
 

CILAMCE 2015 
Proceedings of the XXXVI Iberian Latin-American Congress on Computational Methods in Engineering 

Ney Augusto Dumont (Editor), ABMEC, Rio de Janeiro, RJ, Brazil, November 22-25, 2015 

KINETIC PROJECTION AND STABILITY IN LATTICE-
BOLTZMANN SCHEMES  

Paulo C. Philippi  

philippi@lmpt.ufsc.br 

Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil 

Keijo K. Mattila  

keijo.mattila@jyu.fi  

Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FI-40014 University of Jyvaskyla, Finland 
and Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland 

Luiz A. Hegele Júnior 

luiz.hegele@gmail.com  

Department of Petroleum Engineering, State University of Santa Catarina, 88330-668 Balneario Camboriu, SC, 
Brazil  

Diogo Nardelli Siebert 

diogosiebert@gmail.com  

Mobility Center. Federal University of Santa Catarina, 89218-000 Joinville, SC, Brazil 

 

Abstract. The lattice-Boltzmann equation is a low-order approximation of the Boltzmann 
equation (BE) and its solution involve errors affected by high-order moments that cannot be 
controlled or retrieved with this approximation. These ´ghost` moments contribute to 
instability issues. The regularization method is discussed in this paper in connection with 
kinetic projections and we show that solutions of the LB equations, with improved stability 
ranges, may be found, in a systematic way, based on increasingly order projections of the 
continuous Boltzmann equation (BE) onto subspaces generated by finite set of Hermite 
polynomials.  
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1  INTRODUCTION 

    Historically, the lattice-Boltzmann equation (LBE) was introduced by McNamara and 
Zanetti (1988), as an alternative technique to the lattice-gas automata for the study of 
hydrodynamic properties, replacing the Boolean variables in the discrete collision-
propagation equations by their ensemble averages. This approach eliminated the statistical 
noise that plagued the lattice-gas simulations. 

    In 1989, Higuera and Jiménez (1989) proposed a linearization of the collision term 
derived from the Boolean models, recognizing that this full form was unnecessarily complex 
when the main purpose was to retrieve the hydrodynamic equations. Starting from this 
linearized form, Higuera et al. (1989) proved that one can define a Lattice-Boltzmann 
equation with enhanced collisions, independently of any underlying boolean microscopic 
dynamics. The collisions are defined by a matrix, whose structure is essentially dictated by 
symmetry arguments. 

    Following this line of reasoning, Chen et al. (1991) suggested replacing the collision 
term by a single relaxation-time term, followed by Qian et al. (1992) and Chen et al. (1992), 
who introduced a model based on the celebrated kinetic-theory idea of Bhatnagar, Gross and 
Krook (BGK),  Bhatnagar et al. (1954), but adding rest particles and retrieving the correct 
incompressible Navier-Stokes equations, with third-order non-physical terms in the local 
Mach number. The single relaxation time BGK collision term describes the relaxation of the 
distribution function to an equilibrium distribution.  

    Connecting the LBE to the continuous Boltzmann equation. Until some years ago, 
LBM was mostly restricted to isothermal, incompressible flows. LB schemes for non-
isothermal flows includes higher-order terms in the equilibrium distribution function, 
requiring to increase the lattice dimensionality, i.e., the number of vectors in the finite and 
discrete velocity set . The connection between the LBE and the continuous Boltzmann 
equation was first established by He and Luo (1997), in 1997, who directly derived the LBE 
from the Boltzmann equation for some widely known sets of lattice vectors, D2Q9, D2Q6, 
D2Q7, D3Q27. This was performed by the discretization of the velocity space, using the 
Gauss-Hermite and Gauss-Radau quadrature. Excluding the above mentioned lattices, the 
discrete velocity sets obtained by this kind of quadrature do not generate regular space filling 
lattices. 

Shan et al. (2006) and Philippi et al. (2006) reopened the prospect of using the lattice 
Boltzmann method to simulate non isothermal and/or high Knudsen number flows through the 
direct resolution of the continuous Boltzmann equation, by establishing a systematic link 
between the kinetic theory and the lattice Boltzmann method. This connection enabled to 
determine the necessary conditions for the discretization of the velocity space. The lattices 
obtained by the method proposed by these authors, a prescribed abscissas quadrature, proved 
to be stable in flows over a wide range of parameters by the use of the high-order lattice 
Boltzmann schemes, Siebert et al. (2008). The new discovered velocity sets, when used in a 
discrete velocity kinetic scheme, ensured accurate recovery of the high-order hydrodynamic 
moments, assuring increasingly higher order of isotropy of the lattice tensors. 

Stability.The most commonly used lattice Boltzmann collision model is the single 
relaxation-time model BGK model, Bhatnagar et al. (1954). This model is able to 
asymptotically represent near incompressible flows. Nevertheless, it suffers from stability 
issues especially at high Reynolds numbers. These issues are affected by the “ghost-
moments" which are non-physical high-order moments present in any LBM simulation. 
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Improving stability of LB schemes has been addressed by several authors and some solutions 
have been proposed. For recent reviews, see e. g.  Brownlee et al. (2013), Golbert et al. (2015) 
and references therein. The first ones were based on the use of multiple relaxation times 
(MRT) tuned with the help of a linear stability analysis, D’Humieres (1992), D’Humières et 
al. (2002), Dellar (2003), Xu and Sagaut (2011). The entropic LB-BGK method was 
conceived based on the maximization of the entropy,  by locally tuning the single relaxation 
time, Karlin et al. (1999). Recently a new extension to LB schemes was proposed, namely the 
entropic stabilizer, Karlin et al. (2014). Unlike the entropic LB-BGK model mentioned above, 
this extension does not locally alter the viscosity, but rather relies on modifying the relaxation 
time for the higher-order moments (i.e. moments beyond the stress tensor) which do not 
contribute to the viscosity. In this respect, the extension is akin to the already mentioned 
relaxation parameter tuning for MRT schemes. A third method was investigated by Latt and 
Chopard (2006) in which the high-order moments are filtered by rewriting the pre-collision 
populations preserving only the low-order moments. 

Recently Golbert et al. (2015) proposed a method based on a modified equilibrium 
distribution, whose parameters are found based on regularization equations and on a linear 
stability analysis for the free tunable parameters in this distribution. 

The main criticism to be made to MRT, entropic and Golbert et al. models is their lack of 
universality and the requirement of an optimization step (a linear stability analysis or the 
maximization of the entropy). LB equations are low-order approximations to the continuous 
Boltzmann equation and, so, their solutions suffer from errors related to uncontrolled high-
order moments. Consequently, instability issues are to be expected. Therefore, considering the 
nature of these issues, three main alternatives appear at hand for enlarging the stability ranges 
without the help of additional free parameters to the numerical scheme, tuned with the help of 
a given optimization procedure. The first one is to use lattices with increased dimensionality, 
i.e., based on high-order LB equations with increased velocity sets ,  0,..., 1i bi n ξ . This 

alternative was discussed by Siebert et al. (2008). The second alternative is to add high order 
Hermite polynomial tensors to the equilibrium distribution, reducing the effect of their related 
moments on instability. This alternative is still used in MRT and entropic models and was 
utilized by Siebert et al. (2008) for improving the stability of the D2Q9 LBE. The third 
alternative is to work with regularized LB equations, i.e., to rewrite the LB equation in such a 
manner as to filter the undesirable ghost moments from the numerical scheme.  

Considering HN to be a subspace of the Hilbert space H of square integrable functions 
that map the velocity space onto the real numbers, when the order of this subspace is large 
enough to exactly retrieve all hydrodynamic moments of interest up to first order in Kn , the 
projection of the distribution function f  onto HN is all what is needed for recovering the 
hydrodynamics we want. So, the regularization problem reduces to the velocity discretization 
of the projection of the Boltzmann equation onto HN. 

The discussion of kinetic projections in connection with regularization methods for 
improving the stability of LB equations is the main purpose of this paper. 
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2  KINETIC PROJECTION IN THE CONTINUOUS VELOCITY 
SPACE 

Let 

 t f f    ξ ,  (1) 

be the Boltzmann equation without considering external forces and with the Bhatnagar, Gross 
and Krook (BGK) relaxation term, Bhatnagar et al. (1954) 

 MBf f




   , (2) 

where MBf  is the Maxwell-Boltzmann (MB) equilibrium distribution, Chapman and Cowling 

(1970), and   is a relaxation time, related to a characteristic time at the molecular scale. 

The distribution  , ,f tx ξ  solution of the Boltzmann equation may be considered, for 

each position x  and time t  as a map from the continuous velocity space D   onto the space 
  of real numbers, Philippi et al. (2006), with D  denoting the Euclidean dimension of the 
velocity space ( 1,2D   or 3). In fact, this distribution belongs to the Hilbert space H of 

square integrable functions : Df   , and  may be written in terms of an orthogonal basis 
of H, which will be considered as the infinite set of Hermite polynomial tensors 

     0 1 2, , ,...H H H  (Figure 1). For each ξ  in the velocity space    0 1H ξ ,    1H ξ , 
   2H      ξ  and so on, Grad (1949). 

 

Figure 1. The Hilbert space of the solutions of the Boltzmann equation. 

Consider now the subspace HN of H  generated by the first Hermite polynomial 
tensors   

       0 1 2
..., , ,...,

N

NH H H H    , 

and let eq
Nf  be the projection of the Maxwell-Boltzmann (MB) equilibrium distribution eqf  

onto HN. Restricting ourselves to isothermal problems, this projection can be written in terms 
of the Hermitian basis of HN as 
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ξ , (3) 

where  1 2
kT m   is the mean molecular speed at temperature T  and 0 ξ ξ is a 

dimensionless molecular velocity. The equilibrium moments    0eqa  u  can be found using the 

orthogonality properties of the Hermite polynomial tensors, 

    
 

 
   

2
0 0

2
0 0 0

2

1

2
eq Da e H d 






 
ξ u

u ξ ξ , (4) 

where 0 u u  is a dimensionless macroscopic velocity. The first equilibrium moments are 

      0 1 2
, 0, , 0, 0,1,   ,   ,...eq eq eqa a u a u u         (5) 

Now, let f  be decomposed into its equilibrium and non-equilibrium parts 

 eq neqf f f   , (6) 

and consider the projection neq
Nf  of non-equilibrium part of f  onto HN. Recall that HN is a 

finite space generated by Hermite polynomial tensors up to order N.  

In Knudsen first order hydrodynamic problems, the distribution f  can be written as an 
asymptotic expansion in terms of  , Chapman and Cowling (1970),  

    0 1 ...f f f   . (7) 

This expansion induces the Enskog´s time derivative decomposition 

 0 1 ...t       , (8) 

and by inserting Eqs. (7) and (8) into Eq. (1) a set of equations are obtained when 0 in 
accordance with the different orders of the Knudsen number. So, at the Knudsen order 1   

  0
MBf f  , (9) 

meaning that, when 0 , the collisions prevail over the streaming term and that the MB 
distribution is the main part of the searched solution. At order 1, 

    
 1

0 0
0 ,

f
f f 


    


  (10) 

and at order    

       
 2

1 0 1
0 1 .

f
f f f 


      


  (11) 

In isothermal problems, Eqs. (10) and (11) are subjected to the following solvability 
conditions 

    0 0,       fd f d f d f d    ξ ξ ξ ξ ξ ξ  . (12) 
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So, the zeroth  moment of Eq. (10) is obtained by multiplying it by the mass m  of the 
particles and integrating the result in the velocity space, 

  0 0u       , (13) 

and the zeroth  moment of Eq. (11),  

 1 0  . (14) 

Therefore the mass conservation equation is retrieved by summing Eqs. (13) and (14) in 
accordance with Eq. (8) 

   0t u      .  (15) 

The first order moment of Eq. (10) is the Euler equation, 

    0 0u u u P           ,  (16) 

and the first order moment of Eq. (11) is  

  1 0,u         (17) 

where the viscous stress tensor is given by 

     


1

neqf

m u u f d      


   ξ  . (18) 

The Navier-Stokes equations  without the gravity term are obtained by summing Eqs. 
(16) and (17) 

     0t u u u P              . (19) 

Now, the viscous stress tensor is rewritten as 

  


1

neqf

m f d    


  ξ  . (20) 

Tensor   can be obtained by multiplying Eq. (10) by m    and integrating the result 

in the velocity space. In doing that, we will get that   is dependent on the gradient of a 

third-order moment of the equilibrium distribution,  

 eqf d      ξ  . (21) 

So, being a second-order non-equilibrium moment, the viscous stress tensor τ  requires 
third-order moments of the equilibrium distribution to be correctly retrieved. When a second-
order projection 2

eqf   is used in Eq. (21), these moments will be retrieved with third order 3u  

errors. In other words, whereas the space HN is able to represent approximations to the 
equilibrium distribution of order N , order N  approximations to the non-equilibrium 
distribution require to increase this order by 1. It is here, perhaps, important to note that this 
restriction cannot be assigned to the discretization of the velocity space, but has a very well 
known consequence in lattice-Boltzmann theory. In fact, second order lattice Boltzmann 
equations (LBE), such as the D2Q9 or D3Q27, are unable to retrieve the viscous stress tensor 
-a second-order non-equilibrium moment- without errors. This limitation requires the 
simulations to be performed at low Mach numbers in the quasi-incompressible limit. 
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Considering these reasons, the order N  of the subspace HN will be considered as the 
order of the non-equilibrium moment it is wanted to be exactly retrieved without errors and 
the projection neq

Nf  of non-equilibrium part of f  onto HN will be written as 

 
 

       
2
0 1

02
0

02

1

!2

N
neqneq

N D
D

a
f n e H




  





 
u

ξ   (22) 

Therefore, whereas the kinetic projection of, e.g., eq
Nf  of the MB equilibrium distribution 

is unambiguously defined by its first  equilibrium moments up to the Nth  order, 

    
       0 0

0
1 2 1 2

1 1

! !... ! ! !... !
! !

eq eq
N

eq
D D

f H d f H d
n na

 



     
 

 
 ξ ξ ξ ξ

u  , (23) 

for N  , the kinetic projection neq
Nf  of the non-equilibrium distribution will be represented 

in this space by its first 1N   non-equilibrium moments 

    
       0 0

0
1 2 1 2

1 1

! !... ! ! !... !
! !

neq neq
N

neq
D D

f H d f H d
n na

 



     
 

 
 ξ ξ ξ ξ

u  , (24) 

for 1N    . In the above equations, 1 2, , D   are, respectively, the number of times the 

index 1 (or x), the index 2 (or y) and the index 3 (or z) appear repeated in the polynomial 
tensor. From Eqs. (23) and (24) it is also seen that due to the orthogonality of the Hermite 
polynomial tensors, the projection of  eqf  and neqf  along the  -component of the Hermitian 
basis of HN are the same as the projection of their corresponding truncated representations. 

The solution of the Boltzmann equation, Eq. (1) will now be written as 

 Nf f h    (25) 

where h  is the part of f  related to its higher order moments that do not fit into HN. In the 
same way, Eq. (1) will be rewritten as 

 
neq

N
t N N

f
f f


    ξ  . (26) 

Considering, for instance, that 3N  , the above equation is the projection of the 
Boltzmann equation on the subspace H3  and leads to the same macroscopic results 
represented by the mass conservation equation, Eq. (15) and by the momentum balance 
equation, Eq. (19). Indeed, the inner product of the residual equation 

 
neq

t

h
h h


    ξ   (27) 

by any of the Hermite polynomial tensors  H  , 2  ,  in space H3, will be null. Non 

equilibrium third and higher order moments  
neqa  , for 3   do not contribute to BGK 

hydrodynamics and are to be considered as ghost moments, in the sense that they not affect 
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the hydrodynamics, up to the first order in the Knudsen number. Their effect will only appear 
at the second and higher Knudsen order and may lead to instability issues. 

This line of reasoning can be generalized for non-isothermal problems, with or without 
the BGK relaxation term representing the interaction term  , with or without the addition of 
external forces or forcing terms, Philippi et al. (2006). For instance, when the BGK term is 
used for  , the heat flow vector q , a  third-order non equilibrium moment, requires 4N  . 
Enhanced representations of  , such as the one found in Philippi et al. (2007) require 5th 
moments of the equilibrium distribution to fit into the space HN. 

In summary, the Boltzmann equation carries out more degrees of freedom than that it is 
strictly needed. Hydrodynamic problems require the retrieval of only the first moments of the 
distribution function and Knudsen first order hydrodynamics can be solved in subspaces HN 
of the Hilbert space H. Non equilibrium moments that do not fit into this subspace are to be 
considered as ghost moments and, although not affecting the first-order Knudsen number 
hydrodynamics, may lead to instability issues. 

In the next section a regularization method is discussed for reducing the effect of these 
ghost moments in LBM simulations. 

3  THE DISCRETE VELOCITY SPACE 

3.1 The discretization problem 

Consider now the velocity discretization problem. Velocity discretization is a critical step 
in deriving the lattice Boltzmann equation from the continuous Boltzmann equation since it is 
intended, in this step, to replace the entire continuous velocity space D  by a finite set of 

discrete velocities , 0,1,..., 1i bi n ξ . As it was shown by Philippi et al. (2006) and Shan et al. 

(2006), the number bn    of poles iξ   and the poles themselves are defined by the order of the 

equilibrium moments to be preserved in the discrete space. 

A Chapman-Enskog analysis shows, Mcnamara and Alder (1993), that the set of 
necessary conditions for the correct hydrodynamic equations to be retrieved is given by 
assuring that the discrete distributions eq

if  used in the LB equation satisfy, 

    eq eq
i i

i

f f d  ξ ξ ξ ,  (28) 

for all equilibrium moments    of interest,   1, , , ,...           ξ  . Considering the 

discretization as a quadrature problem, the discrete distributions eq
if  on the left hand side of 

the above equation are replaced by  eq
if ξ , i.e., by the values of the MB distribution 

evaluated at the pole iξ , multiplied by a weight iW  to be attributed to each velocity vector iξ , 

in order to satisfy the quadrature condition 

    
 

   
2
,

2
,0 ,0 0 0

2

1

2

i o

D eq eq
i i i D

i

W e f f d


  


 ξ ξ ξ ξ ξ   (29) 
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where the factor D  was introduced for assuring the weights iW  to be dimensionless. 

Replacing eqf  by its truncated expansion, Eq. (3) into Eq. (29) and writing  0 ξ  in terms of 

Hermite polynomial tensors, the following equation is obtained, 

        
 

       
2

2
,0 ,0 0 0 0

2

1

2

o

i i i D
i

W H H e H H d


   




 ξ ξ ξ ξ ξ   (30) 

for all , N   . The r.h.s. of the above equation is the inner product in the space HN and the 

l.h.s. is its discrete form when the velocity space  D  is replaced by the discrete set 

,0 , 0,1,..., 1i bi n ξ . So, Eq. (30) means that the preservation of the metrics in the Hilbert 

space HN  is a necessary condition for the velocity discretization problem. 

Eq. (30) also means that the orthogonality and norm of the Hermite polynomial tensors 
must be preserved when they map the discrete velocity set into the real numbers. In fact, as it 
was shown in Philippi et al. (2006), these two conditions are equivalent, when the discrete 
velocity space is invariant under 2  rotations and reflections about the ,x y  and z  axis. 
This is important, since this property reduces the discretization problem to find the weights 

iW  and poles , 0,1,..., 1i bi n ξ  satisfying solely the orthogonality conditions or the norm 

restrictions,  

     
 

    
2

2 2
2

,0 0 0

2

1

2

o

i i D
i

W H e H d


 




 ξ ξ ξ   (31) 

for all N  . If a set , 0,1,..., 1i bi n e , of lattice vectors is chosen, the discretization 

problem reduces to find the weights iW  and a scaling factor  sc  , such that ,0i s ice ξ  , by 

solving the norm preservation condition, Eq. (31). 

Considering that the poles ie  are given this method was called quadrature with prescribed 

abscissas. When the set , 0,1,..., 1i bi n e , is regular, the lattice is space filling, enabling the 

use of collision-propagation schemes in the numerical solution of the LBE. Therefore, by 
defining the lattice speed as c h  , where h  is the lattice spacing and   is the time step, 

the following relationship between the mean particle speed  and the lattice speed c , is easily 
found as 

 sc c    

In summary, there is a relationship between the order N of the Hilbert space HN and the 
discrete and finite velocity set , 0,1,..., 1i bi n e . Figure 2 shows this relationship for the 

two-dimensional D2Q9 lattice, a second order LBE. In fact, velocity discretization means to 
replace the MB equilibrium distribution by its projection on the space HN and the key 
question in the velocity discretization problem is to find the set  , 0,1,..., 1i bi n e  in 

accordance with the order N of HN. This question has not a single answer and the prescribed 
abcissas method above presented leads to different velocity sets, with the same order N, when 
they are required to be space filling or not. Further details can be found in Philippi et al. 
(2006), Shan et al. (2006), Siebert et al. (2007), Surmas et al. (2009) and Shan (2010). 
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Figure 2. The D2Q9 lattice as related to second order Hilbert subspaces 

     

3.2 Regularization 

Let the population if , related to the velocity vector iξ , be written in dimensionless form 

as 

    
2
0,

22

0

2
iD

Di
i i

W
f c e f

n



 ξ   (32) 

where 0n  is a reference number density. This definition allows to find the moments    of 

any velocity function  in LB dimensionless variables, relating it to its continuous counterpart 
by 

    *

0
0

1
i i

i

f f d
n

    e ξ ξ  . 

Therefore,  

 
* ** * * *1 ,          ,i i i

i i

n f f      ξ u e   

and so on. 

Consider now the discretized form of the Boltzmann equation Eq. (1) when a first order 
scheme is used for the streaming term and let the BGK relaxation term be used for  . In 
present notation, the discrete LB equation can be written as 

        ,

*

, ,
h, ,

eq
i N i

i i i

f t f t
f e t f t




   
x x

x x  , (33) 
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where *    is a dimensionless relaxation time. We consider as regularization  a method 
that is used for controlling the higher order moments, improving the stability ranges of the LB 
scheme, without any effect on the low-order hydrodynamic moments. Two regularization 
methods will be discussed in the next sections 

3.2.1 Adding high-order Hermite polynomials to the subspace HN 

Figure 2 shows the Hilbert subspace H2 which is related to the D2Q9 space filling lattice. 
The Hermite polynomial tensors that generate this subspace are, 

            0 1 1 2 2 2, , , , ,x y xx xy yyH H H H H H  . 

For each one of these velocity tensors, Eq. (23) associates an equilibrium moment. They 
are 

            0 1 1 2 2 2, , , , ,x y xx xy yya a a a a a  . 

So, in accordance with Eqs. (3) and (32) the equilibrium distribution takes on the usual 
form: 

   22* * * *
,2

9 3
1 3

2 2
eq

i i i if W u         
u e u e  . (34) 

The question to be answered here is if the addition of higher order polynomial tensors to 
the subspace H2 will increase the stability of the D2Q9 LBE. In fact, for this LBE, when the 
weights obtained for the second-order model are used, the norm of the third-order Hermite 

polynomials  3
xxyH  and  3

xyyH  are also preserved. This allows the inclusion of the related third-

order moments in the equilibrium distribution, which takes on the following form: 

 

 

   

2

2 2

2* * * *
,3

* * 2 * * 2

9 3
1 3

2 2

27 1 1

2 3 3

eq
i i i i

x iy y ix y ix x iy

f W u

u e u e u e u e

      


                

u e u e

  (35) 

Since this inclusion does not have any effect on the second-order and lower equilibrium 
moments, the viscous stress tensor continue to be affected by third-order 3M  errors. In this 
way, the D2Q9 stability was analyzed by comparing the D2Q9 LBGK with a second and the 
third-order equilibrium distribution given, respectively, by Eqs. (34) and (35). These models 
were also compared with the Lallemand and Luo (2003) multiple relaxation time (MRT) 
model, since this model was also built with the aim of improving the LBE stability, Siebert et 
al. (2008). 

Von Neumann stability analysis 

Figure 3 is the result of a von Neumann stability analysis (Siebert et al., 2008) and shows 
that the third-order LBGK model has a considerably better performance when compared with 
the second-order one and with the MRT model in what concerns its stability limits. Therefore, 
the addition of third-order velocity polynomials largely improve the stability range and this 
improvement is due to the equilibrium distribution representation itself and not to the use of 
extra relaxation terms in the collision model. This is an important conclusion, since it avoids 



Kinetic projection and stability in lattice-Boltzmann schemes 

CILAMCE 2015 
Proceedings of the XXXVI Iberian Latin-American Congress on Computational Methods in Engineering 
Ney Augusto Dumont (Editor), ABMEC, Rio de Janeiro, RJ, Brazil, November 22-25, 2015 

the use of MRT dispersion relations for the adjustable parameters—related to the short 
wavelength non-hydrodynamic moments—to increase numerical stability. 

 

 
Figure 3. Stability range for the D2Q9 LBGK equation using a linear stability 
analysis (Siebert et al., 2008) comparing the second order equilibrium distribution, 
Eq.  (34), the third order equilibrium distribution, Eq. (35) and the MRT method  
(Lallemand and Luo, 2003). 

 

3.2.2 Filtering the ghost moments 

The collision step can be written as 

      , ,, , 1out eq eq
i i N i i Nf t f t f f




     
 

x x  , (36) 

Since if  is related to all macroscopic moments, including the uncontrolled high order ones, a 

strategy for filtering this spurious information is to replace if  by its projection ,i Nf  on the HN 

Hilbert subspace. 

Thus, by replacing if  by its projection ,i Nf , Eq. (36) takes on the form: 

    , ,, , 1out eq neq
i i N i Nf t f t f




    
 

x x  , (37) 

where the non-equilibrium population ,
neq

i Nf  is, now, given by , , ,
neq eq

i N i N i Nf f f  . 
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Figure 4. The third order Hilbert space H3 that maps third order sets of discrete velocities onto the 
real numbers. 

 

Taking Eqs. (22) and (32) into account, the non-equilibrium part ,
neq

i Nf  will be written in 

space  HN as 

 
 

   
1

, 0
0 !

N
neqneq

i N i

a
f W H




 





  ξ  . (38) 

When 3N  , since   0neqa    for 0,1  , the above equation reduces to 

 
 

     
2

2 * 2
,3 42 2

neqneq i
i i i i i s

s

a W
f W H e e c

c       e   (39) 

Therefore, the pre-collisional populations are recalculated, at each site and time step, 
based on the information we have for the non-equilibrium moments that fit into the moments 
space related to HN. 

Double periodic shear layer flow  

In order to numerically investigate the properties of the regularization method, we will set 
up a perturbed double periodic shear layer flow as a benchmark case. There, a small velocity 
perturbation, perpendicular to the shear flow direction, initiates a Kelvin-Helmholtz instability 
and causes roll up of the antiparallel shear layers (Figure 5). Periodic boundary conditions are 
applied, Mattila et al. (2015).  
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Figure 5. Kelvin-Helmholtz instability in shear flow. A small velocity perturbation, perpendicular 
to the shear flow direction, initiates a Kelvin-Helmholtz instability and causes roll up of the shear 
layers. 

 

The initial velocity profile is shown in Figure 6,  given by 
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 , (40) 

where *
0u  is the velocity of the shear layer. The profile *

xu is controlled by parameter  , which 

was considered in present sample case as 80  . With this value of  , the velocity profile, 
although continuous, is nearly constant in the central layer and has a step gradient in the 
contact lines with the lateral layers, producing a shear flow. An initial sinusoidal velocity 
perturbation *

yu  is imposed in the vertical direction and controlled by parameter  in Eq. (40). 

Parameter 0.05  in present simulations. Boundary conditions are periodic. The simulation 
starts from these imposed velocity profiles and follows the velocity field till the end of the 
flow, when all the kinetic energy is dissipated by viscous forces. 

The Mach number was kept very small ( 25.4127 10M   ) and the simulations were 
performed with the second-order  D2Q9 LBE, in despite of its 3M  errors. At each time step 

the average kinetic energy is measured and normalized with respect to 
2*

0 2u  .  Figure 7 

shows the time decay of the average kinetic energy comparing the simulation results between 
the LBGK model, given by Eq. (36) with the regularized LBGK, Eqs. (37) and (39), Mattila 

et al. (2015). The dimensionless time t  in the abcissas is defined as 
*
0u

t
L


  where   is the 

number of time steps. Whereas the LBGK model becomes unstable very early, when 0.3t   
or  1230 time steps, the regularized LBGK remains stable till the end of the simulation. 

The average kinetic energy, as a global measure, does not capture well the differences 
between local flow features. Figure 8 shows the simulated vorticity field, at t = 1, comparing 
the LBGK and the regularized scheme at this time step.  Now 4Re 8 10   for a simulation 
domain with 256L    and a dimensionless velocity *

0 1 16u  . The dimensionless kinematic 

viscosity is 42 10   . The LBKG case in (a) was simulated with 4Re 3.2 10   due to 
stability reasons: the locus of instabilities is at the small secondary vortexes that appear in (a). 
The regularized LB scheme  in (b) remain stable during the whole simulation.  
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Figure 6. Initial velocity profiles for the Kelvin-Helmholtz 
instability problem. The central shear layer moves with a velocity 

*
0u  and the lateral ones with *

0u . 

 

4  CONCLUSIONS 

The distribution function in a kinetic equation has more degrees of freedom than it is 
usually needed in solving a small Knudsen hydrodynamic problem. In fact, this distribution 
stores the information of all the macroscopic moments including the high-order ones, which 
are considered without any interest to hydrodynamics. 

On the other hand the lattice-Boltzmann equation is a low-order approximation of the 
Boltzmann equation (BE) and its solution involve errors. These errors are affected by the 
high-order ´ghost` moments not explicitly controlled in this approximation. 

In this paper, we showed that the solutions of the LB equations may be systematically 
written as increasingly order projections of the BE onto a subspace HN of the Hilbert space H 

of square integrable functions : Df   , generated by the first Hermite polynomial tensors 
 H   for N  . 

In doing that the regularization problem reduces to the velocity discretization of the 
projection of the Boltzmann equation onto subspace  HN. 
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Figure 7. Decay of average kinetic energy for and initial Reynolds number, Re 32000 ,  128L  lattice 

unities, 0 1/ 32U    and 4 / 30000  . The average values are normalized with respect to
2*

0 0 / 2u  . The 

LBGK scheme becomes unstable early on, around time t = 0.3, corresponding to 1230 time steps. The 
regularized LB scheme remain stable during the whole simulation, Mattila et al. (2015)   . 
 
 

 

(a) LBGK 

 

(b) Regularized 

Figure 8. Isolines of the vorticity field for Re 80000   at  1t  , 256L  lattice unities, *
0 1/16u   and 

42 10    . The simulation with the LBGK scheme in (a) is for Re 32000 ,  because it becomes unstable after this 
limit. Instabilities arise from the small secondary vortexes in (a). The regularized model in (b) remains stable, with the 
vorticity fields appearing undisturbed, Mattila et al. (2015).  
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