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Abstract—Fifth generation (5G) radio networks are expected
to provide remarkable improvements in the user experience due
to faster data rates and lower latencies, for example. These kind
of enhancements are made possible by several technical advances
when compared to the existing networks. In particular, densifica-
tion of network, device-centric network topology and exploitation
of smart antennas, among others, will play key roles in network
developments. In addition to obvious benefits in solely communica-
tions type of services, the aforementioned technological advances
allow for completely new kind of applications. In this paper, we
focus on user equipment (UE) positioning, and additionally show
how also successful network synchronization can be done in 5G
networks in a highly sophisticated, but low-complex network-
centric solution. We will extend the analysis available in the
existing literature to fully unsynchronized networks where the
UEs as well as the network remote radio heads (RRHs) have
clock offsets and skews with respect to a given reference clock.
Our numerical performance analysis, based on realistic network
and propagation models, show that the proposed method can
provide sub-meter range positioning accuracy and highly accurate
synchronization of the network elements.

Index Terms—5G Networks, Extended Kalman Filter, Position-
ing, Synchronization, Ultra-dense Networks

I. INTRODUCTION

Future fifth generation (5G) radio networks will provide tremen-
dous enhancements compared to the existing mobile networks
in terms of high data rates, overall capacity, and number of
connected devices including vast amount of various sensors and
Internet-of-Things (IoT) devices, for example [1], [2]. Despite the
early stage of the 5G standardization process, it has already been
envisioned that positioning will play an important role in future
communication solutions. In the existing mobile communications
networks, positioning has been only an add-on feature, whereas
in 5G, it will not only enable vast amount of numerous location-
based applications and services, like autonomous vehicles and in-
telligent transportation system (ITS), but also enhance the overall
performance of the communication system itself, e.g., in terms
of location-aware communication solutions like proactive radio
resource management (RRM) [3]-[5]. In general, it is commonly
expected among different bodies that 5G networks should be able
to provide 1 m positioning accuracy for all indoor and outdoor
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terminals [1], [4], [6], [7] or even 10-30 cm for the most demand-
ing use cases such as automotive applications [8], if designed
properly. Such an envisioned accuracy is clearly outperforming the
existing positioning techniques, e.g., observed time difference of
arrivals (OTDoAs) in LTE where positioning accuracy is around
few tens of meters [9] as well as GPS and WiFi fingerprinting
based solutions where positioning accuracy is around 2-5m [10],
[11].

In particular, 5G networks will provide a convenient environ-
ment for positioning. In order to meet the demanding capacity
and data-rate requirements of future 5G, network nodes will be
most likely deployed with a high spatial density, thus increasing
the probability of user equipment (UE) to be in line-of-sight
(LoS) condition towards several network nodes at a time. Such
a LoS condition together with the envisioned large bandwidths
will also enable highly accurate time of arrival (ToA) estimation
at the network nodes, later referred to as remote radio heads
(RRHs), equipped with base band units (BBUs). In addition to
ToAs, it is widely expected that smart antenna solutions such
as antenna arrays will be exploited in the RRHs, thus enabling
also highly accurate direction of arrival (DoA) estimation at the
RRHs. These aforementioned estimates can be, in turn, fused for
UE positioning and network synchronization in a network-centric
manner by utilizing uplink (UL) pilot signals, which are anyway
communicated between the UEs and RRHs for necessary channel
estimation and scheduling purposes in time division duplex (TDD)
networks. In contrast to the network-centric approach, positioning
can be also carried out within a device but the cost is an increase
in device energy consumption.

In this paper, a joint network-centric positioning and syn-
chronization method for unsynchronized 5G ultra-dense network
(UDN) is proposed. This paper is an extension of the work in [12]
to the case where the access nodes (ANs) comprising the UDN
are now allowed to have clock skews. In the first phase of the
proposed method, DoAs and ToAs are tracked at LoS-RRHs using
an extended Kalman filter (EKF)-based solution similar to that
in [12]. Thereafter, the obtained DoA and ToA estimates are fused
into UEs’ location estimates as well as clock offsets and skews
of both UEs and RRHs in the second EKF-based processing stage,
which can be thereafter used to synchronize UEs and RRHs within
the network. In the existing literature, joint positioning and syn-
chronization is explored in the case of unsynchronized UEs and
synchronized or phase-locked network elements, e.g., in [12], [13],
whereas joint positioning and synchronization methods, where the
network elements have skews in their clocks, have not been widely



considered in the existing literature.

The rest of the paper is organized as follows. First, general
assumptions about the considered network and system are de-
scribed in Section II. In Section III, the well-known equations
of the generic EKF are shortly reviewed, while the equations and
necessary models are then extended to cover the considered posi-
tioning and network synchronization scenarios in Sections III-B
and III-C. Then, the performance of the proposed approach is
evaluated using extensive simulations and numerical evaluations,
and the obtained results are discussed and analyzed in Section IV.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL
A. Network Architecture and Positioning Engine

In this paper, a centralized network architecture, where densely
deployed RRHs are equipped with BBUs, is considered. In such
an architecture, UDNs are deployed by attaching the RRHs to
lamp posts below rooftops as illustrated in Fig. 1, and the exact
locations of the RRHs are assumed to be known. Within the RRHs,
cylindrical antenna arrays consisting of 10 dual-polarized cross-
dipole elements are employed, thus allowing for DoA estimation
in both azimuth and elevation directions. In addition to the BBUs,
more demanding centralized processing such as scheduling and
data fusion are taking place in a central unit of the network.

In the considered system, UEs periodically transmit UL pi-
lot signals employing orthogonal frequency-division multiplexing
(OFDM) waveforms in an orthogonal frequency-division multiple
access (OFDMA) manner in a multiuser network. These UL
signals allow for continuous network-centric positioning solutions
since such pilots are anyway transmitted from the UEs to the
RRHs in order to obtain necessary channel estimates at the trans-
mitter for scheduling purposes. Each of the receiving RRHs first
determines whether or not it is in LoS condition towards a given
UE based on, e.g., Rice-factor which is typically around 10-20 dB
in UDNSs [14]. In addition to channel estimation, these UL pilot
signals can be then also utilized for DoA and ToA estimation at an
individual LoS-RRH. In the considered solution, these temporal
and spatial estimates are, thereafter, communicated to a central
entity of a network where the actual UE positioning and network
synchronization procedure is carried out by fusing the estimated
DoA and ToA measurements from all LoS-RRHs into UE location
estimates as well as UE and LoS-RRHs clock parameter estimates.

B. Clock Model

In order to model the unsynchronized clocks within a network,
the following clock model for a time-varying clock offset with a
skew is assumed, and it stems from the work in [15]

plk] = plk — 1] + Atalk - 1] M
alk] = Balk — 1] + v]k], @

where the constant parameter |5] < 1, as well as p[k] and «[k]
denote clock offset and skew at the time-instant k, respectively.
Furthermore, At denotes a time interval between the consecutive
time-instants k — 1 and k, and v[k] ~ N(0, 02) is a driving noise
of the clock skew. For the sake of simplicity, the clock offsets
at UEs and RRHs are assumed to follow the aforementioned
models (1) and (2) in a way that the clock skews are assumed

Fig. 1. In the considered 5G UDN, the RRHs are attached to lamp posts, and
UEs transmit periodical UL pilots towards the RRHs. These periodic UL pilot
signals can be utilized also for continuous network-centric positioning.

to be constant over time. Such an assumption typically holds for
stable clock oscillators and in relatively ideal environments where,
e.g., the temperature is not significantly varying over the time
of interest. Similar simplifications have been made, e.g., in [16],
[17], where stand-alone clock parameter estimation and tracking
is carried out. Moreover, based on the obtained measurements
in [15], the average clock skew over a long time period can indeed
be considered constant in a temperature controlled environment.

C. Channel Model

In this paper, the following UL single-input-multiple-output
(SIMO) multiantenna-multicarrier channel response model for
MN receiving antenna elements and OFDM waveforms with
M active subcarriers is exploited [12], [18]

g&- ~ sz (67 ®, T)’Y + n, (3)

where g, € CMaMisx1 g a channel response vector estimated
at the RRH with an index ¢;. Furthermore, By, (0,0, 7) €
CMaMsx2 denotes the polarimetric response of the £ multi-
antenna RRH whereas v € C2*! denotes complex path weights.
Moreover, n € CMaMrx1 iy (3) denotes a complex-circular
zero-mean Gaussian noise with variance o2. In particular, the
polarimetric antenna array response By, (6, ¢, 7) is given in terms
of the effective aperture distribution function (EADF) [18] as

By (0,0,7) = [Gud(p,0) ® Gd(7),

4

GVd(<p7 0) ® Gfd(T)L
where ® denotes the Kronecker product, and Gpg S
CMaxxMaMe jg the EADF for horizontal excitation and similarly

Gy € CMwxMaMe ig the EADF for vertical excitation. Num-
bers of the determined array response modes in EADF for azimuth
and elevation are denoted as M, and M., respectively. The array
calibration data, represented using the aforementioned EADFs,
can be determined in well-defined propagation environments, e.g.,
in an anechoic chamber [18]. Furthermore, G; € CMsx My
in (4) denotes the frequency response of the RRH receivers, and
d(ip, ) € CMaMe is written as

d(y,0) =d(0) ® d(p), ®)



where d() € CMa and d(f) € CMe as well as d(7) € CMs
in (4) are Vandermonde structured vectors. These vectors map
the spatial and delay parameters to the corresponding frequency
domain such that

d(r) = [e*j’T(Mf*l)fOT,...,1,...,ej’f(Mf*1>f0T "6
The corresponding directional vectors d(¢) and d(6) can be
formulated similarly using the relation ¢/2 = 7 fo7, where fj
denotes the subcarrier spacing of the employed OFDM waveform.
Throughout this paper, the EADFs are assumed to be known for
all RRHs.

It is important to note that the somewhat simple models de-
scribed in this section are exploited by the DoA and ToA es-
timation, and the tracking algorithm described in Section III-B,
but are not employed for simulating the channel between the
UE and RRHs. For generating the underlying multipath radio
channel between a UE and RRHs, an extensive ray-tracing tool
is employed [14], as described in more detail in Section IV. Note
also that the model in (3) may be time-varying, including the
complex-valued path-weights. This is exploited by the proposed
tracking algorithm described in Section III-B.

III. PROPOSED POSITIONING AND SYNCHRONIZATION
SOLUTION

A. Extended Kalman filter (EKF)

In order to sequentially estimate the state of a desired system,
an EKF-based sequential estimation method, where non-linear
models are linearized using first-order Taylor approximations, is
employed in this paper [19]. Let us consider the following linear
state transition and non-linear measurement models for a system

s[k] = F[k]s[k — 1] + w]k] )
y[k] = h(s[k]) + v[K], ®)

where s[k] € R™ and y[k] € R™ are state and measurement
vectors at a time instant k, respectively. Moreover, F[k] € R"*"
is a state transition matrix and h R" — R™ is a non-
linear measurement model function. Finally, w[k] ~ A (0, Q[k])
and v[k] ~ N(0,R[k]) denote state and measurement model
noise processes in the system. Let us further denote the a priori

estimatesas 8~ and P, and similarly the a posteriori estimates as

A A+ . . . .

§TandP . Using this notation and assuming the general models
in (7) and (8), the a posteriori estimates at time step k can be
obtained in the EKF as

§7[k] = FK|sT [k — 1] ©)
P (k] = F[EP* [k — 1F"[k] + Q[K] (10)
K[k] = P~ [k]H [k](H[E]P~ [k]H T[] + R[E])~" (D)
§T[k] = 87 [k] + K[¥] [y[k] — h(s™ [K])] (12)
Pk = 1 -K[kH[K) P [K], (13)

where H[k] is the Jacobian matrix of the non-linear measurement
model function h in (8), evaluated at §~ [k]. Note that the afore-
mentioned equations are only employed in the positioning and
synchronization EKF whereas a more convenient formulation of
the EKF is employed for tracking the DoAs and ToAs.

B. DoA and ToA Estimation and Tracking EKF

As described earlier in this paper, the periodically transmitted
UL pilots can be also utilized for DoA and ToA estimation as
well as tracking at each LoS-RRH. In this paper, we exploit
the efficient and computationally appealing EKF-based solution
proposed in our earlier work [12] for tracking the DoAs and
ToAs. In particular, such an EKF is based on the model in (3)
and exploits the obtained channel estimates. In contrast to the
Kalman gain form of the EKF described in Section III-A, the
information form of the EKF is applied for tracking the DoA and
ToA since it is computationally more efficient than the former
whenever the dimension of the state vector is smaller than that
of the measurement vector. The tracked DoA and ToA are then
exploited by the positioning and synchronization EKF described
in Section III-C.

Note that the EKF described in this section for tracking the DoA
and ToA of the LoS path does not assume the complex-valued
path-weights to be known. In particular, we consider such path-
weights nuisance parameters, and employ a so-called concentrated
log-likelihood function in order to decouple the DoA and ToA
from the path-weights; see [12] for details.

C. Proposed Positioning and Synchronization EKF

In order to fuse the obtained DoA and ToA estimates into
UE’s location as well as UE’s and LoS-RRHs’ clock parameter
estimates, a second EKF stage for positioning and synchronization
is employed in a central entity of the network. In addition to UE’s
location and velocity, also clock offsets and skews of the UE and
LoS-RRHs are estimated and tracked jointly within this EKF. This
is an extension of the work in [12] since therein the ANs were
considered to have zero clock-skews.

Let us denote a set of LoS-RRH indices at time instant & as
Sk, and let us further assume that UEs are following a nearly
constant velocity model while the clocks of the UEs and RRHs
evolve according to (1) and (2). Hence, the state of the system can
be written as

T
[k = [sbelk]. sE, (K], .. s, K] (14)
where Ny, is the cardinality of the set S, i.e., denotes the number
of LoS-RRHs at the time instant k. Moreover, the state of a single
UE syg[k] and i LoS-RRH sy, [k] in (14) can be written as

sue(k] = [2[k], y[k], 2[k], va[k], vy [K], v [K], p[K], a[K]]" (15)
se,[k] = [pes k], a [K]]" (16)

where ¢; € Si,Vi = 1,..., Nj. Furthermore, [x[k], y[k], z[k]]"
and [vy[k], vy[k], v, [K]]T are the 3D location and velocity of a
given UE, respectively. Finally, p[k] and «a[k] denote the clock
offset and skew of the UE, while p,[k] and ay,[k] denote the
clock offset and skew of the i™ LoS-RRH ¢; € Si. For the sake
of simplicity, it is assumed that all the clock offsets and skews are
determined with respect to a reference RRH with a stable clock
that has a nominal zero offset.

In the considered system, the state transition and measurement
models can be expressed as in (7) and (8). Assuming the afore-



mentioned motion and clock models as well as the state in (14),
the state transition matrix F[k] can be written as
F[k] = blkdiag (FUE, Fo,..., FgNk) , a7

where the matrices Fyg € R¥*8 and Fy, € R?*2, V/; € Sy, are

I AtI 0 O
0O I 0 O 1 At
0o 0 0 8

where At denotes the time-interval between the consecutive time
instants £ — 1 and k. In addition, the process noise covariance in
the state model (7) can be similarly written as

QIK] = blkdiag (Que, QU Qu,» -+ Quy, )

where the sub-matrices Qu € R%*6, Qup € R**% and Q,, €
R2%2 V¢, € S, are

19)

GZAt I3y3  02At 545

Que=| > é 2 (20)
O’,uAt213><3 JIQ)AtISX?,

Qi = diag([02.02]),  Q, = ding([0?, 0%, ]). QD)

2 52 and 0,21 denote variances of the UE velocity, clock

Here, o7, et
offset and skew, respectively, whereas o2 , and U,% ,. denote vari-

ances of the /" RRH clock skew and offset respecti\;ely.

In a central entity of the network, the obtained DoAs and
ToAs, denoted by y, [k] = [0y, k], e, [k], 7¢,[K]]T, and their
corresponding covariance estimate, denoted by Ry, [k], from
individual LoS-RRHs are augmented into a single measurement
vector y[k] = [y, [K],... Vi, [£]]T and a measurement noise
covariance matrix R[k] = blkdiag(Ry,[k],...,Rey, [K]).
Thus, the measurement model function is h(s[k]) =
[he, (s[k]), - - . ey, (s[k])]", where

arctan (2‘52 %)
Az, [K] )
R

Iet=pe; oy, 18] — plk])

c

hy, (s[k]) = arctan ( (22)

for all ¢; € Sk. Here, Azy,, Ayy,, and Az, denote the distances
between the i LoS-RRH and a given UE in z, y, and z directions,
respectively. Finally, ||p[k] — py, [|2p and ||p[k] — py, ||3p denote
the 2D and 3D distances between the same LoS-RRH and UE,
while c is the speed of light.

IV. NUMERICAL EVALUATIONS AND ANALYSIS
A. Simulation setup

In order to demonstrate and evaluate the performance of the
proposed positioning and synchronization EKF, referred to as
DoA&ToA EKF, in terms of 3D positioning and clock parameter
estimation accuracy, comprehensive numerical evaluations are car-
ried out and the obtained results are then analyzed in this section.
For the evaluations, the extensive METIS map-based ray-tracing
channel model is implemented in the outdoor METIS Madrid map
environment [20], using the uniform theory of diffraction (UTD)
in order to model the propagation of received UL pilot signals [14]

realistically. Furthermore, the transmit power of the tracked UEs is
set to 10 dBm, and interfering UEs with the same transmit power
are placed randomly 250 m away from the UE with a density of
1000 interferers /km?.

The considered 5G network is assumed to deploy OFDMA-
based radio access with 240 kHz subcarrier spacing and 5 MHz
reference signal bandwidth, for a single UE, comprising of 20
pilot subcarriers [21]. In addition, subframes of length 0.2 ms
containing 14 OFDM symbols are incorporated into the radio
subframe structure. Moreover, UL pilot signals of the UEs within
a specific RRH coordination area are assumed to be orthogonal
through proper time and frequency scheduling. Furthermore, the
DoAs and ToAs from 2 closest LoS-RRHs are utilized for posi-
tioning within the EKF every 100 ms. For comparison purposes,
also an EKF-based solution, where constant offsets at the RRHSs’
clocks without skews are assumed while still considering a con-
stant clock skew at a UE, is implemented in this paper.

In order to ensure convergence of the EKFs in the beginning,
the initialization procedure proposed in [12] is carried out in
the beginning of each random UE trajectory. These trajectories
are generated using an empirical polynomial acceleration model,
which allows for modeling the movement of a vehicle realistically
in an urban environment [22], such that the velocity of a simulated
vehicle is 20-50 km /h. For both EKFs, similar numerology for
initializing the model parameters, the reference clock parameters
of the UEs and RRHs as well as the parameters within the EKF
are used as in [23]. Since constant skews are assumed at UE and
RRHs, the standard deviations (STDs) in (21) are set to extremely
low values, i.e., 0, = Oay, = 10713, and the STDs of the clock
offsets are set to 0, = U%' =10~

B. Results

In order to assess the performance of the proposed DoA&ToA
EKF, cumulative distribution functions (CDFs) of 3D positioning
errors are depicted in Fig. 2 whereas CDFs of clock offset and
skew errors for both UE and LoS-RRHs in the considered scenar-
ios are illustrated in Figs. 3a and 3b, respectively. As expected,
the positioning performance slightly degrades in the case where
the clocks at RRHs are assumed to have skews. Interestingly,
sub-meter positioning accuracy is achieved even in the case of
more realistic clock scenario almost in 80% of situations. Such
a probability for below 1 m positioning accuracy in 5G is also
envisioned, e.g., in [7]. In addition, in 90% of the cases, below 2 m
and 1.5 m positioning performance can be reached when assuming
constant skew and constant offset at RRHs’ clocks, respectively.

Based on the obtained clock parameter estimation results in
Figs. 3a and 3b, the clock offset and skew errors of a given UE
and LoS-RRHs are smaller in the case where constant offsets
at RRHs are assumed, as expected. In such a scenario, most
of the variation in the clock offset estimates can be due to the
UE, whereas more equal error weighting occurs when the more
realistic clock model is assumed also at the RRHs. With the
considered numerology, even below 10ns and 1ns estimation
accuracies for the UE clock offsets and skews can be obtained
with a probability of 99%, respectively. In the case of the more
realistic clock model at RRHs, slightly worse performance is
achieved due to more inaccurate clock skew estimation which
in turn affects the clock offset and location estimation as well.
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Despite the slightly unfavourable clock offset estimation perfor-
mance in the more demanding scenario, below 100 ns estimation
accuracy can be reached. As a concrete example, in OTDoA-
based positioning in LTE, the typical value for the clock offsets
among the RRHs is assumed to be less than 100 ns [24, Table 8-
1], whereas the expected timing misalignment requirement for
future 5G small-cell networks is less than 500 ns [25], thus giving
a somewhat concrete quantitative reference regarding network
synchronization. Due to the imperfect clock parameter estimation
performance, the clock offset and skew errors of the LoS-RRHs
can eventually diverge after the connection to certain LoS-RRHs
is lost. However, the proposed solution can be further extended to
a multiuser scenario, thus providing continuous synchronization
within a network through proper network time propagation.

V. CONCLUSION

In this paper, an EKF-based solution for joint device positioning
and network synchronization under unsynchronized clocks with
clock skews in 5G UDNs was proposed. Such a solution is able
to provide continuous and computationally efficient positioning
and synchronization in a network-centric manner without draining
the battery of a device. Based on extensive simulations and nu-
merical evaluations, the proposed solution was shown to provide
sub-meter positioning accuracy even under realistic clock model
assumptions with clock skews. As a valuable by-product, the
proposed method is also able to estimate the clock parameters of
a given device and LoS-RRHs with a relatively high accuracy.
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