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Abstract— The paper considers the finite-horizon constrained
optimal control problem for Schrödinger equation with bound-
ary controls and boundary observations. The plant is mapped
from continuous to discrete time using the Cayley-Tustin
transform, which preserves input-output–stability of the plant.
The proposed transformation is structure and energy preserving
and does not induce order reduction associated with the spatial
discretization. The controller design setting leads to the finite
horizon constrained quadratic regulator problem, which is
easily realized and accounts in explicit manner for input and
output/state constraints. The model predictive control (MPC)
design is realized for Schrödinger equation and the results are
illustrated with numerical simulations showing successful stabi-
lization of Schrödinger equation with simultaneous satisfaction
of input and output/state constraints.

I. INTRODUCTION

A central concern in modern chemistry is controlled making
and breaking of chemical molecular bonds. The state-of-the-
art laser technology provides foundation for laser control
in a favorable manner to alter the molecular dynamics
phenomena. In particular, laboratory implementation and
design are focused on successful laser field realizations
capable of altering constructive and destructive interferences
of the underlying molecular wave function [12].

In molecular control one seeks to achieve the best possible
solution, and therefore it is natural to consider optimal control
design methodologies as a starting point. Along this line,
optimal control of quantum-mechanical systems was first
considered by Dahleh, Peirce and Rabitz in [2], [9] where
the finite-dimensional Schrödinger equation was considered
under different circumstances. Later on, controller design
problems for the finite-dimensional Schrödinger equation
were considered in [7] by Mirrahimi and Rouchon and in
[8] by Mirrahimi, Rouchon and Turinici. Recently, control
of the infinite-dimensional Schrödinger equation has been
considered, e.g., in [4], [10], [11]. The important notions of
boundary applied actuation and observation in the context of
Schrödinger equation have beed addressed in detailed manner
in [14], due to the importance of accurate steering a system
from initial to final observable state in the finite time.
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In reality, the key to the laser control realization is accurate
description of the Hamiltonian. In some cases for simple
molecular species [2], [9] one can describe Hamiltonian
with high accuracy and successfully apply design, while for
polyatomic molecules and the subsequent design achieving
acceptable accuracy is a very complex task. In addition, to
this complexity, the control realizations with the presence
of complex external fields contribute to the higher level of
difficulty in realizing and implementing molecular control
[13]. Besides these difficulties, one might need to account
for the generation of undesirable chemical products (reflected
in breaking the wrong chemical bonds). Along this line in
[13], a theoretical method for optimization based control has
been presented with application of multiple constraints and
with guaranteed convergence to desired physical objectives.
Motivated by this notion, we explore another design method-
ology that is optimal, explicitly accounts for constraints and
is already well-known in control practice, a model predictive
control [6], [17].

In particular, we consider a linear model predictive control
design which has been successfully applied for similar types
of distributive parameter systems [16]. It will be shown
that one can extend the well-known design of the MPC
to the setting of complex distributed parameter systems
described by the Schrödinger equation and incorporate input
and output/state constraints - as well as optimality - in the
computationally fast and numerically realizable design setting.
An additional benefit to our MPC design is that continuous
Schrödinger equation model of the underlying plant is not
subjected to any type of order reduction by spatial discretiza-
tion and the issue of boundary applied actuation is realized
by applying an appropriate exact boundary transformation
[14]. Generalization to infinite-dimensional systems requires
taking several theoretical aspects into account, even though
here we omit some of the technical details.

The structure of this paper is as follows. In Section II, we
present the general Cayley-Tustin time discretization scheme
for distributed parameter systems which is symplectic and
structure preserving [3]. In Section III, we present Schrödinger
equation with boundary controls and boundary observations
and apply the Cayley-Tustin discretization to the system.
In Section IV, the model predictive control problem is
presented and solved for the Schrödinger equation. Numerical
simulations are presented as well. Finally, conclusions are
presented in Section V.

Here L(X,Y ) denotes the set of bounded linear operators
from the normed space X to the normed space Y . The
domain, kernel and resolvent of a linear operator A are
denoted by D(A), N (A) and ρ(A), respectively. For a linear



operator A : D(A) ⊂ X → X and a fixed s0 ∈ ρ(A),
define the scale spaces X1 := (D(A), ‖(s0 − A) · ‖) and
X−1 := (X, ‖(s0 −A)−1 · ‖) [14, Sec. 2.10]. The scale
spaces are related by X1 ⊂ X ⊂ X−1 where the inclusions
are dense and with continuous embeddings. The extension
of A to X−1 is denoted by A−1.

II. CAYLEY-TUSTIN TIME DISCRETIZATION

Consider a linear infinite-dimensional system described by
the following equations:

ẋ(ζ, t) = Ax(ζ, t) +Bu(t), x(ζ, 0) = x0(ζ) (1a)
y(t) = Cx(ζ, t) +Du(t). (1b)

The state-space X , the input space U and the output space
Y are assumed to be Hilbert spaces. The linear operator
A : D(A) ⊂ X → X is the generator of a C0-semigroup
and for the other operators we assume that B ∈ L(U,X−1),
C ∈ L(X1, Y ) and D ∈ L(U, Y ).

Given a discretization parameter h > 0, a Crank-Nicolson
type time discretization of (1) is given by

x(·, ih)− x(·, (i− 1)h)

h
≈ Ax(·, ih) + x(·, (i− 1)h)

2
+Bu(ih)

y(ih) ≈ Cx(·, ih) + x(·, (i− 1)h)

2
+Du(ih)

for i ≥ 1. Approximating u(ih) by uhi /
√
h (using a chosen

sampling), it has been shown in [5] that the Cayley-Tustin
discretization is a convergent time discretization scheme for
a general class of input-output stable systems satisfying
dimU = dimY = 1 such that yhi /

√
h converges to

y(ih) in several different ways. A straightforward manip-
ulation yields the Cayley-Tustin transform (A,B,C,D)→
(Ad, Bd, Cd, Dd) by

S =

[
Ad Bd
Cd Dd

]
:=

[
(δ +A)(δ −A)−1

√
2δ(δ −A−1)−1B√

2δC(A− δ)−1 G(δ)

]
where G(δ) := C(δ − A−1)−1B + D denotes the transfer
function of the system and δ = 2/h which needs to be in
ρ(A). It is easy to see that the operator Ad can be equivalently
expressed as Ad = −I + 2δ(δ −A)−1.

III. SCHRÖDINGER EQUATION

In this section, we apply the Cayley-Tustin time dis-
cretization to the boundary controlled Schrödinger equation
on the unit interval ζ ∈ [0, 1]. The system is given for
x(ζ, 0) = x0(ζ) by

∂

∂t
x(ζ, t) = j

}
2m

∂2

∂ζ2
x(ζ, t)− vx(ζ, t) (2a)

∂

∂ζ
x(0, t) = 0 (2b)

∂

∂ζ
x(1, t) = u(t) (2c)

x(0, t) = y(t) (2d)

where } is the reduced Planck constant, m is the mass of
the particle, v > 0 accounts for the potential energy of the

particle and u ∈ U, y ∈ Y are boundary control and boundary
observation signals, respectively, where U = Y := C.

In order to write the system (2) in the usual state-space
form (1), we define an operator A by

Ax := j
}

2m

∂2

∂ζ2
x− vx

with domain

D(A) =
{
x ∈ L2(0, 1;C) : }

2mx ∈ H
2(0, 1;C), ∂x

∂ζ (0) = 0
}
.

Furthermore, we define a boundary control operator B by

Bx(·, t) :=
∂

∂ζ
x(1, t)

with domain D(B) := D(A). The operator A corresponds
to the port-Hamiltonian formulation of Schrödinger equation
(see, e.g., [1, Ex. 2.18]), and [1, Thm. 2.3] implies that the
operator A := A|N (B) with domain D(A) = D(A) ∩N (B),
i.e., the restriction of A to the kernel of B, generates a
C0-semigroup.

The aforementioned implies that the pair (A,B) is a
boundary control system in the sense of [14, Def. 10.1.1].
Thus, by [14, Prop. 10.1.2, Rem. 10.1.4] there exists a unique
operator B ∈ L(U,X−1) such that the system (2) can be
equivalently written as

ẋ(ζ, t) = Ax(ζ, t) +Bu(t), x(0) = x0 (3a)
y(t) = Cx(ζ, t) (3b)

where C ∈ L(X1, Y ) with domain D(C) := D(A) is defined
as Cx(·, t) := x(0, t) so that (3b) corresponds to (2d).

The aforementioned operator B can be found by solving
the abstract elliptic problem [14, Rem. 10.1.5] Af = sf ,
Bf = u for any s ∈ ρ(A) and u ∈ U . The solution is unique
and satisfies f = (s − A−1)−1Bu. A direct computation
shows that for any s ∈ ρ(A) and u ∈ U , the solution is given
by

fs(ζ) =
1

cs

cosh(csζ)

sinh(cs)
u (4)

where cs = 1−j√
2

√
2m
} (s+ v), and thus, the operator B is

obtained by Bu = (s−A−1)fs(ζ).

A. Discretized Operators

In this section, we will compute the discrete time linear
system operators (Ad, Bd, Cd, Dd). In order to do that, let
us find the resolvent of the operator A by considering the
homogeneous PDE

ẋ(ζ, t) = Ax(ζ, t), x(ζ, 0) = x0(ζ) (5)

where A is the same as in (3). Applying Laplace transform
to (5) yields

sx(ζ, s)− x(ζ, 0) = j
}

2m

∂2

∂ζ2
x(ζ, t)− vx(ζ, t), (6)

that is,

∂2

∂ζ2
x(ζ, t) = −j 2m

}
sx(ζ, s)− jv 2m

}
x(ζ, s) + j

2m

}
x(ζ, 0),



which can be equivalently written as

∂

∂ζ

[
x(ζ, t)
∂ζx(ζ, t)

]
=

[
0 1

−j 2m} (s+ v) 0

] [
x(ζ, t)
∂ζx(ζ, t)

]
+

[
0

j 2m} x(ζ, 0)

]
.

The above system is an ODE of the form

∂ζX(ζ, s) = AX(ζ, s) +B(ζ),

the solution of which is given by

X(ζ, s) = eAζX(0, s) +

∫ ζ

0

eA(ζ−η)B(η)dη. (7)

A direct computation shows that

eAζ =

[
cosh(csζ) 1

cs
sinh(csζ)

cs sinh(csζ) cosh(csζ)

]
where again cs = 1−j√

2

√
2m
} (s+ v).

By the definition of D(A), we must have ∂ζx(0, s) =
∂ζx(1, s) = 0, which yields that in (7), X(0, s) is given by

X(0, s) =

[
− 1
cs sinh(cs)

∫ 1

0
j 2m} cosh(cs(1− η))x(η, 0)dη

0

]
.

Finally, the solution of (6) is given by

x(ζ, s) = − j

cs

2m

}
cosh(csζ)

sinh(cs)

∫ 1

0

cosh(cs(1− η))x(η, 0)dη

+
j

cs

2m

}

∫ ζ

0

sinh(cs(ζ − η))x(η, 0)dη

:= (s−A)−1x(ζ, 0)
(8)

which yields the expression for the resolvent operator.
Now that we have derived an expression for the resolvent

of A, a direct computation shows that

Adx(ζ) = −x(ζ) +
2δj

cδ

2m

}

∫ ζ

0

sinh(cδ(ζ − η))x(η)dη

− 2δj

cδ

2m

}
cosh(cδζ)

sinh(cδ)

∫ 1

0

cosh(cδ(1− η))x(η)dη.

(9)
In order to compute Bd, we choose s = δ in (4) so that
Bu = (δ − A−1)fδ(ζ), and we obtain (δ − A−1)−1Bu =
fδ(ζ), and thus,

Bd =

√
2δ

cδ

cosh(cδζ)

sinh(cδ)
. (10)

The operator Cd is simply given by

Cdx(ζ) = −
√

2δj

cδ

2m

}
1

sinh(cδ)

∫ 1

0

cosh(cδ(1− η))x(η)dη

(11)
and finally, the operator Dd = G(δ) = C(δ − A−1)−1B is
given by

Dd =
1

cδ

1

sinh(cδ)
. (12)

We note that
lim
s→∞

G(s) = 0,

which implies that the system (3) is in fact a regular linear
system (see, e.g., [15]) and, in particular, well-posed.

B. Adjoint Operators

In this section, we will compute the adjoints of the
operators (Ad, Bd, Cd, Dd). We note that the state space
X := L2(0, 1;C) is equipped with the inner product

〈f, g〉X =

∫ 1

0

f∗(ζ)g(ζ)dζ,

and the input and output spaces U = Y := C are equipped
with the usual complex inner product 〈u1, u2〉C = u∗1u2.

By definition, the adjoint P ∗ of an operator P satisfies
〈Px, y〉 = 〈x, P ∗y〉 with respect to the corresponding inner
products. Now for Ad, we obtain

〈Adx, z〉X = −
∫ 1

0

x∗(ζ)z(ζ)dζ

+

∫ 1

0

∫ 1

0

4mδj

c∗δ}
cosh(c∗δζ)

sinh(c∗δ)
cosh(c∗δ(1− η))x∗(η)z(ζ)dηdζ

−
∫ 1

0

∫ ζ

0

4mδj

c∗δ}
sinh(c∗δ(ζ − η))x∗(η)z(ζ)dηdζ

= −
∫ 1

0

x∗(ζ)z(ζ)dζ

+

∫ 1

0

x∗(ζ)

∫ 1

0

4mδj

c∗δ}
cosh(c∗δη)

sinh(c∗δ)
cosh(c∗δ(1− ζ))z(η)dηdζ

−
∫ 1

0

x∗(ζ)

∫ 1

ζ

4mδj

c∗δ}
sinh(c∗δ(η − ζ))z(η)dηdζ

= 〈x,A∗dz〉X ,

so we have

A∗dx(ζ) = −x(ζ)− 2δj

c∗δ

2m

}

∫ 1

ζ

sinh(c∗δ(η − ζ))x(η)dη

+
2δj

c∗δ

2m

}
cosh(c∗δ(1− ζ))

sinh(c∗δ)

∫ 1

0

cosh(c∗δη)x(η)dη.

(13)
For Bd we obtain

〈Bdu, x〉X = 〈u, 〈Bd, x〉X〉C = 〈u,B∗dx〉C,

that is,

B∗dx = 〈Bd, x〉X =

√
2δ

c∗δ

∫ 1

0

cosh(c∗δζ)

sinh(c∗δ)
x(ζ)dζ. (14)

Similarly for Cd we have

〈Cdx, y〉C =

∫ 1

0

y

√
2δj

c∗δ

2m

}
cosh(c∗δ(1− η))

sinh(c∗δ)
x∗(η)dη

= 〈x,C∗dy〉X ,

where

C∗d =

√
2δj

c∗δ

2m

}
cosh(c∗δ(1− ζ))

sinh(c∗δ)
. (15)

Finally, the adjoint D∗d of Dd is simply given by

D∗d =
1

c∗δ

1

sinh(c∗δ)
. (16)



IV. THE MODEL PREDICTIVE CONTROL PROBLEM

In the case of complex scalar input and output spaces, the
objective function with constraints at a given sampling time
k is given by

min
u

∞∑
i=0

y∗(k + i)Qy(k + i) + u∗(k + i+ 1)Ru(k + i+ 1)

s.t. x(ζ, k + i) = Adx(ζ, k + i− 1) +Bdu(k + i)

y(k + i) = Cdx(ζ, k + i) +Ddu(k + i)

Reumin ≤ Reu(k + i) ≤ Reumax

Imumin ≤ Imu(k + i) ≤ Imumax

Re ymin ≤ Re y(k + i) ≤ Re ymax

Im ymin ≤ Im y(k + i) ≤ Im ymax

where Q and R are positive constants. Note that as the
input and output spaces are complex, we need to consider
lower and upper bounds separately for the real and imaginary
parts of u and y. However, in the following we will restrict
to considering only real inputs as complex inputs are not
implementable in practice. Thus, in the following we treat
the input space U as R.

The aforementioned infinite-horizon open-loop objective
function can be cast as a finite-horizon open-loop objective
function under the assumption that the input u is zero beyond
the control horizon N , i.e., u(k + N) = 0. Additionally,
an output penalty term needs to be included. Under the
assumption of observability, the output terminal penalty can
be expressed as a terminal state penalty term 〈x(k + N −
1), Q̄x(k+N−1)〉, and the finite horizon open-loop objective
function can the be written as

min
Uk

Y ∗k QYk+UTk RUk+〈x(ζ, k+N−1), Q̄x(ζ, k+N−1)〉X
(17)

where Uk ∈ RN−1, Yk ∈ CN−1 are given by

Uk =
[
u(k + 1) u(k + 2) . . . u(k +N − 1)

]
Yk =

[
y(k) y(k + 1) . . . y(k +N − 2)

]
.

In the preceding, the operator Q̄ can be calculated from a self-
adjoint solution of the following discrete Lyapunov equation
(see [16])

A∗dQ̄Ad − Q̄ = −C∗dQCd. (18)

We will address solving (18) in more detail in Section IV-A.
A straightforward manipulation of the objective function

given in (17) yields the following finite-dimensional quadratic
optimization problem

min
Uk

UTk HUk + 2 Re
(
UTk Px(ζ, k)

)
+ 〈x(ζ, k), Q̄x(ζ, k)〉X + 〈y(k), Qy(k)〉C

(19)

where H ∈ CN−1×N−1 is self-adjoint given by

hm,n =


D∗dQDd +B∗dQ̄Bd +R for m = n

D∗dQCdA
m−n−1
d Bd +B∗dQ̄A

m−n
d Bd for m > n

h∗n,m for m < n

and P ∈ L(X,CN−1) is given by

P =


D∗dQCd +B∗dQ̄Ad
D∗dQCdAd +B∗dQ̄A

2
d

...
D∗dQCdA

N−2
d +B∗dQ̄A

N−1
d

 .
Note that since we are restricted to real inputs, we only need
to consider the real parts of H and Px(ζ, k). The objective
function given in (19) is subjected to constraints

Umin ≤ Uk ≤ Umax

ReYmin ≤ Re (SU + Tx(ζ, k)) ≤ ReYmax

ImYmin ≤ Im (SU + Tx(ζ, k)) ≤ ImYmax,

which can be written in the form
I
−I

ReS
ImS
−ReS
− ImS

Uk ≤


Umax

−Umin

Re (Ymax − Tx(ζ, k))
Im (Ymax − Tx(ζ, k))
−Re (Ymax − Tx(ζ, k))
− Im (Ymax − Tx(ζ, k))


where S ∈ CN−1×N−1 is lower triangular given by

sm,n =


Dd for m = n

CdA
m−n−1
d Bd for m > n

0 for m < n

and T ∈ L(X,CN−1) is given by

T =


Cd
CdAd

...
CdA

N−2
d

 .
A. A Solution of the Lyapunov Equation

Before going into simulations regarding model predictive
control of Schrödinger equation, we will derive a self-adjoint
solution for the discrete time Lyapunov equation (18). It
has been shown in [16] that the solutions of the discrete
time Lyapunov equation coincide with the solutions of the
continuous time Lyapunov equation

A∗Q̄+ Q̄A = −C∗QC.

We will find a solution of the continuous time Lyapunov
equation by utilizing the spectral presentation of A.

Consider the eigenvalue equation

Aφk = λkφk

for Schrödinger equation considered in Section III. A direct
computation shows that the eigenvectors φk are of the form

φk = α cosh

(
1− j√

2

√
2m

}
(v + λk)ζ

)
which satisfy ∂ζφk(0) = 0. Since φk ∈ D(A), φk must also
satisfy ∂ζφk(1) = 0, which yields

0 = α
1− j√

2

√
2m

}
(v + λk) sinh

(
1− j√

2

√
2m

}
(v + λk)

)
.



Since sinh(z) = 0 holds for z = jkπ, n ∈ Z, we obtain that
the eigenvalues of A are given by

λk = −j }
2m

(kπ)2 − v

for k ∈ N0, which implies that A is the generator of an
exponentially stable C0-semigroup. The eigenvectors φk are
now given by

φk = α cosh(jkπ) = α cos(kπ)

which form an orthonormal basis of X with the choices α = 1
for k = 0 and α =

√
2 otherwise.

Let us now apply the continuous Lyapunov equation to an
arbitrary x ∈ D(A):

A∗Q̄x+ Q̄Ax = −C∗QCx.

Representing x in the basis formed by the eigenvectors of A
yields

∞∑
k=0

(
A∗Q̄〈x, φk〉φk + Q̄A〈x, φk〉φk + C∗QC〈x, φk〉φk

)
= 0,

that is,

∞∑
k=0

(
(A∗ + λk)Q̄〈x, φk〉φk + C∗QC〈x, φk〉φk

)
= 0,

which especially holds if

Q̄〈x, φk〉φk = (−λk −A∗)−1C∗QC〈x, φk〉φk (20)

for all k ∈ N0. We note that as A is densely defined and
−λ∗k ∈ ρ(A), we have by [14, Prop. 2.8.4] that (−λk −
A∗)−1 =

(
(−λ∗k −A)−1

)∗
. Now summation over k in (20)

yields a solution:

Q̄x =

∞∑
k=0

〈x, φk〉
(
C(−λ∗k −A)−1

)∗
QCφk (21)

where we have based on C∗d that

(
C(s−A)−1

)∗
=

2mj

c∗s}
cosh(c∗s(1− ζ))

sinh(c∗s)

for all s ∈ ρ(A).
We note that as Cφk = α and C(−λ∗k −A)−1 is uniformly

bounded for all k ∈ N0, (21) is a convergent series. Thus,
denoting the M th partial sum of (21) by Q̄M , we obtain
for every x ∈ D(A) that lim

M→∞
‖(Q̄ − Q̄M )x‖ → 0, which

implies that the solution Q̄x can be evaluated to arbitrary
precision ε > 0 by choosing a sufficiently large (finite) M .
A sufficiently large value for M can be determined, e.g.,
by numerical experiments, as done in the simulation of the
following section.

B. Simulation Results for Schrödinger Equation

In this section, we present simulation results for
Schrödinger equation considered in Section III under the
model predictive control law (19). For the simulation, we
consider Schrödinger equation for a free electron, so in atomic
units the parameters in (2) are given by m = 1, } = 1 and
we choose v = 1.

The input and output weights are chosen as R = 10 and
Q = 5, respectively. For the Cayley-Tustin time discretization,
we choose h = 0.05, so δ = 40. Furthermore, dζ = 2−9 is
chosen for numerical integration. The initial condition is
x0(ζ) = cos(πζ) and the model predictive control horizon
is N = 10. For computation of the function Q̄, the series in
(21) is approximated by summing the first M = 101 terms.
The input and output constraints are given as umin = −0.3,
umax = 0.03, ymin = −0.1− 0.2j and ymax = 0.2 + 0.05j.

The input profile of the simulation and the input constraints
are shown in Figure 1. Figure 2 shows the comparison
between the output profiles of the open- and closed-loop
systems under model predictive control, along with output
constraints. One can see from these figures that a maximal
control effort is required near the beginning to keep the real
and imaginary parts of the output signal within the allowed
limits. Thereafter virtually no control is imposed nor required.

0 0.5 1 1.5 2

k

-0.3

-0.2

-0.1

0

u
k

Fig. 1. Input profile model predictive control law under input and output
constraints (solid line) and input constraints (dash-dot-line).
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0 0.5 1 1.5 2
k

-0.2
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0

0.1

0.2

Im
(y

k
)

Open-loop

MPC

Fig. 2. Comparison between the profile of the closed-loop system under
model predictive control (solid line) and the profile of the open-loop system
(dashed line). Output constraints are shown in dash-dot-line



In Figures 3 and 4 the state profiles of the open- and closed-
loop systems, respectively, are presented for comparison.
The effect of control can be seen here as well, as the state
under the model predictive control law in Figure 4 decays in
the beginning faster than the state of the open-loop system.
Even thought both the MPC and the open-loop states decay
asymptotically to zero due to the system being exponentially
stable, the most substantial difference between the open-loop
and the MPC behaviors – as seen in Figure 2 – is that MPC
keeps the output within the given constraints while the open-
loop output violates them.

Fig. 3. The evolution of the state profile of the open-loop system.

Fig. 4. The evolution of the state profile under the model predictive control
law with input and output constraints.

V. CONCLUSIONS

We considered the finite-horizon constrained optimal
control problem for the Schrödinger equation with boundary
controls and boundary observations. The plant was mapped
from continuous to discrete time using the Cayley-Tustin
transformation, which is a convergent time discretization
scheme for a rather general class of systems. No spatial

approximations were required in the process. The control
problem was solved for Schrödinger equation and the results
were illustrated with numerical simulations.
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