¥y and & given o and y, and vice versa. The PDF of the unobserved non-clipped

noisy data z ~ .4 (y,62(y)) is simply ﬁq) (%) (28), whereas the clipped
7 =max {0,min{z, 1}} is distributed according to a doubly censored Gaussian dis-

tribution having a generalized PDF of the form

pdf (= ] = & (535 ) & (8) + 5159 (55 ) o+

. (35)
o155 ) & (1-0),
where ¥|o,1] denotes the characteristic function of the interval [0,1] and &y is the
Dirac delta impulse at 0. Here, ¢ and @ are, respectively, the PDF and cumulative
distribution function (CDF) of the standard Gaussian .4 (0, 1). The first and last ad-
dends in (35) correspond to the probabilities of clipping from below and from above
(under- or over-exposure), and are expressed as Dirac deltas with masses equal to
the areas of the underlying Gaussian distribution that fall outside the boundaries. In
Fig. 12 we give some examples of doubly censored Gaussian distributions (drawn in
blue) against their uncensored counterparts, i.e., Gaussian PDFs (drawn in red): note
how the impulses at the boundaries 0 and 1 have mass (shown as height) that de-
pend on the corresponding censored parts of the Gaussian PDF outside the allowed
intensity range. Thus, (35) defines a one-parameter family of distributions with pa-
rameter y, that also identifies the heteroskedastic Gaussian family of distributions
used to build the doubly censored family.
Tedious calculations provide the following exact expressions of the expectation
and variance of Z (see, e.g., [Greene, 2000], Chap. 20 or [Johnson et al., 1994]):

Efzly}=7=0(55) -2 (i) - D+
s (16 (5) - o019 (35)

var{z |y} = 62 () =@ (515 ) (7~ 2+ 02 () + 7~
(L) (P -2v+27+020) - 1) +00) G

0 (355) @-y-1)-0(9 () 27—

For a given function o, these expressions explicitly define the two functions

(36)

—- I
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Ao (y) =7, (38)
Bs(y) =6 (5)- (39)

and a mapping
10 () — (5,6 () (40)

that brings the standard deviation curve (y, 6 (y)) to its clipped counterpart (¥, & (§)).
In Fig. 13, we give an example of standard deviation function o (y) = /0.01y +0.042
(solid line) and clipped standard deviation curve G( 7) (dashed line). The gray seg-
ments are used to illustrate the mapping o (y) — & (¥) (40).

The inverse of .75 will be formally denoted as

Co:—ry=%5(9). (41)

Invertibility requires some hypotheses on the standard deviation function o; for
instance, it can be shown that (41) is well defined provided that 6 (y) = v/ay+b
with a > 0 and 7% < % [Foi, 2009]. The function %, is instead not invertible for
the most common types of standard deviation functions, for which 6 (0) =6 (1) =0
[Foi, 2009].

Although the expressions (36) and (37) can be eventually useful for a numerical
implementation, they are cumbersome and cannot be easily manipulated for further
analysis.

4.6.2 Approximation Using Singly Censored Variables

We can simplify the above analysis under the assumption that there are no values of
y for which the clipping from below (z < 0, Z = 0) and clipping from above (z > 1,
Z = 1) may both occur with significant probabilities. This assumption means that,
for a fixed y, at most one of the impulses in the PDF (35) has mass appreciably
larger than 0. In practice, this assumption is always verified under normal capture
settings. Exceptions are extreme situations where the noise is dramatically strong
with respect to the [0, 1] range (e.g., o (y) > 0.2 for all y € [0, 1], like in the case
illustrated in Fig. 12).

Let v ~ 4 (u,1) be a normally distributed random variable with mean E{v} =
U and unitary variance, and let ¥ = max {0, v}. Similar to (36) and (37), it can
be shown that the expectation E{V} and the variance var{V} of the clipped (from
below) V are

E{V}=&(n)=2()pu+9 (1), (42)
var{v} =75 (1) = D (u)+ & (W) 1 — &, () = 43)
=D () +¢ (L) u— () +
D (u)p(p—Dd(u)u—29 (1))
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Fig. 14: Expectation E{V} and standard deviation std{V} of the clipped ¥
max {0, v} as functions &, and .%,, of u, where u =E{v}and v ~ 4 (u,1).
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Fig. 15: Standard deviation std {¥} of the clipped ¥ = max {0, v} as function .#, of
the expectation E{¥}. The numbers in italic indicate the corresponding value of L,
where u =E{v}and v ~ 4 (u,1).

The plots of the expectation E{V} = &,,(it) and of the standard deviation std {V} =
() are shown, as functions of i, in Fig. 14. Figure 15 combines these two func-
tions and visualizes the mean-standard deviation curve characteristic of standardized
clipped variables.

Exploiting these functions, the direct and inverse transformations which link o
and y to y and & can be expressed in the following compact forms [Foi et al., 2008].

Direct transformation: obtain § and & from'y and ¢

Provided that y = E{z} and o (y) = std{z} from the basic model (32) are known,
the expectation § = E {Z} and the standard deviation & () = std {Z} from the obser-
vation model (32) are obtained as

J=do(y) = A (y,0(y) =
= 0(0)én (5l7) +1-3—00)én (355 (44)
() = Zol3) = B(.0) = 00) Zu( 57 ) Zn(35s) - 49)

[e]}

Compared to the exact (38) and (39), the approximate equations (44) and (45) pro-
vide a more intuitive description of the transformations that bring the standard devi-
ation curve (y, o (y)) to its clipped counterpart (¥, & (¥)). For instance, provided y is
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Fig. 16: Scatterplot of the pairs (E {Z(x)},std{z (x)}) drawn as red dots, and esti-

mated clipped (black dashed line) and non-clipped (black continuous line) noise
standard deviation curves. The small black triangles A indicate points (¥,6 (¥))
which correspondtoy=0and y = 1.

ao(y)
and .%, (%) can be substituted by % and 1, respectively (the substitution is
asymptotically exact). Thus, for describing the clipping from below, (44) and (45)

sufficiently smaller than 1, by observing Fig. 14 it is easy to realize that &, ( Ly )

can be reduced to, respectively, o (y) &, ( 50

to construct the graph of (¥, 6 (¥)) in the vicinity of (0,0) by simple manipulations
of the graphs of &), and .7,.

and 0 (y) % | =% ), which allows
) ()

Inverse transformation: obtain y from & and y

The approximation of (41) for calculating the non-clipped y (26) from the clipped
and & (¥) can be given as

y=%) =€ ([$.6(y)=
=56 (55) —7+1-(1-9)& (5

<

). (46)

=
Y

where &, is defined implicitly as function of p = f;:’n%)) = % by & (p) = m“

5 Estimation of the Standard Deviation Curve

The main purpose of noise estimation algorithms is to estimate the standard devia-
tion curve. The most common framework first builds a scatterplot with mean values
of the signal on the abscissa, and corresponding standard deviations (variances) on
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Fig. 17: Noise standard deviation (black curve) o (y) estimated from one image from
the dataset. We show also the estimate of the clipped standard deviation (dashed
curve) 6 () and the scatterplot used for the fitting. For the estimation we used the
algorithm [Azzari and Foi, 2014a], and the estimated parameters are a = 4.315- 1073
and b =15.814-107°.

the ordinate (see the scatterplot in Fig. 5); then, it fits a parametric curve over these
points. When only a single image is used for estimation, it is common practice to
compute each scatterpoint from homogeneous samples, i.e., each element in a sam-
ple shares a unique common expectation value (hence, they also share a common
unique variance value). This practice is based on the fact that the sample variance
of homogeneous samples is an unbiased estimator of the noise variance for that par-
ticular expectation value. Consequently, each point in the scatterplot has a direct
relation to a point on the curve we want to estimate.

Regardless of the estimation algorithm, it is convenient to model each mean-
standard deviation pair estimate (J;, 6;) with a bivariate PDF of the form

pdf [(Vi, 6;) [5: = 7] = pdf [§:]; = §] pdf [6;]5: = 7], (47)

where the subscript i indicates the generic i-th estimated pair in the scatterplot. Note
that the joint probability is reduced to a product of univariate distributions because
one can assume that the estimates J; and 6; are independent [Johnson et al., 1994].
Given the distributions of all the pairs {J, 6,‘}5\]:1, the posterior likelihood function
L can be calculated as the product of all the densities pdf|[(¥;, 6;) |J; = 7] with the
prior density pdf[y] of y:

N
£(6) =TT [ paf[(55,9) 15 = 51paf ] @8)
i=1

where 0 is an m-dimensional vector composed by the model parameters to be es-

timated. The likelihood function L expresses the joint probability function of the

whole collection {¥;, 6i}f.\/=1. The vector 6 determines univocally the standard devi-
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ation curve o (y), e.g., 0 = [a,b], m =2 in case of the affine mean-variance relation
(27). The maximization of L leads to the estimation of the noise curve parameters 6.
Note that although clipped data is bound to the [0, 1] interval, assuming that pdf[y] is
a uniform density supported over [0, 1] is incorrect, since this prior probability refers
to the signal before clipping and this signal can naturally exceed the boundaries of
the unit interval, e.g., an overexposed signal y is typically larger than 1. Therefore,
one may assume either a noninformative prior for which all y € R are equiprobable
or most commonly a nonnegative signal prior for which all y > 0 are equiprobable
and y < 0 is impossible, which simplifies (48) to

N oo
L) =] /0 pdf[(51, &) |5 = 7] dy 49)
=1

The joint PDF can be, for example, a product of two univariate Gaussian PDFs (see,
e.g., [Foi et al., 2008]), a product of Gaussian-Cauchy mixtures [Azzari and Foi,
2014a], or other PDFs depending on the data and on the method adopted.

Figure 16 shows an example of scatterplot fitting through maximization of
the likelihood function (49): the scatterpoints, drawn as red dots, are the pairs

(EE@}7 st@)}) estimated in (8) and (9) using our dataset (see the same scat-

terplot in Fig. 5); the estimated lines are drawn in black and have been estimated
maximizing (49) using the PDFs introduced in (10)-(11), where the index i takes
the place of the index x. Note how the estimate of the clipped standard deviation
(dashed line) diverges from the non-clipped one (continuous line) when approaching
the boundaries [0, 1], which follows the divergence between the basic heteroskedas-
tic Gaussian distribution and the proper heteroskedastic singly censored Gaussian
(e.g., as illustrated in Fig. 12).

Most algorithms in the literature for estimating the variance function ¢ are de-
signed for an affine function of the signal mean, because it provides a reasonably
accurate description of the output (without clipping) of imaging sensors commonly
found in digital cameras. Nonetheless, some algorithms such as [Sutour et al., 2015;
Azzari and Foi, 2014a], inherently support models of arbitrary order (e.g., a vari-
ance function defined as a quadratic or higher-order polynomial of the signal mean)
and can be used in scenarios where a higher-order of approximation of the noise
variance function is needed, such as the case considered in Sect. 7.

In the remainder of this section, we describe relevant approaches for the esti-
mation of the noise standard deviation curve (or equivalently the variance curve)
under the assumption of white noise. While the problem of estimating the corre-
lation (power spectral density) of colored noise is investigated in Sect. 6.3.2, the
majority of the methods below can be extended, with due modifications, to the more
generic case of the estimation of the standard deviation curve of signal-dependent
colored noise. Note that our overview is without any pretension of completeness,
with the only goal of briefly introducing the fundamentals behind the most popular
approaches for noise estimation.
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5.1 Patch-Based Methods

A prominent patch-based algorithm is introduced by Lee and Hoppel [1989]. The al-
gorithm divides the image into small patches and computes their mean and variance
to build the scatterplot of mean-variance pairs. Since image blocks might contain
heterogeneous elements that would mislead the estimation of the local variances,
the authors estimate the noise parameters by finding the curve that intersects most
of the scatterpoints. In this way they reduce the effect of outliers that usually ap-
pear far from the majority of the scatter-points. In a similar work, Amer and Dubois
[2005] evaluate, using directional derivative filters, the uniformity of each patch that
generated a data point. Comparing the uniformity against a threshold, the algorithm
decides whether to use the scatterpoint (if the patch elements are homogeneous) or
to discard it. Finally, since the outliers have been already excluded, a simple least
square (LS) fitting is adopted. In [Sutour et al., 2015], the authors divide the image
in nonoverlapping blocks; based on the Kendall’s 7 coefficients, adopted to find the
correlation between elements from the same block, the blocks are then classified
as homogeneous or heterogeneous. The heterogeneous blocks are discarded, while
the homogeneous ones are used to compute the local statistics for the fitting of the
noise variance curve. An important aspect of the algorithm is that a robust fitting is
performed by minimizing the ¢; error of the residuals. Similar works can be found
in [Meer et al., 1990; Lee, 1981; Mastin, 1985]; however, we decide not to go into
further details.

An interesting variant has been proposed by Boulanger et al. [2010]. They divide
the image into adaptive blocks whose size depends on the variance of their elements
(homogeneity). If the variance of a block matches the variance model (Fisher test is
used to compare the two), then the block is considered homogeneous, otherwise the
block is further split into four parts and each subblock is then analyzed as before.
Finally, the authors perform noise parameters estimation via robust linear regression
of the local estimates.

5.2 Segmentation-Based Methods

We now describe the most relevant segmentation-based approaches for noise esti-
mation. Gravel et al. [2004] segment the observed noisy image into homogeneous
samples that are each used to compute a scatter-point. The segmentation is per-
formed by first smoothing the observed image, and then by grouping pixels with
similar intensity. This leverages the fact that a smoothing operator suppresses the
noise and facilitates the segmentation process. Pixels from edges and texture are
excluded from the estimation, since the segmentation is inaccurate in those regions.
The noise parameters are finally estimated using a weighted regression of the scat-
terplot points.

Another type of segmentation is proposed in [Liu et al., 2006], where the authors
do not filter the image, but they bin the image elements using a K-means clustering
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method. A robust fitting algorithm is then adopted to cope with possible inaccu-
racies of the K-means clustering: the noise parameters are estimated by fitting a
lower envelope of the scatterplot, computed by maximizing a likelihood function
(see (49)) that takes into consideration the possible overestimation of the scatter-
points variances. Similarly, Foi et al. [2008] filter the observed image, segment it,
and then maximize a likelihood function to estimate the noise parameters. A major
novelty introduced by this work is that it takes under consideration the clipping of
the data. Figure 17 shows the estimation results of the algorithm [Foi et al., 2008]
applied to an image of our dataset. Note how, although the number of scatterpoints
used for the likelihood maximization is much smaller compared to the scatterpoints
in Fig. 16, the estimated curves are quite accurate. The algorithm deals with clipped
data using the mappings (45), (44), and (46), and estimates a parametric model of
the noise affecting the non-clipped signal from the clipped noisy observation, simul-
taneously providing the standard deviation functions & for the clipped noise and ¢
for the underlying data before clipping.

5.3 Alternative Approaches

In [Azzari and Foi, 2014b], it is shown that the use of homogeneous samples is
not a requirement to estimate the affine-variance model (27), and thus the noise
parameters may be estimated without any image segmentation and by leveraging
instead robust filters.

The algorithm described in [Mikitalo and Foi, 2014] estimates the noise by ex-
ploiting the variance stabilization achieved by the generalized Anscombe trans-
formation (GAT). The GAT is a nonlinear univariate transformation that converts
signal-dependent Poisson-Gaussian noise into approximately additive and signal-
independent noise with unitary variance. The GAT is defined based on the same
parameters a and b adopted to describe the Poisson-Gaussian noise. This approach
for noise estimation is based on the observation that the variance stabilization is not
accurate when the GAT parameters do not match the ones from the noise model.
Hence, the noise parameters are obtained by finding the GAT parameters that yield
the most accurate variance stabilization.

Finally, the algorithm in [Pyatykh et al., 2013] estimates the noise parameters by
analyzing the last eigenvalues of the singular value decomposition (SVD) of homo-
geneous patches from a noisy image. These eigenvalues capture noise and virtually
no signal, and are therefore used to estimate accurately the noise parameters.

6 Correlated Noise

So far we have described noise models characterized by a flat power spectral density,
i.e., various types of white noise. According to those models, the noise affecting dif-
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Fig. 18: White noise vs. three examples of colored noise.

ferent pixels is uncorrelated. However, in many practical applications, there could
be correlation in the errors: this correlation might be due to the physics of the ac-
quisition system, to the sensor’s readout process, to cross-talk between neighboring
pixels, or due to processing performed on the raw image after the acquisition. These
types of acquisition errors can be modeled by the so-called colored noise models,
which assume a stationary spatial correlation among noise realizations, as illustrated
by the examples in Fig. 18, and that can be characterized by a nonconstant power
spectral density of the noise. In this section, we discuss models for correlated noise,
starting from the simpler case of signal-independent stationary colored noise and
then introducing two forms of signal-dependent colored noise.

6.1 Stationary Correlated Noise

The generic model for a noisy image z corrupted by a zero-mean stationary additive
correlated noise 7 is

() =y +nl),  nx)=(veg) ), (50)

where x€ Q C Z?, y is a deterministic noise-free image, V is zero-mean independent
noise with unit variance, and g is a convolution kernel that determines the variance
and the spatial correlation of the noise 1. Specifically, the variance and the power
spectrum (PSD) (4) of n are

var(n(x)}=|gl3,  ¥=var{F ]} =|Zg]* |, 5D

and by Parseval’s isometry we have
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-1 2 -2
var{n(x)} = Q|7 [|.F [g]ll; = [ [¥], . (52)

For the sake of simplicity, we assume a circulant convolution in order to leverage
the convolution theorem. Model (50) reduces to the AWGN model (2) when g is a
scaled Dirac impulse with mass ¢ and v is Gaussian.

We say that the noise is colored when the noise power spectrum is markedly not
flat. Whenever there is a dominant spectral band characterized by a significantly
larger noise variance, the spectral position of this band determines the “color” of
the noise; thus, noise predominately affecting the low frequencies is often called
“red noise”, as opposed to a “blue noise” which is mostly localized on the high fre-
quencies. Figure 18 compares white noise with three examples of correlated noise.
Different types of spatial correlation can be appreciated, with the noise affecting a
pixel influenced by the surrounding noise realizations.

6.2 Correlated Signal-Dependent Noise Model

Depending on the physics and hardware of the acquisition process, noise can fea-
ture both correlation and signal-dependent characteristics. However, a PSD and a
variance function cannot be defined exactly within the same model, because their
underlying generative processes are incompatible with each other. The two mod-
els presented in the next subsections show two extremes of a compromise: the first
model ignores the means of neighboring pixels and thus the variance is defined ex-
actly at the expense of the PSD model, which is only approximate; in the second
model the PSD is expressed exactly while the variance function is approximate. In
intermediate cases, neither the PSD nor the variance function may be defined ex-
actly. Although formally quite different, the model discrepancies are shown to be
typically small in smooth areas of the image, making these approximate models
useful and constructive [e.g., Azzari and Foi, 2017; Borges et al., 2017].

6.2.1 Noise Scaling Post Correlation

The first model assumes that the signal-dependent part of the noise acts as a deter-
ministic scaling term to a stationary correlated noise:

2(x) = y(x) + o (y(x)) n(x),

53
n=vag, v ()~ A4(0,1), c:y—R", (53)

where o is a generic standard deviation function. The expectation and variance of z
are, respectively,
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E{z} =y, (54)
var{z} =var{o(y)v@g} = o*(y)var{v® g} =
o> () l18ll3 = o*(E{z}) |lsll3- (55)

With regard to the PSD, it can be approximated as
2
var{Z o]} = |7 [¢][|o* W], - (56)

Roughly speaking, (53) describes a physical process where the correlating process
takes place before the signal-dependent amplification of errors.

6.2.2 Noise Scaling Prior to Correlation

The second model considers instead a case where the correlating process operates
on a ready signal-dependent white noise model:

7(x) =y(x) +0(y(x) v(x), (57)
2(x) = (F ®g) (x). (58)
The expected value and variance of z are, respectively,
E{z} ~E{<} gl =yllgll; . (59)
var{z} mvar {2} [lg][3 = > (v(x)) g3 (60)

where the approximations become accurate in large smooth areas of the image
where the intensity changes gradually. Combining (59) and (60) we obtain

var {2} ~ oZ(E{Z}) lel2. 61)

18l
E
o2 ( {z} )
8l
Thus, both Model 1 and Model 2 express the variance of z as a function of its ex-
pectation, where the main differences consist merely in a scaling of the variables,

and this scaling is determined by the ¢; and ¢, norms of the convolution kernel g.
Therefore, macroscopically, the two models are comparable.

The PSD for (58) is

var{Z 2]} = | Z [¢]1* || * )|, = |2 (8l (62)

1

Before we proceed, let us observe that the degree of approximation in (59)-(60)
can be quantified by expanding the expression of z (xp) at the generic coordinate x:

2(x0) = [ @g] (x0) = ) 7 (xo—x)g(x). (63)

xeQ
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The expected value and variance of the generic pixel z (xo) can be thus calculated,
respectively, as

E{z}(x0) =Y E{(xo—x)}g(x)=) y(xo—x)g(x)=

xeQ xeQ
o0 ak k +o0 ak
LY g=Y 20y e, e
rei—o (— i=o (—1)" k! /o
var{z}(xp) Z Var{z X0 — }g Z 62(x0 —x)gx)=
xeEQ xeQ

& k(o oy)( 0)xk

ry (51" =

x€Q k=

o Ik o X

EEL—gbﬁzf@mﬂ (65)

k=0 (_1> k! XEQ

where the final expressions of (64)-(65) come from the Maclaurin expansions of
y(xo—x) and 6% (xo—x) at the generic coordinate xy € 2, and 9% (62 oy)(x) is
the kth derivative of the composite function 6%(y (x)), and it can be computed, for
example, with the formula of Faa Di Bruno [1857].

For approximation of order zero, i.e., when k = 0, (64)-(65) reduce to (59)-(60).
Thus, in regions where y is constant, the approximations are always valid. If we
assume g even symmetric, both ¥,c o **g (x) and ¥ ..o x* (g (x))2 vanish when k is
odd since x* is odd symmetric. Therefore, for even symmetric kernels g, the approx-
imations (59)-(60) differ from (64)-(65) only for approximation terms of y (xo — -)
and 62 (xo — -) of even order 2 or greater.

In case of affine noise variance (22), i.e. 62(y(x)) = ay(x) + b, (65) becomes

var {z}(xo) = (ay(xo) +b) Z (g(x))* -

xXEQ

a(9y)(xo) Y, ** (g () +

XEQ

I~ k X
aiggéﬂzﬁ@mf. (66)

= (=1)°k! <0

6.3 Estimation

6.3.1 Estimation of the Noise Standard Deviation Function

The methods for estimating the standard deviation curve which were briefly re-
viewed in Sect. 5 are formally designed for independently distributed noise, i.e.,
white noise. If these methods are applied to correlated noise, they may fail to esti-
mate correctly the curve. In this regard, we note that many of these methods (e.g.,
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Gravel et al. [2004]; Foi et al. [2008]; Azzari and Foi [2014b]; Pyatykh et al. [2013];
Mikitalo and Foi [2014]) employ some kind of high-pass filtering to reduce the im-
pact of the signal y on the estimation of noise variance. Whereas white noise affects
in equal manner different frequency bands, correlated noise is distributed unevenly
over the frequency spectrum: without prior knowledge of the noise power spectrum,
there is uncertainty about the proportion of noise that is effectively maintained after
high-pass filtering, hence a potential risk of significant overestimation or underesti-
mation of the curve. To understand this phenomenon, let us consider the observation
model (53) and assume that scatterpoints are obtained from estimating the variance
of the output of filtering z by a high-pass kernel /. Restricting the estimation over
a sufficiently large region where y is homogeneous, we can treat 6(y) as a constant
and we have

var{z®h|y} = var{c(y)n®h} = Gz(y) var{v®g®h} =
=o(y) |g®hll; = > ()| | F [s@ ]| =
=c*(y) Q" |Z (gl Z [h]3 =
=a*(y)|el w17 mp - (©7)

Thus, even when |||, = 1, it may happen that var {z ® h|y} # var {z|y} = 62(y) |2| || ¥]];
with various outcomes depending on how .% [h] correlates with the PSD Y. In par-
ticular,

var{z@ hly} = var {zly} | ® |7 [P I®I1;" (68)

This means that if all scatterpoints are estimated using a unique filter s, we can
estimate the noise variance function modulo a scaling factor that depends on the
PSD Y. As we show next, the fact that this scaling factor is unknown does not
prevent estimating the PSD ¥, from which we can then resolve (68) and obtain an
estimate of the proper noise variance function.

6.3.2 PSD Estimation

The typical approach to estimating the noise PSD consists of processing the stan-
dardized noise with a filter bank of band-pass filters, producing a collection of sub-
band images and by calculating the sample variance (or a robust estimate of the
variance) of the noise in these subbands. Modulo a, possibly unknown, scaling fac-
tor A, standardized noise can be represented in the form

N=Av®g, (69)

where § = g||gl; ', v is zero-mean independent noise with unit variance, and hence
1 has zero-mean and variance A

The signal-independent colored noise model (50) already has the form (69) with
1 =n and A = ||g||,. Signal-dependent colored noise of the forms (53) can be
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Fig. 19: 35x35 Fourier-domain PSD estimated for a Samsung S5K2L.2 CMOS sen-
sor from the dataset of Section (3) (left) and for a Foveon X3 sensor (right). The
former is practically flat (thus representing white noise), whereas the latter shows a
mild nonuniformity characteristic of either row or column striping noise.

reduced to (69) in several ways, e.g., by standardization of the samples with respect
to the noise model fitted to the mean, or by variance stabilizing transformations
[Starck et al., 1998; Mikitalo and Foi, 2014]. If the standardization is obtained via a
noise variance function estimated modulo a scaling factor as in (68), then we arrive

at (69) with A2 = |7 [h]|2H1_1||'PHl.

Let us consider a set of band-pass filters 5% = {hy,...,h;}. The generic output
from the jth filter is
N®hj=(Av®Z)®h;, (70)

and its variance
var{ij @ h;} = Avar {ve g h;} = Avar (v} [g@hjl[; = 22|z n]5. 1)
By Parseval’s isometry and (51), this variance takes the form
var {f ®h;} = A2|Q| 2 H|y[hj]\2'PH1 , (72)

where |Q| = N|N, denotes the cardinality of 2 and ¥ is a normalized PSD linked
to the normalization of the kernel g,
Y=g, =P PPl and P[], =|Q]. (73)

Hence, Az'f’Hl = A2|Q|?, which shows that estimating A2¥ trivially yields also

separate A = |Q| "/ HAZ‘IV’HI and consequently ¥

Therefore, the problem at hand amounts to estimating A2 from var {’F] ®h j},
j=1,...,J. To this end, it is convenient to rewrite (72) in matrix notation as

V=F'P (74)
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where
var{z; } lf’(l)
V= : , P=2A? : (75)
var{z,} P (2))
(ZIn] ()} - [Zh] (D)
F= : : : (76)

o2 : ‘. :
| (ZIm)(1RD} - [Zh] (2]

Typically, J < ||, making the system (74) under-determined. The unconstrained
minimum-norm estimate of the PSD A?%¥ can be computed as

P=F(FF)v, (77)

where T denotes the pseudoinverse. A typical constraint that must be enforced onto

P is its nonnegativity, since this is not automatically guaranteed by the pseudoin-
verse. An iterative system such as the following one can be used to this end:

R, =V—F'P;,

~ ~ (78)
Pt =P+ F(F'F)'Ry|.

This system can be modified so to enforce further constraints or priors on ﬁk+1 , such
as its smoothness or sparsity with respect to some representation [Daubechies et al.,
2004], or the symmetries of the Fourier-domain PSDs.

As bank of filters, one can use the Fourier transform of a smaller size, block
transforms such as the discrete cosine transform, wavelets, etc. Figure 19 shows
two examples of the variances (71) with respect to the Fourier transform of size
35 x 35, one estimated for a Samsung S5K2L.2 CMOS sensor from the dataset of
Sect. 3 and one for a Foveon X3 sensor at ISO 6400 of a Sigma DP1 Merrill camera.
While the latter PSD shows a nonuniformity representing colored noise, the former
is virtually flat (i.e., white noise), with random fluctuations merely due to finite
sample set. Larger size PSDs, estimated via the recursive method (78), are shown
in Fig. 20. Both in Fig. 19 and in Fig. 20, we indicate the power level of an ideal
flat spectrum of i.i.d. standard white noise (i.e., 352 =1225 and 255% = 65025 for
a 35x35 and 255x255 Fourier transform, respectively, as can be computed from
(7) or (51)). The PSDs estimated from the Samsung sensor accurately match this
level, since they are approximately flat and were estimated from standardized errors
with A = 1 (69); the match is very good also for the Foveon X3 PSDs, since the
nonuniformity is anyway quite mild and localized along one line.
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65025 Rl | “\W“%’x il

“‘w,

Fig. 20: Estimates of the 255255 Fourier-domain PSDs computed through the
iterative system (78) from the 3535 measurements shown in Fig. 19.

7 Photo-Response Nonuniformity

When a pixel array is exposed to a uniform light source, every pixel element is
expected to yield the same underlying signal. However, physical imperfections of
the detector elements, such as slight discrepancies in the pixel size and substrate
material, cause a deviation from the expected true signal output. This deviation is
defined as the photo-response non uniformity (PRNU).

In some cases, the PRNU represents a relevant portion of the image degradation,
and thus the image degradation model presented in (26) is no longer adequate. The
variable y previously defined as the true signal becomes a random variable depen-
dent on the detector element. Let us define this new variable as u. Then,

z(x) =u(x)+o(u(x)E(x),
u(x) =N (y(x),0* (x)). (79)

Above we model the physical discrepancies of the detector elements as a Gaussian
distribution, with variance depending on the underlying signal y and on a scaling
factor c. Although (79) describes the nonuniformity as a random process, u is a sys-
tematic error which is identically realized at every acquisition (i.e., at each frame),
as opposed to & which changes randomly at every pixel and at every new capture.
Note that the errors caused by the PRNU are multiplicative, following the same
model as described in (30). The univariate standard deviation function described by

(27) becomes
std{z|y} = Vey*+ay+b, (80)

which is a consequence of treating z as a mixture variate and of o2 being affine.
Here a, b, and ¢ can be estimated using the methods detailed in Sects. 5.1 and 5.2 of
this chapter, but considering a second-order polynomial for the noise variance curve
estimation.
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In general, the PRNU is more evident in images with low gain a or with large
exposure time, i.e., large y(x).

8 Conclusions

All acquisition systems are affected to some degree by noise. To successfully an-
alyze and process any acquired noisy data, it is necessary to adopt an adequate
noise model. This chapter presented several basic noise models that can be used
within various imaging applications. First, we introduced white noise models char-
acterized by a flat noise power spectrum. White noise models include the classic
signal-independent AWGN noise, as well as various signal-dependent noise models,
which are formalized by means of one-parameter families of distributions. Then, we
introduced colored noise models, in which the noise power spectral density is not
flat, implying that the noise affecting a pixel is correlated with the noise affecting
neighboring pixels. An overview of the leading approaches for estimating the noise
parameters sufficient to characterize the model was also provided. Overall, these
models and methods are suitable for processing imagery from a wide range of ac-
quisition devices, such as digital consumer cameras, X-ray systems, microscopes,
telescopes, etc. They especially play a fundamental role in processing pipelines for
image restoration (see, e.g., [Foi, 2009; Azzari and Foi, 2016, 2017; Borges et al.,
2017, 2018]).
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