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Abstract—This paper presents a real-time method for generat-
ing joint trajectories for redundant manipulators with collision
avoidance capability. The coordinated motion control system of
the heavy-duty hydraulic manipulator resolves joint references
so that a goal position can be reached in real-time without any
collisions. The proposed method is able to detect and prevent
different types of possible collisions, including self-collisions and
collisions with obstacles. When the control system detects the
risk of collision, the collision server searches the points where
the collision is about to occur and calculates the shortest distance
between the colliding objects. The collision server is used to retain
static point clouds and to calculate the shortest distance between
objects that are too close to each other. The point clouds on the
server are kept up to date with the manipulators’ joint sensors
and laser scanner-based measurements. During coordinated mo-
tion control, the joint trajectories of the redundant manipulator
are modified so that the collisions can be avoided, while at the
same time, the trajectory of the end-effector maintains its initial
trajectory if possible. Results are given for a 4-DOF redundant
heavy-duty hydraulic manipulator to demonstrate the capability
of this collision avoidance control system.

I. INTRODUCTION

During the last several decades, many researchers have
described collision avoidance methods for manipulators in the
field of autonomous robotics. The main reason for this is the
increased need for automated operations where the ability to
avoid collisions plays an important role. Long-standing prob-
lems include obtaining accurate information from the manipu-
lator environment and how to actually prevent the collision if a
potential collision is detected. The general features of collision
avoidance methods are well-known, and different approaches
to solving the collision avoidance problem have been reported
in the literature. Two main strategy types have been proposed
for solving collision avoidance problems: global strategies and
local strategies.

Global collision avoidance methods [1], [2] find a collision-
free path from the starting position to the goal position if such
a path exists. These methods are typical for mobile robots,
where the task is to find a collision-free path to the desired
location. Existing knowledge of the robot environment is used
to plan the route. Therefore, these methods are sometimes

called planning algorithms. However, global methods are com-
putationally heavy and may not be applicable for real-time
control applications.

Local strategy solutions are very popular real-time colli-
sion avoidance methods [3]. These methods treat obstacle
avoidance as a control problem instead of a path planning
problem. This enables modification of the manipulator’s path
if obstacles are detected or if the obstacles move too close
to the manipulator. Therefore, these methods can be used in
an unknown environment where there is no information about
the location of the obstacles during the desired manipulator
operations.

Local methods [4], [5], [6], [7] are based on potential fields
in the manipulator’s operational space. These methods are
further divided into two categories based on how the methods
use potential fields. When the collision avoidance method uses
potential fields to generate forces on the manipulator [4], [5],
the solution requires position-based impedance control (PBIC).
Another approach is to use potential fields to generate joint
velocities directly [6], [7]. This approach does not require a
dynamic model of the manipulator and therefore is easier to
implement.

Successful collision avoidance requires accurate information
where a potential collision is about to happen. Despite the
importance of detecting exact locations of potential collisions,
only a few papers have examined how to detect these collision
points of two geometrically complex objects. Often, the com-
plex geometry of the objects is ignored by simplifying the
geometry or by representing the objects as bounding boxes
(BB). One of the most common approaches for finding the
minimum distance between two objects is based on BBs
[8], [9], [10], [11]. These sample-based methods are fast
and require low computational power, but they are applicable
only to simple geometries. A method for detecting collisions
between more complex geometry is presented by [12], in
which graphics processing unit (GPU)-based calculations for
real-time implementation are required. Solutions with real-
time capability, accurate enough collision detection, and a
shortest distance query method seem to be lacking in the



literature. Therefore, additional studies on detecting collisions
exactly and calculating the shortest distance are needed.

The aim of this paper is to present a collision avoidance
system. We propose a method for detecting the collision points
between two objects, presented as point clouds, and describe
how to use this information in a collision avoidance system.
The process for finding the shortest distance between two point
clouds is divided into two phases. In the first phase, we find
the approximate collision location of both point clouds and
then use this information to find the exact collision points.
Oriented bounding boxes (OBBs) are used in the first phase to
detect possible collisions and to find the approximate collision
location. After this, the actual shortest distance is calculated
by using Euclidean distance. If there is a risk that the objects
are about to collide, the calculated shortest distance is used
with the proposed collision avoidance method to move the
manipulator away from the obstacles and toward the desired
goal.

Experiments validated that the proposed method can be
used in real-time control. Multiple point clouds, representing
the manipulator, were converted from three-dimensional (3D)
computer-aided design models, where the number of points
in each point cloud was restricted to 1000. Point clouds
representing the environment and obstacles were created with
a 3D laser scanner. With these point clouds, we created several
collision pairs and monitored the shortest distance between the
pairs. The results show that the proposed method is suitable
for real-time applications to avoid collisions in which there
can be one or more simultaneous collision risks.

The remainder of this paper is organized as follows: The
next section presents the proposed collision detection method
and how to calculate the shortest distance between two point
cloud-type objects. The proposed collision avoidance algo-
rithm is presented in the following section. Next, we describe
the obstacle and environment detection system based on a 3D
laser scanner. Finally, we show the experimental results for the
proposed method, draw some conclusions, and describe future
work.

II. DISTANCE QUERY

To prevent the manipulator from colliding with obstacles or
with itself, a manipulator control system must detect obstacles,
as well as find the minimum distance between different parts
of the manipulator and the obstacles. In the case of possible
self-collisions, the distance between different parts of the
manipulator has to be calculated. Finding the exact shortest
distances between the manipulator and obstacles is crucial for
an accurate collision avoidance system. For example, if the
manipulator’s workspace is small, it might not be possible to
simplify the manipulator and the obstacles with BBs, because
the volumes of the BBs are always larger than the actual
volumes of the manipulator parts and the obstacles. This might
lead to a situation where there is no more free space for the
manipulator to move. Commonly, two types of BBs are used
to simplify the distance query: an axis-aligned bounding box
(AABB) and an oriented bounding box (OBB). AABBs are

TABLE I
FINDING THE SHORTEST DISTANCE BETWEEN TWO POINT CLOUDS.

Initialization phase
1. Input: Point clouds
2. Create octrees for the point clouds
3. Create axis-aligned bounding boxes (AABBs) with δx larger than the

tight-fit AABBs

Calculation phase
4. Input: Object poses
5. Create extended oriented bounding boxes (EOBBs) from AABBs with

the input poses
6. Intersection of the EOBBs using the separating axis theorem (SAT)

• No intersection → No risk of collision
7. Calculate the overlapping volume of the EOBBs

• Create new OBBs of the volumes within each other
8. Transform the new OBBs into the new AABBs with the inverse of the

input poses
9. Find the octree points that are inside the new AABBs

• No points found → No risk of collision
10. Transform the found points with the input poses
11. Find the shortest distance within the transformed points

aligned with global coordinate axes, and the size of the AABB
might change if the object inside is rotated. OBBs, instead, are
aligned with the local coordinate axes of the object; therefore,
the size of the OBB is not changed when the object inside is
rotated. Choosing between the different BBs depends on the
application.

Several studies have used BBs to represent obstacles and
the manipulator and then found the shortest distance between
BBs; for example, [10] and [11] used OBBs. Another popular
method for finding the shortest distance between obstacles is to
use vision-based techniques [13], [14]. Vision-based methods
are widely used and are effective for calculating the shortest
distance if the conditions are correct. For example, lighting
should be appropriate so that the camera is able to see the
objects. If the conditions are not good enough, vision-based
methods cannot be used, for example, in applications with
dirty and harsh environments, such as in underground mining
applications. In applications with challenging environments, a
laser-based measurement system that can produce point clouds
is preferable.

Implementation of the point cloud-based distance query
method is straightforward. However, calculating the shortest
distance between two point clouds is a challenge for a real-
time control system, because the calculation time depends on
the size of the point clouds. Therefore, it is necessary to reduce
the number of point cloud points among which the shortest
distance can be found. This can be achieved by using a two-
state calculation process. In the first state, an approximate
location of the shortest distance is discovered. The second state
is then used to calculate the actual shortest distance based on
the approximate location. The overall process for calculating
the shortest distance is described in Table I. In short, different
types of BBs are used to minimize the number of point cloud
points among which the shortest distance can be found. BBs
are used to find an overlapping volume of two BBs. Then, an



Fig. 1. Hiab crane with an obstacle in its workspace.

octree data structure [15] is used to extract subsets of points
from the original point clouds according to the overlapping
volume. Finally, the shortest distance between these subsets
can be calculated, for example, using the Euclidean distance
calculation.

Fig. 1 shows a typical hydraulic 4 degrees of freedom (4-
DOF) manipulator used, for example, to lift logs. This figure
also shows an obstacle inside the manipulator’s workspace
that needs to be avoided while operating the manipulator. To
detect collisions and calculate the shortest distances between
the manipulator and the obstacle, both are modeled with point
clouds. The critical part of the manipulator, as a point cloud,
is then used to detect potential collisions with obstacles. Fig. 2
shows these critical point clouds of the manipulator and the
obstacle and the OBBs around these point clouds. EOBBs are
used to detect potential collisions. The use of EOBBs enables
us to detect collisions early enough so that the control system
is able to react to the collision warnings. If the EOBBs do not
intersect, then there is no risk of collision.

III. COLLISION AVOIDANCE

The collision avoidance method used in this paper is based
on the principle of the artificial potential field (APF) method.
The APF method was pioneered by Khatib [5]. Thereafter, the
principle of the APF method was extended to support different
collision avoidance algorithms. Within the APF method, the
manipulator and obstacles can be thought to have the same
charge, and the goal position of the manipulator acts as a
different charge. Therefore, the manipulator and the obstacles
repel each other by generating a repulsive force between each
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Fig. 2. The grabber of the manipulator and an artificial obstacle. The point
clouds inside bounding boxes represent the grabber and the obstacle.

other, and the goal position attracts the manipulator due to the
opposite charge.

The final force of the manipulator is achieved by combining
the attractive force and the repulsive forces caused by obsta-
cles:

F(p) = −∇U(p), (1)

U(p) = Uatt(p) +Urep(p), (2)

where F is the final force, U is the sum of the potentials, and p
is the position of the manipulator. The potential functions Uatt

and Urep must be selected properly to achieve suitable results.
In this paper, we rely on the potential functions proposed by
[5].

A. Collision Avoidance for an End-Effector

A path for the end-effector of the manipulator to follow
is created using a proportional position controller. Let pd
represent the goal position of the manipulator’s end-effector.
Then the position controller can be described as follows:

ṗG = kv (pd − p) , (3)

where pd is the goal position of the end-effector, and kv is
the position control coefficient.

The shortest distance between the manipulator parts and
the obstacles is calculated by using the method proposed in
section II. When the manipulator is too close to the obstacles,
it is necessary to produce a repulsive force that prevents the
manipulator from colliding with the obstacles. This can be



achieved by producing an obstacle avoidance point velocity.
The obstacle avoidance point velocity is calculated by using
the shortest distance calculation method described in section II
and by using the artificial potential field proposed by [5]:

UOi
=

{
1
2µ
(

1
ρi
− 1

ρO

)
, if ρi ≤ ρO

0, if ρi > ρO,
(4)

where ρO is the limit for collision avoidance, ρi is the distance
between two obstacles, and µ is a scalar coefficient. Now ṗOi

can be formulated with (4),

ṗOi
=

{
µ
(

1
ρi
− 1

ρO

)
1
ρ2i

δρi
δṗOi

, if ρi ≤ ρO
0, if ρi > ρO,

(5)

where δρi
δṗOi

is the direction of the collision line. The path
for the manipulator’s end-effector can be calculated to be the
sum of the attractive velocity and the repulsive velocities as
follows:

ṗ = ṗG +

ne∑
i=1

ṗOi
, (6)

where ne is the number of end-effector obstacle avoidance
points.

The linear velocity of the manipulator’s end-effector must be
bounded. This allows the use of a larger controller coefficient
for the velocity, which ensures that the demanded end-effector
velocity is also suitable near the goal position. The end-
effector velocity is bounded as follows:

ṗ =

{
ṗṗmax

max(|ṗ|) , if max(|ṗ|) > ṗmax

ṗ, otherwise,
(7)

where ṗmax is the maximum linear velocity of the end-
effector.

B. Collision Avoidance for a Manipulator’s Body

If the manipulator’s body parts are about to collide, these
collisions have to handled differently from end-effector col-
lisions. Repulsive velocities can be calculated as described
in (5), but these velocities cannot be added directly to (6).
Instead, a collision-free path planner based on null-space
projection and the approach proposed by [16] have to be
used. In [17], the general form of the solution for a null-space
projection is shown to be

q̇ = J̃†
Gṗ+

(
I− J̃†

GJG

)
z, (8)

where J̃†
G is a right damped pseudo-inverse of the manipu-

lator’s Jacobian matrix (JG), and z is an arbitrary vector in
the q̇ space. A projection operator

(
I− J̃†

GJG

)
describes the

redundancy of the system and can be used to map an arbitrary
q̇ into the null space of the transformation.

The primary goal is to reach the goal position with the
manipulator’s end-effector; the secondary goal is to avoid
collisions with the manipulator’s body. In [16], the authors
presented a method for avoiding collisions with one obstacle
avoidance point. In the present paper, this approach is extended
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Fig. 3. The point cloud produced by the laser scanning system. Due to the
position of the laser scanner, there is an area in the point cloud where the
number of points is too low.

to cover multiple obstacle avoidance points. The primary and
secondary goals are described by the equations

JGq̇ = ṗ, (9)

JOi
q̇ = ṗOi

, (10)

where JOi
is the obstacle avoidance point Jacobian, and ṗOi

is the obstacle avoidance point velocity.
The secondary goal solution for q̇ is used as an arbitrary

vector z to modify the solution of (8). By combining (8) and
(10) with multiple obstacle avoidance points, the following
solution can be derived:

q̇ = J̃†
Gṗ+

no∑
i=1

[(
I− J̃†

GJG

)
J̃†
Oi
ṗOi

]
, (11)

where no is the number of obstacle avoidance points, and J̃†
Oi

is the damped right pseudo-inverse solution for JOi . If the
desired path cannot be maintained, (11) gives up the desired
velocity ṗ to ensure a collision-free path.

IV. OBSTACLE DETECTION SYSTEM

In order to avoid manipulator collisions with obstacles, they
need to be detected and identified. Identification of obstacle
dimensions is difficult and especially, in the case of unforeseen
obstacles, might be impossible. Therefore, in this paper we
used point cloud-based approach where it is not required
to identify the obstacles. Instead, in the point cloud-based
methods, it is possible to use the point cloud directly. The point
cloud of the obstacles was produced with a laser scanning
system.

The laser scanning system consisted of a SICK LMS511
laser scanner and a mechanism that rotated the scanner along
one horizontal axis. The Scanner itself provided scans in only
two dimensions, and a three-dimensional point cloud was
acquired by rotating the scanner. A Maxon DC motor equipped
with a planetary gear rotated the scanner. There was also an
absolute encoder at the end of the shaft, providing accurate
measurements of the scanner position.



The angular resolution of the laser scanner (the difference
between two consecutive points in one scan) was chosen to
be 0.25 degrees. As the scanner was mounted in an upright
position, this defined the horizontal resolution of the point
cloud. The scanner was configured to send measurements
constantly at a frequency of 25 Hz, and at the same time,
the scanner was rotated at a speed of roughly 5 degrees/s,
which resulted in a vertical resolution of 0.2 degrees. Knowing
the exact rotation speed was not necessary, because the angle
measurements were assumed to be accurate at all times.

The laser scanner output was the distance value for each
point in a scan. Combining these values with the angle
information from the laser scanner and the encoder yielded
the Cartesian coordinates of each point. The collected scanner
data and relevant kinematic calculations were implemented
using a dSpace Microautobox. Measurements from multiple
scans were then combined into a point cloud using point
cloud-handling methods provided by matlab (Computer Vision
System Toolbox). Next, points located outside the working
area were removed from the data set, and the point cloud
was downsampled so that there were only points within 3 cm
of each other. The number of points in the final cloud was
approximately 5500, which proved to be sufficient for this
application.

Fig. 3 shows the scanned and processed point cloud. Due
to the position of the laser scanner, the point cloud points are
not distributed evenly across the obstacle and the floor. The
areas which are closer to the laser scanner have more points
than the areas which are farther. There is also a small area at
the back of the obstacle where there are no points (Fig. 3).

V. EXPERIMENTAL CASE STUDY

The collision avoidance control system was developed to en-
able autonomous operation of a redundant serial manipulator.
To verify this functionality, an experimental test was carried
out with a heavy-duty 4-DOF hydraulic serial manipulator, the
Hiab XS 033. The Hiab XS 033 manipulator is a hydraulic
multi-purpose manipulator for almost a limitless range of ap-
plications. It has three revolute joints and one prismatic joint.
In the following case study, the manipulator was equipped with
a grabber that included two free non-actuated joints. During
the experiment, the tool center point (TCP) of the manipulator
was controlled, and the grabber hung from the TCP parallel
to the gravity.

During the experiment, the collision server for distance
queries ran on a laptop with an Intel Core i7 processor. The
server program to calculate the shortest distance between point
clouds was programmed with C++/CLI and compiled to a
standalone program. The average time needed to calculate
the shortest distance between all collision pairs was 1.0 ms
with a standard deviation of 1.7 ms. This proved that the
proposed method could be used in a real-time control system
where the sample time was 10 ms. However, the time required
to calculate all potential collisions depends on the current
configuration of the manipulator. If a different starting position
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Fig. 4. The collision-free trajectory for the manipulator from the starting
position to the goal position and back.

and goal position are used, then the calculation time might also
be different.

In order to validate the collision avoidance system, we
conducted an experimental test. The task for the experiment
was to move the grabber of the manipulator from a starting
position (qs) to a goal position (qg) by avoiding collisions
with obstacles. The starting position was at the left of the
obstacle, and the goal position was at the other side of the
obstacle (Fig. 4). With a conventional control system without
collision avoidance, the grabber of the manipulator would
collide with the obstacle if the grabber tried to move from the
starting position to the goal position. The proposed collision
avoidance control system of the manipulator together with
the proposed distance query method execute the desired task
without collisions by finding a collision-free path.

For the experiment, the 3D part of the grabber that could
collide with the obstacle was converted into a point cloud,
containing 1000 points (Fig. 2). The environment and the ob-
stacle were scanned with the laser scanning system, containing
5500 points (Fig. 3). Thereafter, we created rules to monitor
the shortest distance between possible collision pairs. If the
distance between the collision pair was larger than the collision
margin, then the distance had no influence on the control
of the manipulator, but if the distance was smaller than the
collision margin, we used (11) to modify the trajectory of the
manipulator based on the calculated shortest distance between
two point clouds.

Fig. 4 shows the overall experimental case study setup and
how the manipulator, laser scanning system, and obstacle were
located compared to each other. The trajectory of the TCP of
the manipulator is also shown is this figure. This trajectory
was automatically modified so that the grabber does not collide
with the obstacle.
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Fig. 5. The collision-free trajectory for the TCP of the manipulator from the
starting position to the goal position and back with the scanned point cloud.

Fig. 5 shows the TCP trajectories of the manipulator from
the starting position to the goal position and back. This figure
reveals that the trajectory from the goal position to the starting
position is not ideal and contains unwanted movements. These
movements are caused by the lack of points at the back of
the obstacle’s point cloud. This area is shown in Fig. 5. If
the points of the obstacle’s point cloud are distributed evenly,
it can be assumed that the trajectories on both sides of the
obstacles would be similar.

VI. CONCLUSION

For autonomous manipulators to accomplish the given task
without human supervision, one of the most challenging prob-
lems is avoiding collisions. A shortest distance-based collision
avoidance method was used to obtain a collision-free path from
the starting position to the goal position and back with a novel
shortest distance query algorithm. Multiple simultaneous colli-
sion avoidance points can be used to prevent self-collisions, as
well as collisions with other manipulators, and any part of the
manipulator from colliding with obstacles or the environment.
The proposed method can be used with a real-time control
system, and the method does not require any path planning
time because all decisions are made spontaneously.

The proposed method for calculating the shortest distance
ensures that the shortest distance between two point cloud-type
objects can be calculated in real-time. This method minimizes
the calculation power needed to find the shortest distance by
using a method that reduces the number of points among which
the shortest distance can be found. The use of point cloud data
extracted from CAD design models and from an external laser
scanning system ensures that the possible collision locations
are found with high accuracy. This enables the use of only
small margins around obstacles to avoid collisions.

In future work, we intend to improve the collision avoidance
system to cover more complex systems with a fully automa-
tized sequence and position control with moving obstacles in
the workspace of the manipulator.
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