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Abstract—Interest towards respiratory state assessment 

with non-obtrusive instrumentation has led to the design of 

novel algorithmic solutions. Notably, respiratory behavior 

has been observed to cause modulative changes in two 

discreetly measurable physiological signals, PPG and ECG. 

The potential to integrate respiratory rate measurements in 

widely used instrumentation with no additional cost has 

made the research of suitable signal processing methods 

attractive.  We have studied and compared auto-regressive 

(AR) model order optimization and coefficient extraction 

methods combined with a reallocative particle filtering 

approach for respiration rate estimation from finger PPG 

signal. The evaluated coefficient extraction methods were 

Yule-Walker, Burg, and Least-square. Considered model 

order optimization methods were Akaike’s information 

criteria (AIC) and Minimum description length. Methods 

were evaluated with a publicly available dataset comprised of 

approximately 10-minute measurements from 39 healthy 

subjects at rest. From the evaluated AR model parameter 

extraction methods, Burg's method combined AIC 

performed the best. We obtained the mean absolute error of 

2.7 and bias of -0.4 respirations per minute with this 

combination. 
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autoregression, particle filtering 

I. INTRODUCTION 

Respiratory rate (RR) is one of the basic vital 

parameters and the one to react first to declines in the 

health status of a patient. While many contemporary 

instrumentations provide good approximations of 

respiratory state, they can be obtrusive and increase patient 

discomfort. Photoplethysmography (PPG) can be used as 

an alternative source of respiration information because 

respiratory behavior has been shown to modulate the 

signal in a way that can be assessed by algorithms. 

Currently, the primary use of PPG in patient monitoring is 

for blood oxygen saturation estimation. PPG signal may be 

recorded discreetly and, more importantly, RR monitoring 

may be integrated to existing devices for use in instances 

where respiratory state is currently not constantly 

monitored.  

Charlton et al. recently published a comparison of 

algorithms for respiration rate estimation from PPG signal 

[1]. As they proposed, an algorithm or a method can often 

be divided into three phases: pre-processing of the signal 

acquired from the instrumentation, extraction of the 

respiratory signal component, and the determination of 

respiratory rate. Additionally, the fusion of results from 

multiple sources can be included to enhance the accuracy 

of results. The decision on which algorithmic components 

are used is situational and depends on which modulation 

components of the signal are present, and whether the 

approach is based on morphological or filterable features. 

Thus, a considerable number of combinations can be 

constructed. The comparison by Charlton et al. included 

altogether 253 different algorithm combinations, each with 

varying degrees of efficiency. 

While a vast number of algorithms have been recently 

introduced, we have studied a type of filtering-based 

method, which has potential to overcome some of the 

challenges limiting the use of many other approaches, 

namely not using prior information obtained about the 

respiration rate and offering potential for real-time 

implementation. Our study concentrates on the last 

mandatory algorithm step; determination of respiration 

rate. We propose using a non-fixed auto-regressive model 

for describing the frequency content of the signal, followed 

by particle filtering for finding the particular frequency 

component induced by the respiration behavior. We 

compare Akaike's Information Criterion (AIC) and 

Minimum Description Length (MDL) as the means for 

auto-regressive model order optimization and Burg, Yule-

Walker, and least squares methods for AR model 

parameter extraction. 

A number of auto-regressive models with fixed model 

orders or novel parameter search criteria has been studied 

in detail in [2]. However, in our study the primary focus 

has been shifted to the study of non-fixed auto-regressive 

model response in the changing, realistic conditions of 

respiratory behavior and signal artefacts, as well as the 

constraints particle filtering impose to measurements by 

recall values. 

While other methods for AR model parameter 

extraction exist and other approaches with autoregression-

driven, reallocative particle filtering have been proposed 

as well, e.g. an optimal parameter search method in [3], we 

chose to limit our comparison to the aforementioned 

methods and their combinations. 

II. METHODS 

A. Pre-processing and respiration signal extraction 

Respiration modulates the PPG signal in a couple of 

ways that are partially different from the mechanisms 

affecting the ECG, which is another widely studied signal 

for indirect respiration estimation. Respiratory sinus 

arrhythmia (RSA) directly affects the beat-to-beat 



intervals in both signals, but while the R-peak amplitude 

in ECG is modulated by the change of heart’s orientation 

and the lead field of the thorax caused by the respiration, 

the respiration related amplitude modulation seen in the 

PPG is different. The amplitude is influenced also by the 

RSA in addition to venous return, which is modulated 

through the changes in intra thoracic pressure caused by 

the respiration. This respiration induced amplitude 

modulation is the feature of interest in the generation of the 

respiration signal in our work. [4] 

The initial pre-processing step on the signal data 

acquired from respective instrumentation entails the 

filtering and downsampling of the raw signal. 

Downsampling greatly increased the angular resolution for 

the later data processing. We selected the bandwidth 

corresponding approximately to 7 to 40 breaths per minute 

(bpm) as the region of interest (ROI).  To preserve the 

modulative components in this range, a Butterworth filter 

(3. order, -3dB cut-off at 1 Hz) was applied to signal using 

forward-backward filtering. Filtered data was then 

subjected to resampling at 2 Hz frequency.  

In the present study, we chose to estimate the average 

respiration rate in 60-second data segments. Thus, 60 

seconds of data was taken at a time and analyzed by the 

algorithm. The analysis window was then shifted 10 

seconds resulting in significant overlap of data. New 

segment was taken and analyzed resulting in 6 respiration 

rate estimates per minute.  

B. Respiration rate extraction algorithm 

AR-model 

Pre-processed 60-second signal segment was used to 

estimate an auto-regressive model by using a Z-transform. 

The poles of the AR model represent significant frequency 

components in the modeled signal and the assumption is 

that the respiration frequency would be among these. The 

number of poles, i.e. the model order defines the 

complexity of the model. The model order for each signal 

segment was chosen such that it minimized the AIC and 

MDL criterions. The criteria for the model order seeks to 

ensure that the model contains enough information while 

not being overly complex. Previously, also the use of fixed 

model orders has been proposed [2]. However, we studied 

the use of non-fixed model orders to avoid the inclusion of 

erroneous terms or modeling the signal with too few terms 

and possibly even excluding the respiratory component 

from further analysis. The optimal order of the AR model 

has been observed to change considerably between 

assessments. Inclusion of multiple frequencies, in which 

case the respiration information can be divided in multiple 

poles, is not problematic as such as the particle filter 

combines the effect of nearby poles and is therefore able 

to distinguish the correct respiration rate also in this case. 

Minimization of the model order criteria also reduces the 

need for any a priori information on the AR model 

structure. 

Optimizing the order of the auto-regressive model is a 

process interconnected with acquiring the pool of AR 

coefficients because the optimal model order is specific to 

the method used for extracting the model parameters. 

Commonly used AR coefficient extracting methods 

include Yule-Walker, Burg, and the method of least 

squares. We studied the performance of each of these 

methods in combination with AIC and MDL model order 

optimization methods. In order to apply information 

criteria to an AR model, we created a set of models in 

which the model order varied from 1 to 30 and compared 

the AIC and MDL value for each respective model order 

and coefficient extraction method in the simulation. For 

each combination, the data of all the subjects was 

processed frame by frame. For each frame the results with 

least criterion error were recorded and handed over to the 

particle filter. 

By analyzing the zero-pole model, we may observe the 

apparent frequency components related to each signal 

frame. By limiting the filter -3dB cut-off to low values and 

imposing a region of interest, plausible components can be 

observed from the model. In several prior studies, an 

assumption has been made that the frequency component 

with the greatest magnitude represents the respiration rate 

[1, 2]. However, as the ROI may contain a number of poles 

with nearly the same magnitude, the distinction may not be 

obvious. By simply choosing the greatest magnitude value 

to represent respiratory rate, there is a risk of choosing 

arbitrarily any closely valued pole in the ROI, resulting in 

significant errors. One possible, although relatively rare 

cause of erroneous poles in the ROI is the heart rate. We 

considered this by decreasing the upper edge of the ROI to 

0.95 times the heart rate in case the resting rate of the 

subject is close to the ROI, i.e. 40 bpm.  

The problem of selecting the right frequency 

component is then further assessed by the introduction of 

particle filtering. 

 

Re-allocation particle filter 

The particle filter used here is as described in [5]. An 

initially fixed number of particles, in our case 100, is used 

with equal initial weights. Additional Gaussian noise is 

added to each particle estimate at each cycle to allow for 

rejuvenation of the distribution estimate. The weighted 

mean of the particle estimate is taken as the respiratory 

rate.  

The AR model of the signal segment being analyzed 

contains a vector with magnitudes and angles of each 

transfer function pole. The particles, effectively the 

representation of probability density function of the RR of 

previous frame, are assessed by likelihood functions re-

calculating the weights for the particles.  

We have followed the observations presented in [5] to 

use the weighted nearest neighbor method which has been 

shown to provide attractive accuracy among the related 

likelihood functions. Effectively, each pole increases the 

weight of itself and all other poles in the ROI with the 

effect on other poles diminishing exponentially. Each 

particle is associated with new weight reflecting the fact 

that particles should concentrate on areas with high 

magnitude poles. While some particles increase in weight, 

some do lose their importance in the particle set. The 

particle weights are normalized after which the respiratory 



rate, estimated as the weighted mean of the particle 

distribution, may be computed. 

Resampling is an essential process in the particle filter 

design that preserves filtering from impoverishment effect 

[6]. Resampling is a process where particles with 

negligible, in our case less than the initial, weights are 

removed while particles larger than the initial weight are 

preserved. Reallocation resampling entails a type of 

resampling where major weight particles are split into 

uniform sized particles that preserve the corresponding 

angle of evenly aligned set of split particles. According to 

the weight calculated by the likelihood function, each 

particle with any multiplier value of original weight was 

split to corresponding floor function number of particles 

[5]. As the set of particles were observed to diminish at 

every cycle, new particles were introduced at the mean 

frequency band of preserved particles, followed by 

addition of Gaussian noise. As such, the next signal 

interval fed to the algorithm faces previous distribution 

values of converged particles but possibly changing 

respiration rate may still be accounted for. Should any 

major transients in respiratory rate occur, the particle filter 

follows the change to a certain degree. 

The particle filter may be characterized by its nature for 

assuming slight changes in respiratory rate. This is 

advantageous in instances where major transients may 

momentarily occur due to introduction of artifacts in the 

signal or due to the deletion of pole outside the ROI. 

C. Algorithm assessment 

A dataset, comprised of PPG and ECG measurements, 

from 39 young individuals at rest was recently made 

publicly available under the name 'VORTAL dataset' in 

conjunction with publication of an algorithm comparison 

paper by Charlton et al. [1]. The performance of presented 

algorithm was evaluated by comparing the PPG derived 

RR estimate with the reference provided in VORTAL 

dataset produced by a clinical monitor based on trans-

thoracic impedance pneumography measurement. The 

reference RR values are provided in one-second intervals 

and the average of these from the same 60-second interval 

than the PPG signal was used in comparison.  

Signal quality of the analyzed data was not evaluated 

in our study as it was done in [1], in which the PPG 

segments of poor signal quality were removed. Direct 

comparison of the results between the studies is therefore 

not possible nor appropriate. 

Given that the Gaussian noise introduced to particle 

filter results in well-defined single probability distribution 

along ROI, the respiration rate is defined as the mean of 

distribution. The initial realizations of particle filter have 

been observed ill-fated to scatter widely along ROI. 

Fortunately, often after few realizations, the distribution of 

the particles is seen to accumulate close to the respiration 

frequency. First five RR results from the beginning were 

thus left out from the results. Fig. 1 shows an example 

comparison of RR estimated from the PPG together with 

the impedance pneumography based reference RR.    

III. RESULTS 

The considered methods are evaluated by comparing 

the mean error (ME), mean absolute error (MAE), and 

root-mean-square error (RMSE) of the respiration rate 

estimates. The error values are calculated by comparing 

each RR value, the mean of particle distribution of the 

filter, to the corresponding averaged reference value on 

each shifting 60-second time windows and summing up 

the data of all participants.  

 

 

 

Fig. 1 An example of RR estimation with the particle filter showing distributions of the particles for each filter realization. Raw and smoothed reference 

RR and the estimated RR are shown in yellow, green, and purple, respectively. 

  



Certain measurements with large transients in the true 

respiratory rate were difficult for the algorithm to follow. 

The effect of noise in the signal and the presence of 

modulative artifacts were not assessed. If none of the poles 

of the AR model for a certain data segment is located 

within the ROI, the algorithm is not able to give an RR 

estimate for that point of time. Values therefore not 

recalled by autoregression will decrease the RR estimation 

coverage. 

From the results shown in Table 1, we observe that 

Burg's method provides the most appealing AR parameter 

extraction method for non-fixed AIC model order 

selection. This was especially true in instances where 

pronounced absolute error was to be expected. In regards 

to the median error values, the methods performed more 

closely. As seen in Table 2, for a non-fixed AR model, the 

coverage value, indicating the probability that a pole value 

could be found within ROI, varied slightly with each 

method. Least squares method had better recall values for 

MDL, while for AIC no clear differences were observed. 

We conclude that particle filtering by non-fixed AR 

models enhance the accuracy of the results, and the use of 

Burg's method is the most appealing choice in combination 

with AIC.  

We also tested how removing the particle filter affect 

the results. As seen in Table 1, RR estimation errors with 

Yule-Walker parameter search method are significantly 

larger without the addition of reallocative particle filter. An 

interesting point worth noticing is the increase of ME in 

AIC without particle filter, projecting well into median 

error and MAE.  

 

Table 1 RR estimation error as respirations per minute obtained with 

evaluated AR model construction methods. ME stands for mean error, i.e. 

bias, MAE stands for mean absolute error in respirations per minute. 

 Median error ME MAE 

 Yule-Walker 

AIC 1.576 -0.668 3.128 

MDL 2.369 -1.158 4.697 

 Least-square sense 

AIC 1.853 0.181 3.577 

MDL 2.346 -1.871 4.234 

 Burg 

AIC 1.494 -0.448 2.699 

MDL 2.081 -0.943 4.468 

 Yule-Walker, no particle filter 

AIC 3.552 2.135 6.9 

MDL 3.146 0.4803 6.044 

 

Table 2 RR estimate coverage (%) with different methods 

 YW LS Burg 

AIC 0.994 0.997 0.997 

MDL 0.925 0.942 0.936 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Bland-Altman plot of the respiration rate results obtained with the proposed algorithm using AIC and Burg AR modeling method and the 

reference. Grey dots represent individual results and the squares subject averages. Bias as well as the 2σ limits are shown as blue horizontal lines. 



When AR model orders were compared, the average 

model order for all cycles was 23 and 11 for AIC and 

MDL, respectively, and standard deviation for these model 

orders were 7.48 and 6.85 showing large variation in 

optimal model order between signal frames. This supports 

the suggestion that fixed model order should not be used 

for this kind of analysis due to highly varying statistical 

properties of the PPG signal. The recall values support the 

observation that poles from lower model orders are less 

likely to be located in the ROI. This is likely to cause some 

of the error in the measurements due to lack of converging 

indications for the next available realization. Considerably 

low model orders also increased the risk of neglecting 

proper indications of respiration behavior in ROI. This is 

likely the reason for the fine MAE performance of least-

squares method combined with MDL. 

Fig. 2 illustrates the Bland-Altman difference plot of a 

measurement set compared with the reference data. The 

mean error of the particle filtering combined with AIC and 

Burg's method show that while most of the subject 

averages show only slight deviation of the mean error 

level, a considerable part of the overall error is formed on 

measurements of certain subjects. These subjects 

performed worse likely due to emergence of pole clusters 

near ROI bounds. In addition, the quality of the original 

PPG measurements may contribute to the error.   

IV. CONCLUSION 

We have evaluated the performance of an AR-model 

and particle filter based approach for estimation 

respiration rate from the photoplethysmographic signal 

recorded from the finger. The amplitude of the low-pass 

filtered PPG was used as the feature respiration was 

assumed to modulate in RR estimation. Despite the 

promising results, there are many things still left to 

evaluate and improve in the algorithm, starting from 

evaluating the possible features in PPG that could be used. 

Other essential issues for the future work include 

comparing other alternative methods for AR model 

optimization and different schemes for particle filter 

reallocation.  
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