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Abstract—In this paper, we present a method for improving
autonomous GNSS satellite orbit prediction accuracy by includ-
ing latent forces, i.e. forces that are estimated with broadcast
ephemeris data. The purpose of autonomous prediction is to
reduce the Time to First Fix of a stand-alone positioning device.
Our orbit model includes gravity and solar radiation forces and
initial state estimation algorithm. We present a state-space model
for the latent forces, which are meant to correct the deficiencies
of our force model, and we describe how latent forces are
incorporated as a part of our prediction algorithm. Using a novel
algorithm, where multiple ephemerides are used to estimate the
latent forces, the orbit prediction accuracy for GPS, GLONASS
and Beidou is significantly improved. For example, for 7-day
prediction of GPS satellites, the 68% quantile of SISRE, which
is an estimate of positioning accuracy, reduced 37.1%.

I. INTRODUCTION

A GNSS satellite transmits the data required for positioning
in the form known as Broadcast Ephemeris (BE). Transmitting
the required data takes some amount of time depending on the
constellation. For example with GPS satellites, it takes roughly
30 seconds to transmit the data necessary for positioning
purposes. In certain environments, for example in a city centre,
where buildings can interfere and block the signal partially
or wholly, it may take even several minutes to get a position
estimate. From the point of view of the general user, this delay
is annoying; for some applications it can be costly or even
fatal.

The delay can be reduced by obtaining the BE data from
another source. In this case, the receiver only needs a signal
from the satellite for pseudorange measurement, and Time to
First Fix (TTFF), which is the time required for any position
estimate, can be reduced to about 5 seconds. The BE data can
be sent to positioning device using assisting data servers. This
is not, however, always possible since some devices may lack
a network connection or transmitting large amounts of data
may be expensive. An alternative to server-based assistance is
autonomous positioning, in which the ephemeris is computed
for the current time instant based on previously received
ephemerides. That is, the device runs an algorithm that predicts
the position and clock offset of the satellite from existing and
previous BE data. These predictions can then be interpreted
as BE to reduce TTFF. Our group has previously presented
algorithms for predicting the orbit [1], [2] and the clock offset
[1], [3] from the perspective of autonomous positioning. Our
research on estimation of model parameters and initial state
is reported in [4]. Others have also published methods for

extending the broadcast data in standalone devices, e.g. [5].
In this work, we will focus on orbit prediction.

The orbit of a satellite can be predicted by forming an
equation of motion for the satellite and then integrating the
orbit starting from initial conditions. The equation of motion
is a differential equation that includes the forces acting on
a satellite. In this work, we consider the four largest forces:
gravitation of the Earth, the Sun and the Moon, and solar
radiation pressure (SRP). When we predict the orbits based on
these forces, we find that the prediction error shows systematic
errors, which suggests that our model has incorrect or missing
forces. In [2] we found that adding smaller forces, for example
solid tide, ocean tide or Earth albedo, to the force model
improves the predictions only slightly, at best only 1 or 2
percent.

In this work we consider latent force models, where the
missing forces are estimated based on the data. Latent force
models have been applied to orbit prediction in [6], and we
continue the work here with similar methods. We will use the
abbreviation LFM for latent force models. Latent forces are
estimated with a state-space approach, where latent forces are
treated as part of the satellite’s dynamic state and are then
inferred together with the satellite’s position and velocity. The
novelty in our study is that we consider the problem in the
context of autonomous positioning. Therefore we will have
some restrictions, for example we may only use BE data,
which is received at arbitrary times, for the estimation.

The broadcast is only valid for a certain time. For GPS
satellites, this time interval is 4 hours. This is not long enough
to estimate the latent forces accurately and therefore we will
need to collect more than one ephemeris. In this article we
present a novel adaptive algorithm, where the latent forces
are updated with each received ephemeris, and can then be
used for prediction purposes. We do not need to store more
than one ephemeris per satellite to the device, so additional
memory usage comes only from storing the latent force
components. The downside is the increase in computation
time. We shall show that the considered approach works with
different satellite constellations. We shall consider GPS in
detail, and present only general results for GLONASS and
Beidou.

The rest of this article is organized as follows: in Section II
we present the model of our orbit predictor, which includes the
force model and initial state estimation algorithm. In Section
IIT we describe the form of the latent forces and how they



are estimated as a part of the initial state. In Section IV we
gather the main results of the study and Section V concludes
the article.

II. ORBIT DETERMINATION

To predict the orbit of a satellite, we use a differential
equation for the motion of the satellite that includes models
of forces acting on the satellite. This differential equation is
integrated with certain initial conditions to obtain the position
and velocity of the satellite at a later time. In this section
we describe the force model and how we obtain the initial
conditions for the prediction.

A. Force model

Our force model includes expressions for the four major
forces acting on a satellite. These are the gravity of the Earth,
the Sun and the Moon and solar radiation pressure (SRP). The
force model also includes the so-called latent forces, which are
described further in Section III.

The gravitational potential of the Earth may be calculated
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where G is gravitational constant, Rg and Mg are the radius
and the mass of the Earth and r is the distance of the satellite
from Earth’s center. Parameters A and ¢ are the longitude and
the latitude of the satellite. Terms P,,, are the associated
Legendre polynomials of degree m and order m. We use
coefficients up to degree and order 8. Values for C,,,, and
Spm are from EGM2008 [7].

The potential of the Earth is calculated in Earth-centered
Earth-fixed (ECEF) coordinate system, which is rotating with
the Earth. In inertial coordinate system the acceleration caused
by the potential Ug in (1) is

Agarh = Rpcgr VU, )

where Rgcgr is the transformation matrix from inertial coor-
dinate system to ECEF and V denotes the gradient.

The Sun and the Moon are modelled as point masses. The
gravitational acceleration caused by a celestial body relative
to the motion of the Earth is

A = GMcb( Tep — I'sat _ Tch )7
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where M., is the mass of the celestial body and rg, and rgy
are the positions of the celestial body and the satellite in an
Earth-centered inertial reference frame. For the position of the
Sun and the Moon, we use DE202 ephemeris data provided
by JPL [8].

For the solar radiation pressure, we use a two-parameter
model. The total acceleration is presented as a sum of two
components. The first acceleration component is in the direc-
tion from the Sun to the satellite and the second component is

3)

orthogonal to the first component and is caused by reflection
of the radiation from solar panels. Total acceleration by SRP
is calculated with

aSRp = V(_al —5—€sat,Sun + a2ey-bias)a 4)
Sun

where rgu, is the distance between the Sun and the satellite,
€sa,sun 18 @ unit vector from satellite to Sun and ey.pjss is a
unit vector to the y-direction, which is defined as
ey—bias = Fsat X (rSun X rSat) . (5)
||rSat X (rSun X rSat)”

The parameter v € [0,1] models the shadows of the Earth
and the Moon. We use a conical model for the shadows as
described in [9]. The shadow of the Moon is considered only
when the satellite is not in Earth’s shadow. Parameters «;; and
ao are estimated with historical precise ephemeris (PE) data
on a server and then delivered to the device as assistance data.
The estimation process is described in detail in [4].

With the forces described above, we obtain the differential
equation

I' = agarth + AMoon 1+ Asun + ASRP;
r(to) =ro, ¥(to) = vo.

We solve the equation numerically by substituting the ex-
pressions for different accelerations. Initial conditions ry and
vy are estimated with the method described in the following
section.

(6)

B. Initial state estimation

If the position and velocity obtained directly from the
satellite’s navigation message are used as initial conditions for
the differential equation (6), predictions beyond a few hours
have very poor accuracy. It is necessary to determine initial
position and velocity by fitting the ephemeris data to our force
model.

We use an Extended Kalman filter to estimate the initial
state as described in [4]. The state of the satellite consists of
position r and velocity v, and the dynamical model for the
motion of the satellite, (6), can be written as

8-l o
dt [v(t)] — |a(r(t). )]
The states can then be inferred with Extended Kalman filter.
The acceleration a for each time instant is calculated as in
(6). In Section IIT we show how this model can be modified
to also include the latent forces. This way we can estimate the
initial position and velocity together with the missing forces.

The data from the GPS and Beidou broadcast ephemeris
is sampled with 15-minute interval from t. — 1.5h to £y +
1.5h, which gives us 13 measurement points. The positions
are then used as measurements for the Extended Kalman filter
algorithm.

For GLONASS we need a different approach. GLONASS
broadcast data is valid only for 15 minutes from ty. This
interval is too short to determine the initial state. Thus, for
GLONASS we use two broadcast ephemerides, with a time



difference of 12 hours, in the initial state estimation. The
algorithm is described in [10].

III. LATENT FORCES

In [6], it was shown how latent forces can be applied to
satellite orbit prediction. In that study, it was shown that using
latent forces can improve orbit predictions when latent forces
are estimated with a few days of continuous precise ephemeris
data. Here, we will show that the method can also be used in
autonomous positioning, with occasional BE data.

Latent forces are modelled as superpositions of stochastic
resonators. These are characterized by differential equation
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where w,, (t) is Gaussian white noise with spectral density gy,
n is an integer and f is the base frequency of the oscillation.

In [11] it is shown that this model can be written as a linear
state-space model

(t) = —(27nf)%cn(t) + wp(t), (8)
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for a single resonator. Multiple harmonic components can
be included by augmenting the components and constructing
the corresponding matrices block-diagonally. If x is vector
formed by stacking c;, 2 = 1,..., N, where N is the number
of components in the latent force model, then the state space
model for latent force in direction X is

d
—xnx(t) =Fyxxnx(t) + Ly xwnx(t),

dt an

ax = Hy xxn x + bx,

where matrices Fy x and Ly x are block-diagonal consisting
of corresponding matrices in (10) and
10",

Hyx=[1 0 1 0 (12)

We included a bias term bx in (11), so that oscillation does
not have to be zero-centered. This parameter is considered to
be constant in the model and is estimated together with other
latent force components.

The forces are modelled in Radial-Transverse-Normal
(RTN) coordinate system. This coordinate system is defined
by unit vectors

r rxXv
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We model latent forces in each of these directions separately
as a superposition of stochastic resonators. The acceleration
caused by latent forces is then transformed into inertial coor-
dinate system with

ag(t)
Apaent (r(t), v (1), 1) = Rl;’l"lN(r(tLv(t)) ar(t) | ,
an(t)
where Rgrn is the transformation matrix from inertial coor-
dinate system to RTN and ax, where X € {R,T,N}, is the
latent force component in the corresponding direction.

As we mentioned in Section II-B, the latent force model
and the satellite force model can be combined. We modify (7)
so that the state also includes latent force components for each
direction and we include the acceleration by the latent forces,
Apaeent, from (14) into the dynamic model function. We then
have an augmented state vector

(14)
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and augmented dynamic model

v(t)
a(r(t),t) + awen(r(t), v(t),t)
FyrxXNR(t
Fyrxnr(t
£(xa(1),t) = Fgﬁxxi((t
0
0
0

The noise terms are formed similarly with concatenated vec-
tors and block-diagonally constructed matrices. Small process
noise is added for each bias component bx, X € {R, T,N}, to
allow small variations with time.

Once the latent forces have been estimated with sufficient
amount of data, the term ajue; can also be added to differential
equation (6). The expected value of each latent force compo-
nent is calculated by simply integrating (11), which can be
solved analytically. Total acceleration is then calculated with
(14).

)
) . (16)

IV. RESULTS

Here we present the results for satellite prediction with
latent force models. We compare the performance of two
approaches. First we consider an approach where no latent
force models were used and each received broadcast was
used to initialize a new prediction. The second approach is
an adaptive process, where we start from no data and start
receiving broadcasts at random times. Each broadcast is used
to update the state of the satellite which includes the position,
velocity and latent forces.

We shall view the results for GPS in detail, and consider a
single satellite for which we view a single time period along



TABLE I
SISRE WEIGHT VALUES FOR DIFFERENT CONSTELLATIONS. VALUES ARE
FROM [12].

| GPS | GLONASS | Beidou MEO | Beidou IGSO/GEO
0.98 ‘ 0.98 ‘ 0.98 ‘ 0.99
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with a quantile curves for multiple test runs. For GLONASS
and Beidou satellite, we view only the general performance,
and compare it to our old approach.

A. Methods and test setup

Our final goal in autonomous positioning is to mimic the
broadcast ephemeris data. Therefore, we should choose an
error metric that is also suitable for broadcast ephemerides. For
this purpose, Signal-In-Space Range Error, or SISRE works
well.

The term SISRE is used in multiple ways in literature. In
[12], SISRE refers to a single statistical value for a larger
set of position errors, while in [13], [14] SISRE refers to a
measure derived from a single position error of a satellite.
Furthermore, another definition is given for SISRE in [15].
Allthough all definitions are closely related, care should be
taken when using the term SISRE.

Our interpretation is that SISRE is the instantaneous RMS
of pseudorange errors from every location on the surface of
the Earth where the satellite in question is visible, caused by
the error in satellite position. This interpretation is also used
in Global Positioning System Standard Positioning Service
Performance Standard [13]. This means that we can calculate
SISRE value for any prediction. We calculate SISRE with

SISRE = /w3 AR? +wh, (AT + AN?), (17)

where AX, X € {R, T,N}, denotes the error components in
RTN-coordinate system and weights wg and wty depend on
the satellite constellation, or in case of Beidou, also on the
satellite type. The values of these weights for different satellite
types are listed in Table I. Note that in the table one weight
is squared while the other is not.

When we consider pseudorange errors, the effect of the
clock error should also be included in (17). We omit the clock
error in this study and consider only the error from the orbit.

We shall consider only improvements in pseudoranges
rather than positioning accuracy improvement. This is mainly
because we are only simulating the functionality of a po-
sitioning device. Considering positioning accuracy improve-
ments would require consideration of many factors such as
satellite geometry, number of satellites, set of used satellites,
measurement errors etc. Furthermore, other error factors, such
as ionospheric delays would have to be taken into account. For
these reasons, we have chosen only to analyze the pseudorange
measurement improvements by comparing SISRE values.

The parameters for the model were chosen heuristically.
Base frequency f in (8) is taken to be the reciprocal of one
orbital period of a satellite and hence varies with constellation

TABLE 11
COMPUTATION TIMES WITH DIFFERENT NUMBER OF LATENT FORCE
COMPONENTS.
Number of components (IN) | Average computation time (s)
1 8.9
2 10.8
3 12.2
4 13.6
5 15.4
6 44.4
7 48.6

and satellite type. The number of components N for each
direction was chosen to be 3. The number of components did
not largely affect the prediction accuracy, but it did however
affect the computation time, which we will consider briefly
next.

We will consider increase in computation time as a function
of N. We will compute the time it takes for our integrator to
propagate the state and covariance matrix for a period of one
week with values N = 1,...,7. Our integrator was RKF7(8)
based on [9].

In Table II, we present the median of computation times
of 200 one-week propagations of state and covariance ma-
trix. Simulations were run with 64-bit Matlab (R2016a) on
MacBook Pro version 10.12.3 with 8 GB 166 MHz memory
and 2.8 GHz Intel Core i7 processor. The most relevant part
in Table II is the relative time differences rather than the
absolute values of computation time. Computation time grows
practically linearly, when N < 5, but after this we see a
large jump in computation time. We also noted that the total
number of components did not affect the computation time as
much as the maximum number of components in one direction.
For example, computation was much faster with configuration
Nr = Nt = Ny = 3 than with Ny = 7, Nt = Ny = 1, even
though the total number of components are equal.

We have reason to assume the forces missing from our force
model to cause acceleration of magnitude ~ 10_95%. This
is stated in [2], [9]. We use this (squared) as prior variance
for our latent force components; the prior mean is taken to
be zero. Process noise for both resonators and bias terms is
assumed to be small compared to amplitude of the oscillation.
Different values were tried for the variance of both parameters
and the ones that yielded best results were chosen. Values for
the variances in our model were (10~ %)? for the resonators
and (10712 1) for the bias terms.

We point out that LFM assumes the reliability of previous
broadcasts with respect to current orbit. Therefore, if an
anomaly is detected, e.g. the position is in clear conflict with
the predicted position, we reset our current estimates of latent
forces and re-initialize the filter. Also, latent forces are not
used in prediction until at least two broadcast ephemerides
have been received. This is because estimates of latent forces
from a single broadcast are too imprecise.

For our test scenario, we choose a period of 20 weeks,
where we receive broadcasts randomly. By random, we mean
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Fig. 1. One example of LFM performance compared to traditional
approach. After a few broadcasts, we see vast improvements in
prediction accuracy.

that the next broadcast is chosen from a uniform distribution
of some length. This 20-week period is then repeated 50 times
and results are combined. Our starting point was the start of
GPS week 1878, which is roughly the start of 2016. So we
simulate roughly 1000 weeks of predictions. This also models
a real-life situation, where the device does not have any data,
then it is taken into use and turned on every now and then.

B. Example GPS satellite

With GPS satellites, LFM improved the prediction accuracy
for all satellites. We do not show collective results for the
whole constellation but take an example satellite (PRN 16) for
which we present detailed results. Figure 1 shows a 20-week
period where broadcasts are received randomly and predictions
are made between two broadcasts.

We used a maximum interval between two consecutive
broadcasts of two weeks. That is, we simulate a device that
is used in a way that it receives a signal from this particular
satellite at least once every two weeks. This is a reasonable
assumption in many applications.

We show 68% and 95% quantiles of the standard approach
and LFM for our example satellite in Figure 2. For this
particular satellite LFM worked exceptionally well. We cut off
the comparison during the last day of two weeks, because we
have fewer predictions during this time and so error quantiles
are not reliable. This is also the reason we see rapid changes
during the last days especially in 95% quantile.

Generally, the improvement for one week predictions was
around 20 — 30%, and for some satellites even 50%. This is a
huge improvement compared to 1—2% we previously achieved
by adding physics-based expressions to the force model [2].
General performance level and improvement in accuracy for
GPS constellation can be viewed from Table III.

30 -
No LFM 68% 4
T 6RO
0 O et v i
— __ LFM 9% A 4

SISRE (m)

Prediction length (d)

Fig. 2. SISRE quantile curves for GPS PRN 16 with and without
LFM.

C. General results

We do not present detailed results for separate satellites
here, but instead, we summarize results for each constellation.
For Beidou, we present results for each orbit type separately.
We, however, note that prediction accuracy levels and im-
provements may vary between satellites. The maximum time
interval between two consecutive ephemerides was set to two
weeks for GLONASS and Beidou MEO and IGSO. For Beidou
GEQ, it was set to one week. In Table III we gather results for
each constellation and compare predictions with and without
LFM. Constellation-wise, improvement in percentages was
significant in many cases.

We chose a different maximum interval between two broad-
casts and prediction length comparison in Table III for Beidou
GEO satellites, and we also show only 68% quantile. This is
because Beidou geostationary satellites are frequently maneu-
vered [16], and in this kind of situation, where typical error is
thousands of meters or even more, it is not sensible to perform
comparison.

All satellite constellations show improvements at the cho-
sen prediction length in 68% quantile. In the 95% quantile,
deficiencies of the model become apparent, and for example
change in prediction accuracy of GLONASS satellites is less
than 1%. However, the level of improvement is still significant
with GPS and Beidou.

As stated earlier, improvements vary between satellites and
have different prediction accuracies. To establish the true
improvement level of the method, improvements in prediction
accuracies should be viewed for each satellite separately. For
full details about prediction accuracy for each tested satellite,
and for more precise description of the methods, one may refer
to [17].



TABLE III
COMPARISON OF METHODS: SISRE OF OLD METHOD AND LFM, 68%
AND 95% QUANTILES AT FIXED PREDICTION LENGTH

68% quantile 95% quantile

GPS/7 days
old new change old new change
6.88 m 433 m -37.1% 1766 m | 9.73 m -44.9%
GLONASS/7 days
old new change old new change
1216 m | 932 m -23.4% 28.11m | 27.85m | -0.95%
Beidou MEO/7 days
old new change old new change
1309m | 544 m | -5848% || 26.35m | 1453 m | -44.86%
Beidou IGSO/7 days
old new change old new change
1509 m | 12.16 m | -19.39% || 3285 m | 2581 m | -21.4%
Beidou GEO/3 days
old new change old new change
1511m | 721 m -52.3% - - -

V. CONCLUSIONS

In this paper we presented a method to combine the
traditional mechanistic force models with data-driven latent
force models in autonomous GNSS satellite prediction. Even
though model is rather simple, and the same generic model
is used with all satellite constellations and types, improve-
ments in prediction accuracy were significant. The combined
mechanistic model and data-driven approach gave much bigger
improvement in accuracy than previously had been achieved
with a more complex force model. GPS satellites and all
Beidou satellite types showed significant improvements, while
GLONASS predictions did not improve as much. Noting
that prediction accuracy can be significantly improved with a
hybrid method of mechanistic model and data-driven approach,
more complex models could be tested in the future.
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