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Abstract— This paper presents a hardware-accelerated 

Kvazaar HEVC intra encoder for 4K real-time video coding at up 

to 120 fps. The encoder is implemented on a Nokia AirFrame 

Cloud Server featuring a 2.4 GHz dual 14-core Intel Xeon 

processor and two Arria 10 PCI Express FPGA accelerator cards. 

The presented encoder is a speed-optimized version of our 1st 

generation 4K40p HEVC intra encoder. The proposed speedup 

techniques include 1) Increasing the number of FPGA cards to 

two; 2) Remapping the simplest multiplications from DSP blocks 

to logic for better FPGA utilization; 3) Making task scheduling 

more flexible to improve utilization rate of hardware accelerators; 

and 4) Increasing the pipeline depth and duplicating time-sensitive 

resources in the hardware accelerator. As a result, up to three 

hardware accelerator instances can be accommodated in a single 

Arria 10 so the encoder is able to make use of six accelerators. 

According to our experiments, the proposed encoder obtains 

threefold speedup over our 1st generation encoder. Our proposal 

is also shown to outperform all other encountered FPGA and 

ASIC implementations. 

Keywords— High Efficiency Video Coding (HEVC); Ultra High 

Definition Television (UHDTV); Kvazaar Intra coding; field-

programmable gate array (FPGA); real-time  

I.  INTRODUCTION 

Live Internet video is forecast to grow 15-fold in five years, 
accounting for 13% of all Internet video traffic by 2021 [1]. This 
growth comes from a plurality of new end users and multimedia 
applications but also from higher spatial and temporal video 
resolutions that are rapidly gaining ground. For example, 4K 
Ultra High Definition Television (UHDTV) format features 3840 
× 2160 pixels (2160p) and frame rates up to 120 frames per 
second (fps) [2].  

Despite the fast progress of transmission and storage 
technologies, the holistic growth of video volume makes more 
efficient video coding inevitable. The latest international video 
coding standard, High Efficiency Video Coding (HEVC/H.265) 
[3], [4], is developed to address these needs. This work deals 
with all-intra (AI) coding configuration [5] of HEVC Main 
Profile. It is shown to improve intra coding efficiency by 23% 
over that of the preceding standard AVC/H.264 [6] for the same 
objective quality, but at a cost of over threefold increase in 
coding complexity [7]. Therefore, implementing a real-time 
HEVC intra encoder for UHDTV format with a reasonable 
coding efficiency, implementation cost, and power budget 
requires efficient encoder optimizations and powerful 
computing platforms. 

Multithreading [8] and single instruction multiple data 
(SIMD) optimizations [9] are primary design techniques for 

complexity reduction in software (SW) HEVC encoders. Further 
speedup and lower power dissipation is typically sought by 
offloading the compute-intensive coding tools to hardware 
(HW) accelerators or implementing the entire HEVC encoder on 
HW [10]-[13].  

Our recent work [14] shows that a pure SW implementation 
of HEVC intra encoder is able to attain real-time coding speed 
for 4K30p format and formats up to 4K60p can be supported by 
using several software encoder instances in parallel [15]. The 
respective speeds are also reported for HW accelerated intra 
encoders [11], [16] and high-end frame rates of 4K UHDTV 
format are only reached with several HW encoder instances [13].  

The main motivation of this work was to implement a real-
time HEVC intra encoder for up to 4K120p format. The 
presented solution is a direct continuation to our previous work 
[16] where Kvazaar open-source HEVC encoder [17] is 
accelerated to encode 4K video at 40 fps on Nokia AirFrame 
Cloud Server [18]. The adopted server setup included a 2.4 GHz 
dual 14-core Xeon processor and an Arria 10 PCI Express 
(PCIe) FPGA accelerator card. Servers like AirFrame have 
gained a lot of traction in the recent years due to the advent of 
cloud gaming, telco clouds, and edge computation. 

In this work, the same AirFrame server is equipped with two 
Arria 10 PCIe cards. In addition, up to three HW accelerator 
instances can be accommodated on a single FPGA by remapping 
the simplest multiplications to logic blocks and only allocating 
DSP blocks to the most compute-intensive multiplications. 
Individual HW accelerator instances are also boosted by using a 
higher pipeline depth and duplicated resources, whereas a 
proposed task scheduling improves the utilization rate of the 
instances. Together, the proposed techniques result in around 
threefold encoding speed over that of [16]. 

The original HW accelerator is implemented in [16] with 
Catapult C [19] high-level synthesis (HLS) [20] tool that enables 
automatic hardware description language generation from C 
source code of Kvazaar. The same approach is applied in this 
work since HLS offers much shorter design and verification 
times than manual design approaches. This is particularly true in 
resource remapping and pipeline modifications.  

The remainder of this paper is structured as follows. Section 
2 describes the applied platform and the selected SW/HW 
partitioning of Kvazaar on it. Section 3 presents the pipeline 
optimizations made for the HW accelerator instances. Section 4 
introduces the proposed task-scheduling scheme among the 
accelerator instances. In Section 5, 4K performance of the 
proposed encoder is benchmarked against our earlier solution 
and other prior-art. Section 6 concludes the paper. 



 

 

II. OVERVIEW OF THE PROPOSED SYSTEM 

Fig. 1 shows the block diagram of the underlying SW/HW 
platform. The backbone of the system is a Nokia AirFrame 
Cloud server [18] with two Xeon E5-2680 v4 processors and 256 
GB of memory. Two Arria 10 FPGA cards are connected to the 
CPU via a PCIe bus. The operating system is CentOS 6.8.  

A. Kvazaar Partitioning 

On Xeon processors, Kvazaar [17] is run in the user space 
and the Linux driver in the kernel space. The Linux driver is used 
for the CPU-PCIe-FPGA interfacing. A single Arria 10 FPGA 
has enough resources for three Intra Coding accelerator 
instances including the needed peripherals and on-chip 
memories. The FPGA interface is made of the Avalon-MM Hard 
IP for PCIe, separate Direct Memory Access (DMA) blocks for 
reading and writing, and the on-chip memories of the Intra 
Coding accelerator. A more detailed functionality of the 
platform is described in our previous work [16]. 

Kvazaar implements a basic HEVC block partitioning in 
which the pictures are partitioned into coding tree units (CTUs) 
of size 64 × 64. CTUs can be optionally divided into four equal-
sized coding units (CUs) and the division can be recursively 
continued until the maximum hierarchical depth of the HEVC 
quadtree is reached. The proposed encoder supports Kvazaar 
ultrafast preset [17] with extended coding tree depth so that CUs 
of size 32 × 32, 16 × 16, and 8 × 8 are supported. It also 
implements Wavefront Parallel Processing (WPP) and picture-
level parallel processing for parallel CTU coding. These 
schemes can be enabled concurrently. 

The most computationally intensive Kvazaar coding tools 
including intra prediction (IP), discrete cosine transform 
(DCT), quantization (Q), inverse Q (IQ), inverse DCT (IDCT), 
and reconstruction (Rec) are implemented with HLS and 
synthesized to FPGA. Context-adaptive binary arithmetic 
coding (CABAC) and other control-intensive coding tools are 
executed on CPU. In addition, the CPU takes care of raw input 
video reading and outputting the encoded bit stream. Mapping 
the major share of CTU coding to FPGA decreases the power 
dissipation through lower CPU usage and accelerates the whole 
encoding process. 

B. System Configuration 

In this work, the FPGA driver is upgraded to support 
practically any number of FPGAs, but the FPGA count is here 
limited to two by the available PCIe slots. Therefore, the system 
can contain six accelerator instances (Acc0 - Acc5) at maximum. 

The proposed system is also configurable at run time to the 
chosen number of Kvazaar instances without any performance 
compromises. This way, the user can choose whether to encode 
a single video with the maximum speed or several videos in 
parallel. Different Kvazaar instances can also encode input 
videos with different encoding parameters and resolutions at the 
same time. This is made possible by processing each CTU 
individually in the Intra Coding accelerators. 

III. PROPOSED HARDWARE PIPELINE 

Fig. 1 illustrates the processing flow of CTUs in Intra Coding 
accelerators. Each accelerator is able to take care of 16 CTUs 

 
Fig. 1. Block diagram of the proposed encoder and a processing flow of CTUs in Intra Coding accelerators. 

 



 

 

(0..15) simultaneously, so up to 96 CTUs can be under way in 
parallel with six accelerators. An eight-stage pipeline of a single 
accelerator can process eight blocks of separate CTUs at a time 
and the remaining eight CTUs are buffered for faster access. The 
processed blocks move sequentially through HEVC encoding 
stages. Altogether, each CTU can contain 4 + 16 + 64 = 84 
separate CUs at maximum when CUs of size 32×32, 16×16, and 
8×8 are supported. 

A. Intra Prediction Pipelining 

In our 1st generation encoder, IP and the creation of 

reference pixels were done in the same pipeline stage. 

Generating the reference pixels from the border pixels caused 

an overhead, which almost doubled the delay of the IP stage 

with 8×8 blocks. Therefore, the reference pixel generation was 

moved from the IP stage to the control stage. Now, the reference 
pixels of successive CUs from different CTUs are generated 

and buffered in advance. This way, the control stage is not 

blocked by the IP and the IP has an adequate small delay 

between predictions. 

B. DCT / IDCT Pipelining 

Our 1st generation encoder used only a single transform unit 
for the DCT and another unit for the IDCT, i.e., both algorithms 
ran the transform twice with the same transform unit. First from 
the input and second from the transpose memory. Although this 
design had sufficient speed for smaller number of parallel CTUs 
in a single Intra Coding accelerator, it caused a bottleneck when 
aiming higher CTU parallelism.  

In the proposed work, there are two transform units for both 

the DCT and IDCT. In addition, the memory size of the 

transpose memories was doubled, allowing all transform units 

to run at the same time and enabling successive block 

pipelining. This modification practically doubled the 

processing speed of DCT [21] and IDCT [22] and increased the 

overall hardware pipeline by two stages. Although this 

modification increased the area of the whole Intra Coding 
accelerator, the speed improvement was more significant. 

C. Remapping Multiplications from DSP to Logic 

Our prior encoder implementations relied heavily on DSPs, 
mostly because they were implemented on FPGAs having half 
the logic area but still ~75% of the DSPs of Arria 10. Hence, 

adding a third Intra Coding accelerator would have caused Arria 
10 to run out of DSPs.  

Even though the DCT and IDCT transform units were 
doubled in this work, we were able to fit a third Intra Coding 
accelerator in a single Arria 10 FPGA. This was achieved by 
replacing all DSPs in IP and DST transform as well as constant 
multiplications in DCT and IDCT with logic elements. More 
economic utilization of DSPs and other HLS code optimizations 
allowed for better routing of our design on FPGA and made it 
possible to increase the maximum frequency from 125 MHz to 
175 MHz. 

D. Other Optimizations 

In our 1st generation encoder, a single Intra Coding 
accelerator supported eight parallel CTUs and the CPU was used 
to encode CTUs whenever the accelerators had no space for a 
new CTU. In this work, the additional CPU encoding was not 
used anymore since the proposed improvements have made the 
accelerator much faster at processing a CTU than the CPU. In 
addition, the increase of parallel CTUs supported on a single 
Intra Coding accelerator from eight to 16, caused encoding even 
a single CTU with the CPU to bottleneck the system. Waiting 
for available processing time from the accelerators and waiting 
for the result is faster than encoding a CTU with SW.  

Performing the CTU encoding solely on the FPGA reduced 
the overall CPU usage and the CPU is now mostly waiting for 
results from the FPGA. This allows the CPU to perform other 
processing, even while encoding HEVC 4K120p. Further 
improving the CPU utilization and maximizing thread usage, the 
DMAs in the FPGA now generate interrupts when ready. 
Previously, the kernel driver polled the DMAs, but the increase 
in FPGAs and accelerators caused the locking mechanism in the 
kernel to use a major part of the processing time of a thread. With 
interrupts and semaphores, the thread can now sleep while 
waiting for the DMA completion and yield processing time for 
other threads. 

IV. TASK SCHEDULING AND RESOURCE MANAGEMENT 

Scheduling of intra coding tasks is also improved to make 
the most of Kvazaar SW instances on a CPU and Intra Coding 
accelerators on FPGA. 

A. CTU Load Balansing 

Fig. 2 shows the process of scheduling processing time for 
different Kvaazar instances and choosing the best available Intra 

 
Fig. 3. Block scheduling in Intra Coding accelerator. 

 

 
Fig. 2. CTU load balancing between Kvazaar instances and accelerators. 

 



 

 

Coding accelerator for a new CTU. The Linux driver is 
accessible by all Kvazaar instances, which request processing 
time on the FPGA from the driver. If there are no available 
resources, Kvazaar instances need to wait. Waiting instances are 
served in request order. The driver assigns new CTUs to 
different Intra Coding accelerators according to the CTU id 
provided by the driver. The CTU id is a running number limited 
by available resources, i.e., the number of Intra Coding 
accelerators and the number of CTUs per accelerator.  

B. Block Scheduling in Intra Coding Accelerator 

Fig. 3 shows how the Intra Coding accelerator determines 
the next block to the pipeline. For each CTU, a set of instructions 
are generated to signal the scheduler the encoding order of the 
blocks in a CTU. The next block of a CTU is valid for processing 
if the previous block of the same CTU is done. The scheduler 
assigns priorities to the valid blocks and chooses the one with 
the highest priority. The priority is higher when the next block 
in line is of equal size or larger than the previous one. This policy 
aims to keep the pipeline utilization high and it prevents larger 
blocks from bottlenecking smaller ones. 

V. CODING SPEED ANALYSIS 

Table I tabulates the obtained encoding speeds with different 
number of Intra Coding accelerators using the 8-bit 4:2:0 
4K120p test video sequences from [23]. The average results 
show that our implementation is able to reach 4K30p with two 
accelerators, 4K60p with three accelerators, and 4K120p with 
six accelerators. The maximum speed of the accelerated system 
is 6.8 times as high as that of the pure software version. Coarsely 
speaking, doubling the number of accelerators doubles the 
encoding speed.  

Our 1st generation encoder was able to encode 4K30p with 
a single Intra Coding accelerator but it was limited to use CU 
sizes of 8×8 and 16×16. In addition, it utilized the remaining 
CPU power for CTU encoding. Disabling 32×32 blocks in the 

current version would also increase its 4K coding speed to 30 
fps with a single accelerator even without utilizing the CPU. 
With medium preset [17] and rate-distortion-optimized 
quantization (RDOQ) disabled, our proposal is able to encode 
4K60p with six Intra Coding accelerators. 

Table II tabulates the performance figures of the proposed 
and existing HEVC intra encoders on ASIC and FPGA. To make 
comparison more straightforward, our proposal is configured to 
use only a single FPGA with which 4K format can be encoded 
up to 60 fps (Table I). Our 1st generation encoder was already 
able to outperform related FPGA implementations and compete 
equally with the existing ASIC implementations. The proposed 
2nd generation encoder even beats these ASIC approaches.  

VI. CONCLUSION 

This paper presented our 2nd generation HEVC encoder for 
real-time 4K intra coding. The proposed encoder was prototyped 
on Nokia AirFrame Cloud Server composed of a dual 14-core 
Intel Xeon processor and two Arria 10 FPGAs. On AirFrame, 
our solution is able to encode 4K video at 120 fps or four 4K 
videos at 30 fps.  

The implemented HW acceleration speeds up the encoder by 
6.8 times over the pure SW implementation and the obtained 
performance is three times as high as that of our 1st generation 
encoder. The speedup was achieved by increasing the number of 
FPGAs to two, improving FPGA utilization by allocating the 
simplest multiplications to logic, increasing the efficiency of 
pipeline in Intra Coding accelerator, and improving the 
utilization rate of the accelerators by better task scheduling. 

The Intra Coding accelerators of the encoder are entirely 
implemented with HLS tools from C source code of Kvazaar 
HEVC intra encoder. HLS is generally known to reduce design 
and verification times over traditional design flows. This work 
further shows that the shorter development time does not come 
at a cost of coding performance. 
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TABLE I. CODING SPEED OF 4K VIDEO WITH DIFFERENT NUMBER OF INTRA CODING ACCELERATORS 

 

TABLE II. COMPARISON OF THE PROPOSED AND RELATED INTRA ENCODERS 

 

Software

No acceleration 1 accelerator 2 accelerators 3 accelerators 2 accelerators 4 accelerators 6 accelerator

Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps) Speed (fps)

Beauty 17 25 49 64 50 96 125

Bosphorus 20 27 53 65 54 102 127

HoneyBee 17 26 50 64 51 98 124

Jockey 21 29 54 65 58 104 126

ReadySetGo 19 27 52 64 53 99 123

ShakeNDry 16 22 44 63 45 85 115

YachtRide 18 26 51 64 51 98 123

Average 18 26 50 64 52 97 123

Sequence (2160p)

Single  FPGA Two FPGAs

Architecture Technology Frequency Resolution Cells DSPs

[10] ASIC 357 MHz 1080@44fps 2296k gates -

[11] ASIC 200/400 MHz 2160@30fps 1086k gates -

[11] Arria II 100/200 MHz 1080@60fps 93k ALUTs 481

[12] Zyng ZC706 140 MHz 1080@30fps 84k LUTs 34

[13] Custom 3x FPGA N.A. 1080@60fps N.A. -

[16] CPU + Arria 10 125 MHz 2160@40fps 308k ALUTs 862

Proposed CPU + Arria 10 175 MHz 2160@60fps 552k ALUTs 1227
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