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Abstract— This paper presents a real-time Kvazaar HEVC 

intra encoder for 4K Ultra HD video streaming. The encoder is 

implemented on Nokia AirFrame Cloud Server featuring a 2.4 

GHz dual 14-core Intel Xeon processor and Arria 10 PCI Express 

FPGA accelerator card. In our HW/SW partitioning scheme, the 

data-intensive Kvazaar coding tools including intra prediction, 

DCT, inverse DCT, quantization, and inverse quantization are 

offloaded to Arria 10 whereas CABAC coding and other control-

intensive coding tools are executed on Xeon processors. Arria 10 

has enough capacity for up to two instances of our intra coding 

accelerator. The results show that the proposed system is able to 

encode 4K video at 30 fps with a single intra coding accelerator 

and at 40 fps with two accelerators. The respective speed-up 

factors are 1.6 and 2.1 over the pure Xeon implementation. To the 

best of our knowledge, this is the first work dealing with HEVC 

intra encoder partitioned between CPU and FPGA. It achieves the 

same coding speed as HEVC intra encoders on ASIC and it is at 

least 4 times faster than existing HEVC intra encoders on FPGA. 

Keywords— High Efficiency Video Coding (HEVC), Kvazaar, 

Intra coding, Field-programmable gate array (FPGA), PCI Express 

(PCIe), Real-time  

I.  INTRODUCTION 

Internet video traffic is forecast to grow threefold in five 
years from that of 2015 and video is estimated to account for 
82% of all global consumer Internet traffic by 2020 [1]. This 
growth comes from new end users and multimedia applications 
entering the market but also from higher video dimensions, 
resolutions, frame rates, and color depths. Despite the fast 
progress of network capacities, the holistic increase of video 
volume makes more efficient video compression inevitable.  

High Efficiency Video Coding (HEVC/H.265) [2], [3] is the 
latest international video coding standard developed to meet 
video storage and transmission needs of modern multimedia 
applications. HEVC is published as twin text by ITU, ISO, and 
IEC as ITU-T H.265 | ISO/IEC 23008-2. This paper addresses 
all-intra (AI) coding configuration [4] of HEVC Main Profile. 
HEVC is shown to improve intra coding efficiency by 23% over 
that of the preceding state-of-the-art standard AVC/H.264 [5] for 
the same objective quality but at a cost of over 3 × encoding 
complexity [6]. Therefore, implementing a real-time HEVC 
intra encoder with a reasonable coding efficiency, 
implementation cost, and power budget requires efficient 
encoder optimizations and powerful computing platforms. 

The complexity of software (SW) HEVC encoders can be 
primarily tackled by two techniques: multithreading through 
data-level parallelism [7], [8] and single instruction multiple 
data (SIMD) optimizations [9], [10]. Further speedup and lower 
power dissipation can be obtained by offloading the compute-
intensive coding tools to hardware (HW) accelerators or 
implementing the entire HEVC encoder on HW [11]-[14]. 
Existing HW encoders include both application specific 
integrated circuit (ASIC) [11], [12] and field-programmable 
gate array (FPGA) implementations [12]-[14]. 

The main motivation of this work was to optimize our 
Kvazaar HEVC intra encoder [15], [16], for real-time 4K Ultra 
High Definition (UHD) coding on Nokia AirFrame Cloud 
Server. Airframe includes a 2.4 GHz dual 14-core Xeon 
processor an Arria 10 PCI Express (PCIe) FPGA accelerator 
card. Airframe rackmount server is easily expandable to large 
server farms and an accompanied FPGA brings lots of additional 
computing power for a single server. Cloud video encoding on 
servers like AirFrame has gained a lot of traction in the recent 
years because of the advent of cloud gaming, telco clouds, and 
edge computation in general.  

Our previous works have already investigated parallelization 
of Kvazaar intra encoder on multi-core processors [8] and SIMD 
optimizations of Kvazaar [10], so the main emphasis here is on 
1) HW/SW partitioning of Kvazaar; and 2) HW acceleration of
Kvazaar on FPGA. The HW-oriented C source code of Kvazaar 
enables more straightforward HW/SW partitioning than other 
eligible open-source HEVC encoders [17], [18]. Kvazaar code 
is also written at a suitable abstraction level for high-level 
synthesis (HLS) [19] that enables automatic hardware 
description language (HDL) generation from C. In this work, 
our intra coding accelerator is implemented using Catapult C 
[20] HSL tool. Through HLS, the code is more readable, design 
and verification times are shorter, and the design reusability is 
far better than with handwritten HDL equivalents. 

The rest of this paper is organized as follows. Section 2 gives 
an overview of the adopted CPU + FPGA platform and the 
proposed SW/HW partitioning of Kvazaar on it. Section 3 
describes the Kvazaar functionality on CPU, Section 4 the 
communication between CPU and FPGA, and Section 5 the 
implemented intra coding accelerator on FPGA. In Section 5, the 
speedup of HW acceleration is benchmarked against SW only 
encoding using 2160p (3840 × 2160) and 1080p (1920 × 1080) 
test videos. Section 6 concludes the paper. 



 

 

II. SYSTEM OVERVIEW 

Fig. 1 shows the block diagram of the underlying CPU + 
FPGA platform on which Kvazaar encoder is implemented. The 
backbone of the system is Nokia AirFrame server [21] with two 
Xeon E5-2680 v4 processors and 256 GB of memory. Arria 10 
FPGA accelerator card is connected to the CPU via a PCIe bus. 
The operating system is CentOS 6.8.  

A. Kvazaar HEVC Intra Encoder 

Kvazaar [15] is an academic cross-platform open-source 
HEVC encoder. It contains all integral coding tools of HEVC 
and its modular code facilitates parallelization on multi and 
manycore processors as well as algorithm acceleration on HW.  

Kvazaar intra encoder supports HEVC Main profile for 8-bit 
4:2:0 video with ten presets out of which fast and medium presets 
are used in this work for their favorable cost-performance 
characteristics. Table I tabulates the settings of these presets. 
The medium preset is utilized without rate-distortion optimized 
quantization (RDOQ). Kvazaar implements a basic HEVC block 
partitioning structure in which the pictures are partitioned into 
coding tree units (CTUs) of size 64 × 64. CTUs can be optionally 
divided into four equal-sized blocks and the division can be 
recursively continued until the maximum hierarchical depth of 
the HEVC quadtree is reached. The leaf nodes of the quadtree 
are called coding units (CUs). 

The proposed implementation of Kvazaar offers two 
schemes for parallel CTU coding: 1) Wavefront Parallel 
Processing (WPP); and 2) picture-level parallel processing. 
These schemes can be enabled concurrently. 

B. Kvazaar Partitioning 

Kvazaar is run on the platform under AI coding 
configuration in which the main coding tools are intra prediction 

(IP), discrete cosine transform (DCT), quantization (Q), inverse 
Q (IQ), inverse DCT (IDCT), and context-adaptive binary 
arithmetic coding (CABAC). In this work, the most 
computationally intensive coding tools including IP, DCT, Q, 
IQ, and IDCT are implemented with HLS and synthesized to 
FPGA. CABAC and other control-intensive coding tools such a 
control for WPP and for picture-level parallelism are executed 
on CPU. In addition, CPU takes care of raw input video reading, 
chrominance coding, and outputting the encoded bit stream. 

Arria 10 FPGA has enough resources for two instances of 
our intra coding accelerator including the needed peripherals and 
on-chip memories. Mapping a major share of CTU coding to 
FPGA could be utilized to decrease power dissipation through 
lower CPU usage. However, we are aiming at the maximum 
HEVC coding speed, so encoding parallelism is increased by 
coding additional CTUs entirely in SW with released CPU 
resources.  

 
Fig. 1. Block diagram of the proposed encoder system with a single intra coding accelerator. 

TABLE I. IMPLEMENTED CODING TOOLS OF KVAZAAR INTRA ENCODER 

 

Feature Fast Medium (wo RDOQ)

Profile Main Main

Internal bit depth 8 8

Color format 4:2:0 4:2:0

Coding mode Intra Intra

Coding units 16×16, 8×8 64×64, 32×32, 16×16, 8×8

Prediction units 16×16, 8×8 32×32, 16×16, 8×8

Transform units 16×16, 8×8 32×32, 16×16, 8×8

IP modes 35 (DC, planar, 33 angular) 35 (DC, planar, 33 angular)

Intra Search Full Full

Transform Integer DCT  Integer DCT  

Mode decision Sum of absolute difference Sum of absolute difference

Parallelization WPP, Picture level WPP, Picture level

SAO Enabled Enabled

Signhide Disabled Disabled

Rate Control Disabled Disabled

RDO Disabled Disabled

RDOQ Disabled Disabled



 

 

III. FUNCTIONALITY ON XEON  

On Xeon processors, Kvazaar is run in the user space and the 
Linux driver in the kernel space. The Linux driver is used for the 
CPU-PCIe-FPGA interfacing. It is accessed by Kvazaar via 
ioctl, write, and read system calls. 

A. User Space: Kvazaar 

Kvazaar parallelization is implemented using a CPU thread 
pool with a single CTU as the smallest work unit. The CTUs are 
put in a queue in the order they would be processed in a single 
threaded case, and the free worker threads start processing the 
first CTU with no dependencies. In this work, a CTU search 
function of Kvazaar is modified to offload a majority of coding 
tasks to the HW accelerator on FPGA. Offloading is performed 
through system calls to the kernel driver. A worker thread sends 
its CTU data to the HW accelerator and sleeps until the 
accelerator notifies that the CTU coding on FPGA is completed. 
Then, the worker thread performs chrominance coding and 
CABAC coding for the CTU according to the results from 
FPGA. The threads not being able to be served by FPGA are 
encoded on CPU. Intra coding on FPGA has the highest priority 
for new CTUs and the CPU is used only when the pipeline of the 
HW accelerator is full. 

B. Kernel Space: Driver  

Fig. 2 shows the sequence chart of system calls between 
Kvazaar and the kernel driver. At first, Kvazaar calls the ioctl 
function to request a free index from the driver, which returns a 
nonnegative index if the HW accelerator can accept a new CTU 
for encoding. The driver uses semaphores initialized to the 
maximum CTU count supported by the accelerator. In the next 
step, Kvazaar calls the write function to copy all necessary data 
of the processed CTU to FPGA. The data being sent to FPGA is 
aligned in consecutive virtual memory addresses in the user 
space and in consecutive physical memory addresses in the 
kernel space. A worker thread uses the read function to request 
intra coding results for the CTU of interest. The thread will sleep 
in the kernel space until the CTU of interest has finished and the 
accelerator sends an interrupt signal. Both the write and read 
system calls return the amount of bytes (length) read or written 
successfully. 

IV. INTERFACE BETWEEN XEON AND FPGA 

Fig. 1 shows the FPGA interface made of the Avalon-MM 
Hard IP for PCIe, separate Direct Memory Access (DMA) blocks 
for reading and writing, and the on-chip memories of the intra 
coding accelerator. 

A. PCIe Interface 

The CPU communicates with the FPGA via the PCIe bus. 
The PCIe IP is configured to PCIe generation 3 × 4 with 128-bit 
interface and 250 MHz application clock. The IRQ Buffer block 
is used for generating the interrupt through the PCIe IP. The IRQ 
buffer detects the rising edges of the CTU ready signals from the 
intra coding accelerator and buffers them. The interrupt is 
delayed until the CPU acknowledges the previous interrupt. This 
is done in order to prevent two interrupts from happening in 
consecutive cycles, which is a limitation of the PCIe IP. 

B. DMAs 

A single intra coding accelerator consists of two DMA 
blocks. One DMA block is used for reading data from the shared 
memory and the other one is for writing data to the shared 
memory. This separation allows the DMA blocks to better utilize 
the bandwidth of the PCIe interface to the CPU memory. Our 
tests showed that this scheme increases the data transfer speed 
by 54% compared with sequential reading and writing.  

The accelerator utilizes Reader and Writer indexer blocks for 
address translation. The blocks are configured with the CTU 
index before the DMA transfers are started. The DMA blocks 
read and write to consecutive memory addresses, but the 
memory structure of the on-chip memories on FPGA requires 
non-consecutive addresses depending on the index of the CTU. 

C. On-Chip Memories 

For each CTU, the HW accelerator requires the 
corresponding reference pixels, information about the CU 
borders (reconstructed pixels and modes), as well as the CTU 
CABAC states. The reference pixels are used to calculate Sum 
of Absolute Difference (SAD) values for intra mode selection and 
Sum of Squared Differences (SSD) values for final mode 
decision. CTU border pixels are used to calculate intra 
predictions for the CUs on the CTU borders whereas border 
modes are used as candidate modes when selecting the best intra 
mode. The CABAC states are used for mode decision (MD). 

There are also on-chip memories for the final reconstructed 
pixels and quantized coefficients, which are flushed from the 
intermediate buffer. The CU info contains the resulting modes 
and depths from the accelerator. The RAM aligners are used as 
wrappers with the on-chip memories because the PCIe interface 
and the HW accelerator have different memory access widths.  

  
Fig. 2. Message sequence chart between Kvazaar and the kernel driver. 

 



 

 

V. INTRA CODING ON FPGA 

Fig. 3 shows a block diagram of the intra coding accelerator. 
It consists of the following units implemented with HLS. 

A. Intra Coding Control (Ctrl) 

The Ctrl unit receives instructions from the CPU. It is split 
into Initialization, Scheduler, Start, and End blocks. 

The Initialization block generates a full instruction set for 
processing a CTU. The instruction set contains operations for 
calculating IPs with different configurations and MD operations 
for selecting a CTU configuration. The HW generates the 
instruction set for each CTU individually. 

The Scheduler block is responsible for the CTU 
parallelization in the HW accelerator. It loads the valid 
instructions for each CTU and selects the ones with the highest 
priority for processing. The priority for each instruction is 
determined so that there will be a minimal delay on the intra 
coding pipeline. 

The Start block processes instructions from the Scheduler in 
order. It initializes the IP configuration for the CU according to 
the input instruction and sends CU information to the Get Border 
unit. It also notifies the CPU about finishing the CTU search if 
it receives the instruction for terminating the search. 

The End block is at the end of the intra coding pipeline, from 
where it receives the search results. The results include the 
selected intra mode, SSD, and the estimated coding cost of the 
CU coefficients. The End block uses the results to calculate the 
MD cost for every CU configuration and stores them to the 
internal memory. With the MD instructions, the End block 
determines the best CU partitioning for the CTU according to 
stored cost values and flushes the pixels and the coefficients for 
that configuration from the buffer. 

B. Get Reference Border (Get Border) 

The Get Border unit reads the reconstructed reference pixels 
and sends them to the IP unit. It operates according to the 
configuration data consisting of CU block size and coordinates 
of the CU in the CTU. The coordinates are utilized when reading 
reconstructed pixels, i.e., either the neighboring column on the 
left to the CU or the neighboring row above the CU. The 
reconstructed pixels are read from either the CTU memory or the 
CTU borders memory, depending on the location of the CU 
within the CTU.  

C. Intra Prediction (IP) 

The IP unit is composed of an IP control block, SAD block, 
and the following IP blocks that predict 35 IP modes in parallel: 
DC IP (mode 0), Planar IP (mode 1), Positive Angular IP (modes 
2-9, 27-34), Negative Angular IP (modes 11-25), and Zero 
Angular IP (modes 10, 26). All these IP blocks predict four 
pixels at a time, i.e., 32 × 32 block is predicted in 256 cycles, 16 
× 16 block in 64 cycles, etc. The IP unit used here is an improved 
version of our previous IP accelerator presented in [22]. 

The IP unit operates according to the configuration data 
consisting of the CU block size and the corresponding reference 
pixels from the Get Border block. The IP control block filters 
reference pixels if needed and configures all the IP blocks that 
perform the prediction algorithm for a proper CU size, and all 
angular IP blocks for the right angle. This configurability makes 
the IP blocks more generic and easy to instantiate. 

All angular IP blocks calculate the predicted pixels in 
original order, so additional transposing is not needed. The 
blocks also have a common control. Furthermore, IP modes with 
an equal distance to the horizontal (mode 10) and vertical (mode 
26) modes are computed by the same IP block. For example, 
modes 2 and 34 are calculated in the same Positive Angular IP 
block since 10 - 2 = 34 - 26. This allows a reduced number of 
intra prediction IPs and saves area. 

  
Fig. 3. The block diagram of the intra coding accelerator on FPGA. 

 



 

 

The SAD block reads the reference pixels of the processed 
CU from the corresponding on-chip memory. It also receives 
predicted pixels from the IP blocks and calculates the SAD in 
parallel for all modes. The SAD block sends all the predicted 
pixels and the reference pixels to a buffer, four pixel at a time. 
After the SAD calculation is done and the best mode is 
determined, SAD block notifies the buffer. The buffer 
recalculates the residual vector and reference pixels for the best 
mode and sends them to the DCT unit. 

D. Discrete Cosine Transform (DCT) 

The DCT unit equals the high-speed variant of our 8/16/32-
point DCT unit presented in-depth in [23]. The unit performs the 
2-D DCT in two successive passes and the intermediate data is 
stored in a transpose memory. It can process 32 residuals in 
parallel so that a constant data rate with full HW utilization is 
achieved. The latency for both passes is three cycles because of 
the DCT pipeline. After the 2-D transform, the 16-bit transform 
coefficients (tcoeffs) are passed to the Q unit.  

E. Quantization (Q) 

The Q unit operates according to the configuration data 
consisting of the block size and the quantization parameter. The 
unit receives one or several columns of tcoeffs from the DCT 
unit per write, depending on the block size. Then it performs the 
quantization to all tcoeffs in parallel and outputs the quantized 
tcoeffs to the IQ unit and the Coeff Cost unit. 

F. Inverse Quantization (IQ) 

The IQ unit operates according to the configuration data 
consisting of the block size and the quantization parameter. The 
unit receives one or several columns of quantized tcoeffs from 
the Q unit per write, depending on the block size. Then it 
performs the inverse quantization to all quantized tcoeffs in 
parallel and outputs them to the IDCT unit. 

G. Inverse Discrete Cosine Transform (IDCT) 

The IDCT unit equals the 8/16/32-point IDCT unit presented 
by us in-depth in [24]. The unit performs the 2-D IDCT in two 
successive passes and the intermediate data is stored in a 
transpose memory. The IDCT unit can process 32 tcoeffs in 
parallel to ensure a more constant HW utilization. The latency 
for both passes is three clock cycles. After the 2-D inverse 
transform, the 16-bit residuals are passed to the Rec unit. 

H. Coefficient Cost (Coeff Cost) 

The Coeff Cost unit operates according to the configuration 
data consisting of the block size. The unit reads all the columns 
of the quantized tcoeffs, which are transposed back to the 
original order. After the transpose, the block calculates the 
approximate coding cost for the CU coefficients, processing 32 
coefficients in parallel. 

I. Reconstruction (Rec) 

The Rec module reads the reconstructed residuals from the 
IDCT unit and the original and predicted pixels from the 
memory in parallel. It generates the final reconstructed pixels 
and calculates the SSD for the processed CU. The reconstructed 
pixels are stored to memory through a buffer in order to store the 
right CU in the CTU sized memory. 

VI. EXPERIMENTAL RESULTS 

Table II tabulates the characteristics of the proposed and 
other existing HEVC intra encoders on ASIC and FPGA. The 
real-time coding speed of the ASIC-based HEVC intra encoder 
in [11] is limited to 1080p video. The HEVC intra encoder in 
[12] supports real-time 2160p video encoding on ASIC but the 
respective FPGA implementation is limited to 1080p resolution. 
Similarly, the FPGA-based HEVC intra encoder in [13] is 
restricted to 1080p video coding. The intra/inter HEVC encoder 
in [14] is able to encode 1080p at 60 fps with a custom board of 
three separate FPGA chips. Higher resolutions are also 
supported but not without increasing the number of boards. To 
sum up, our proposal is the only FPGA-based implementation 
that supports real-time HEVC encoding up to 2160p resolution 
with a single board. 

 TABLE III. CODING SPEED WITH 2160P VIDEO (FAST PRESET) 

 

TABLE IV. CODING SPEED WITH 1080P VIDEO (MEDIUM PRESET) 

 

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 20 31 1.6× 40 2.0×

Bosphorus 21 32 1.6× 42 2.1×

HoneyBee 19 31 1.6× 41 2.1×

Jockey 22 35 1.6× 47 2.1×

ReadySetGo 20 31 1.6× 41 2.0×

ShakeNDry 17 26 1.6× 35 2.1×

YachtRide 19 30 1.6× 40 2.1×

Average 20 31 1.6× 41 2.1×

Sequence 

(2160p)

1 accelerator 2 accelerators

No acceleration

Speed (fps) Speed (fps) Speedup Speed (fps) Speedup

Beauty 63 102 1.6× 136 2.2×

Bosphorus 51 82 1.6× 110 2.2×

HoneyBee 46 73 1.6× 98 2.2×

Jockey 52 84 1.6× 113 2.2×

ReadySetGo 51 79 1.6× 107 2.1×

ShakeNDry 44 70 1.6× 94 2.2×

YachtRide 49 78 1.6× 105 2.1×

Average 51 81 1.6× 109 2.2×

Sequence 

(1080p)

1 accelerator 2 accelerators

TABLE II. COMPARISON OF THE PROPOSED AND RELATED HEVC INTRA ENCODERS 

 

Architecture Technology Board HW Lang. Frequency Resolution Coding mode Cells DSPs

Proposed CPU + FPGA Arria 10 C/C++ 125 MHz 2160p@30fps Intra 308k ALUTs 862

Zhu et al. [11] ASIC - Verilog 357 MHz 1080p@44fps Intra 2296k gates -

Pastuszak et al. [12] ASIC - VHDL 200/400 MHz 2160p@30fps Intra 1086k gates -

Pastuszak et al. [12] FPGA Arria II VHDL 100/200 MHz 1080p@30fps Intra 93k ALUTs 481

Atapattu et al. [13] FPGA Zyng ZC706 Verilog 140 MHz 1080p@30fps Intra 84k LUTs 34

Miyazawa et al. [14] FPGA Custom 3xFPGA N.A. N.A. 1080p@60fps Intra/Inter N.A. -



 

 

Table III and Table IV report HEVC coding speed of the 
proposed system with fast and medium presets (Table I) using 
2160p and 1080p test videos, respectively. The 8-bit 4:2:0 2160p 
test sequences were taken from Ultra Video Group test sequence 
set [25] and scaled down to 1080p resolution for our tests. In 
both cases, the results are given for our system with 0, 1, and 2 
intra coding accelerators.  

The average results with the fast preset show that our 
implementation is able to encode 2160p video at 20 fps without 
HW acceleration, at 30 fps with a single accelerator, and at 40 
fps with two accelerators. The speedups obtained with one and 
two accelerators are 1.6× and 2.1× over the pure SW 
implementation, respectively. In 2160p case, real-time coding 
speed (30 fps) requires at least one accelerator. The coding 
speeds of 1080p test videos are approximately 2.6 times as high 
as those of 2160p sequences even though a more complex 
medium preset (without RDOQ) is used. Hence, real-time 
coding speed is attainable without any HW acceleration in 1080p 
case. Our implementation would also be able to encode three 
separate real-time 1080p sequences in parallel.  

VII. CONCLUSION 

This paper presented the first known 4K HEVC intra encoder 
partitioned between a processor and a PCIe-connected FPGA. 
The encoder functionality is based on C source code of Kvazaar 
HEVC intra encoder and HLS was used to implement the most 
compute-intensive Kvazaar coding tools on FPGA. For the first 
time, HLS was applied to the whole intra coding chain from intra 
prediction to block reconstruction. HLS is generally known to 
reduce design and verification times over a traditional HDL 
workflow. This work shows that these benefits do not come at a 
cost of coding performance. 

The proposed encoder implementation was prototyped on 
Nokia AirFrame Cloud Server composed of dual 14-core Intel 
Xeon processor and Arria 10 FPGA. On AirFrame, our solution 
is able to encode one 2160p video in real-time. The introduced 
HW acceleration roughly doubles coding speed over that of a 
pure SW encoder. Further performance boost could be easily 
obtained by inserting another FPGA card in the available slot in 
the server and replacing the current FPGAs with larger ones. 
This way, up to four times as high coding speed is anticipated.  
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