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Abstract—Multichannel synthetic aperture radar (MSAR)
systems are essential for applications such as ground moving
target indication (GMTI), interferometric SAR (InSAR), and
high-resolution wide-swath (HRWS) imaging. In this paper, we
analyze and compare MSAR image reconstruction algorithms.
Previously, image reconstruction for MSAR has relied heavily
on frequency domain matched filtering. Time domain image
reconstruction algorithms have several attractive qualities,
but their use has been limited due to a high computational
burden. In this paper, we utilize digital beamforming and the
phase center approximation to develop a fast time domain (fast
factorized back-projection, FFBP) algorithm for MSAR. We
present two FFBP implementations for MSAR and perform a
comparative study between MSAR imaging algorithms. The
numerical results confirm the feasibility of the proposed FFBP
algorithms for MSAR.

Index Terms—synthetic aperture radar, radar imaging, radar
signal processing, digital beamforming

I. INTRODUCTION

The advancements in phased array radar technology and
the increase in computational power further the development
of multichannel synthetic aperture radar (MSAR) systems.
MSAR systems are important for ground moving target in-
dication (GMTI) [1], interferometric SAR (InSAR) [2], and
high resolution wide-swath (HRWS) imaging [3]. By utilizing
a multichannel system, the functionality of the radar becomes
increasingly controlled by software and digital signal process-
ing algorithms.

MSAR systems are especially important in HRWS SAR
imaging [3], [4]. The demand for higher spatial resolution
and larger area coverage poses contradictory requirements
for conventional monostatic single-channel SAR systems. The
cause of this contradiction is the fact that in the conventional
stripmap imaging mode, high spatial resolution in the cross-
range direction requires a long synthetic aperture, and the
unambiguous sampling of the full aperture thus requires a high
pulse repetition frequency (PRF). For conventional waveforms,
the PRF sets a limit for the width of the unambiguous range
swath. This causes a trade-off between the swath width and
spatial resolution resulting in degraded performance, espe-
cially for space-borne SAR sensors.

The basic idea of the MSAR system is to amplify, down-
convert, digitize, and store the signal for each receive channel
separately. This allows for the use of several sophisticated
techniques such as space-time adaptive processing for GMTI,
along track interferometry (ATI), and digital beamforming for

HRWS imaging. In HRWS imaging, typically the objective
has been to manipulate the signals of the individual receivers
in such a way that conventional monostatic SAR image
reconstruction algorithms can be used [4].

SAR image reconstruction algorithms come in two broad
classes: fast frequency domain algorithms and exact time
domain algorithms. The range-Doppler (RDA), chirp scaling
(CSA) and range migration (RMA) algorithms are examples of
the first class [5]–[7], while the second class is based on the
convolution back-projection (BP) algorithm from computer-
aided tomography [8]. The computational efficiency of the fre-
quency domain algorithms is based on utilizing the correlation
theorem and the fast Fourier transform (FFT) algorithm. The
increased computational power is making time domain algo-
rithms an attractive alternative. Compared to frequency domain
algorithms, time domain algorithms have several important
advantages: non-uniform spatial sampling along the synthetic
aperture can directly be accommodated in the processing, the
image can be directly reconstructed on a digital elevation
model, and non-linear trajectories can be more easily handled
in the image reconstruction process.

In this paper, we formulate the image reconstruction for
MSAR in its most general form and consider the implementa-
tion of fast time domain algorithms based on that formulation.
Our contribution is to introduce fast time domain algorithms
for MSAR, and to perform a comparative study between
them and conventional MSAR imaging algorithms. Section II
presents an MSAR signal model, and Section III considers
MSAR image reconstruction algorithms. Section IV presents
a comparative study for the MSAR algorithms, Section V
discusses the results, and Section VI draws conclusions.

II. MSAR SIGNAL MODEL

A. Signal model

We consider a multichannel system consisting of a sin-
gle transmitter antenna and a linear array of N receivers
spaced distance d apart. The position of receiver n is de-
noted as rrx,n = dn + rtx, where dn = [0 nd 0]T ,
n = d−N/2e, . . . , dN/2 − 1e, and rtx is the position of
the transmitter. The radar platform moves along a straight
line trajectory with constant velocity of magnitude v. Thus,
the position of the transmitter as a function of slow-time
t ∈ [−T/2, T/2], where T is the coherent processing interval,
is rtx(t) = r0 + vt with v = [0 v 0]T and r0 = [x0 0 z0]T ,
where x0 and z0 are the ground range and altitude of the radar,



respectively. The transmitter emits a series of high-bandwidth
pulses as the radar platform moves along its trajectory. For
each transmitted pulse, all the receivers listen to the echo,
amplify, down-convert, digitize and store the signal.

The received signal of a single receiver is a superposition
of scaled and delayed echoes of the ideal transmitted pulse.
The scale factor of each echo is determined by the reflectivity
function g of the scene and the delay (and phase) by the
range traveled by the signal between the transmitter and the
receiver. Using the principle of superposition, the start-stop-
approximation, and assuming a reflectivity distribution g for
the scene, which does not depend on frequency or the aspect
angle, the signal after range compression as a function of the
receiver number n, radial distance (range) r, and slow-time t
is

ss(n, r, t) = Π

(
t

T

)
·∫

Θ

Pn(r, t)g(r)A(r − r̂(r;n, t))e−iφ(r;n,t)dr.
(1)

In (1) Π is the rectangle function, r = [x y z]T is a
spatial coordinate vector, dr = dxdydz is a volume element,
Θ ⊂ R3 is the support of g, and A : R → R is the
amplitude envelope of the range-compressed pulse. In addi-
tion, φ(r;n, t) = kcr̂(r;n, t) − 2r0, r0 = ‖r0‖, r̂(r;n, t) =
‖rtx(t) − r‖ + ‖rrx,n(t) − r‖, Pn is the combined two-way
radiation pattern of the nth receiver and the transmitter, and
kc is the spatial carrier frequency. In (1) various system and
propagation related phenomena that affect the amplitude (and
possibly the phase) of the received signal are neglected.

B. Phase center approximation

The effective phase center of the transmitter-receiver pair
n is located half-way between them. These effective phase
centers can be regarded as approximated monostatic sample
positions [3], [4]. This phase center approximation is valid
when the range error R(dn) = ‖rtx − r‖ + ‖rrx,n − r‖ −
2‖rn‖ � λc, where dn = nd, rn = rtx + dn/2 − r is the
vector connecting the effective phase center position and the
scene position r, and λc is the carrier wavelength. Using the
law of cosines in the triangle of Fig. 1, we get the range error
R produced by this approximation as a function of the distance
dn = ‖dn‖ between the receiver n and the transmitter as

R(dn) = rb − 2rn =

√
r2n +

(
dn
2

)2

− rndn cosα

+

√
r2n +

(
dn
2

)2

+ rndn cosα− 2rn,

(2)

where cosα = rTndn/||rn||||dn||, and rn = ‖rn‖. A simple
Taylor expansion gives (retaining terms up to fourth order in
dn)

R(dn) ≈ d2n
4rn

(
1 + sin2 α

)
+

d4n
96r3n

(11− 13 sin2 α). (3)

dn

rn

rtx − r

rrx,n − r

α

Fig. 1: The vectors used in the derivation of the error of
the phase center approximation. The vector rn connects the
approximated monostatic phase center and the scene position,
whereas the vector dn connects the transmitter and the re-
ceiver.

This is clearly valid when all the receivers are on-board the
same platform, since in that case we can further approximate
(3) to yield the condition

d2n
2rn
� λc. (4)

The multichannel signal (1) can thus be approximated as a
monostatic single-channel signal.

Above we considered the approximation error for a fixed
position r in the imaged scene. Because rn depends on r, the
resulting phase error also depends on the scene position r and
is thus spatially variant. In the limit where the approximation
error starts to become significant (compared to λc), this fact
has to be taken into account in addition to the requirement
for dn. In Fig. 2 we have plotted ratio between the error (3)
and λc as a function of r by setting z = 0, dn = 1 m and
rtx = 0. This example depicts an airborne geometry in C-
band with a 100 km2 scene. We see that in this case the
maximum error is about 0.1 percent of the carrier wavelength
which results in a phase error of approximately 0.5 degrees.
Clearly, the phase center approximation is accurate enough
for the SAR application in question when the receiver and
transmitter antennas are on-board the same platform.

C. Resolution and sampling requirements

The resolution and sampling requirements for the MSAR
system can be analyzed by examining the spatial frequency
content of the signal in the cross-range (y) direction. The
required Fourier uncertainty relation is δy = 2π/By , where

By = (2kcL)/
√
r20 + (L/2)

2 is the spatial frequency band-
width of the signal in the slow-time direction. The length
L of the synthetic aperture is determined by the half-power
beamwidth θhp of the antenna pattern as tan (θhp/2) =



Fig. 2: The ratio between the range error of the phase center
approximation and the carrier wavelength λc = 0.06 m when
x0 = 8 km and z0 = 6 km. For the approximation to be
valid, the ratio needs to be significantly smaller than one. The
maximum phase error occurring at the position nearest to the
radar on the right is about 0.5 degrees.

(L/2)/r0. Thus, the theoretical limit for the cross-range res-
olution in the stripmap operating mode is

δy =
λc

4 sin
(
θhp

2

) . (5)

In the stripmap mode, the Nyquist criterion dictates that
the sample spacing has to be smaller than the cross-range
resolution (5). For a real single-channel system, the sample
spacing in the cross-range direction is ∆y = v/fPR, where
fPR is the PRF. On the other hand, the width of the unambigu-
ous range swath is Wr = c/(2fPR). This causes a trade-off
between swath width Wr and cross-range resolution δy, which
is resolved by using a multichannel system. Fig. 3 illustrates
this compromise motivating the techniques considered in the
past in the context of space-borne SAR sensors operating in
stripmap mode [3], [4].

We assume that all the N antenna elements have identical
radiation patterns with a half-power beamwidth θhp. If we use
the phase center approximation and choose fPR = 2v/Nd, the
samples in the cross-range direction are equally spaced with
a sample spacing ∆yn = d/2. Thus, we can approximate the
multichannel system as a monostatic single-channel stripmap
system with a half-power beamwidth θhp. The difference to
a real single-channel system is that now the sample spacing
is determined by the element spacing d and fPR (and v),
whereas for a real single-channel system the sample spacing
is determined by fPR (and v) alone. In order to achieve the
same sample spacing for a real single-channel system, the PRF
would have to be N times higher than for the MSAR system
in question.

Fig. 3: The widths of the unambiguous range (Wr) and cross-
range (Ly) swaths for a monostatic single-channel space-borne
SAR system as a function of the sample spacing ∆y = v/fPR.
A high cross-range resolution (< 1 m) will result in a narrow
range swath (< 20 km).

III. MSAR IMAGE RECONSTRUCTION

A. Time domain algorithms

The most general way to reconstruct an estimate for the
ideal image g is to use multichannel back-projection. The
image ĝ is reconstructed using the back-projection integral

ĝ(r) =

N−1∑
n=0

∫ ∞
−∞

ss(n, r̂(r;n, t), t)eiφ(r;n,t)dt, (6)

which is obtained by substituting A(r) = δ(r) for the
amplitude envelope of the point target response

ssptr(r;n, r, t) = A(r − r̂(r;n, t))e−iφ(r;n,t) (7)

in the time domain correlation integral [9]. The integral (6) can
also be expressed in the range spatial frequency kr domain as
the matched kernel correlation integral [10]

ĝ(r) =
1

2π

N−1∑
n=0

∫ ∞
−∞

∫ ∞
−∞

Ss(n, kr, t)e
ikr r̂(r;n,t)dkrdt. (8)

The back-projection integral (6) implies an interpolation,
whereas (8) does not. However, (8) requires an additional
integration over the range spatial frequencies kr. Equations (6)
and (8) represent the exact time domain image reconstruction
for the multichannel signal without any approximations. The
computational cost of reconstructing the image i. e. evaluating
(8) for every r is proportional to NPMM ′, when P is the
number of resolution elements, M is the number of samples
in the slow-time direction and M ′ in the range direction.
Neglecting the computational cost of the interpolation, the cost
of reconstructing the image using (6) is proportional to NPM .

Using the phase center approximation, we can rewrite the
back-projection (6) integral as

ĝ(r) =

∫ ∞
−∞

s̃s(2rn(r; yn), yn)eiφ̂(r;yn)
dyn
v
. (9)



The notation used in (9) means defining a new integration
variable yn, which denotes the cross-range location of the
approximated monostatic phase center positions. It is re-
garded as a continuous variable to highlight the fact that
the summation of the n receiver signals for each slow-time
instant t correspond to additional samples in the cross-range
direction. We have also simplified the notation by making
the substitution ss(n, r, t) → s̃s(r, yn) for the approximated
monostatic range-compressed signal.

The antenna pattern of the linear receiver array can be
steered to continuously illuminate an area centered at position
r by applying a phase shift to each receive channel and then
summing them as

ŝs(r; r, t) =

N−1∑
n=0

w(n)ss(n, r, t) exp

[
i
2π

λc
nd sin θ(r, t)

]
,

(10)

where w is an amplitude tapering function and the slow-time
dependent angular direction θ of the beam is defined as

tan θ(r; t) =
(vt−

⌈
N
2

⌉
d)− y

rmin(x, z)
. (11)

In (11) the position of the first receiver is used as
the reference in the beamforming and rmin(x, z) =√

(x0 − x)2 + (z0 − z)2 is the minimum range between the
radar and position r. In (10) we have used a plane wave
approximation, which is valid when dn � rmin. Now (10)
corresponds to a signal collected in spotlight mode, where the
receive antenna pattern is continuously illuminating the center
of the spot at r. Using (10), the exact time domain image
reconstruction (6) can be approximated as

ĝ(r) =

∫ ∞
−∞

ŝs(r; 2rrx,0(r; t), t)ei2kcrrx,0(r;t)dt, (12)

where rrx,0(r; t) = ||rrx,0(t) − r||. An efficient implemen-
tation of (12) is based on the fact that the spotlight signal
ŝs inside the back-projection integral is not updated for each
image position r. Instead, it is kept fixed for a subset of image
positions (a block), whose size is determined by the size and
shape of the spotlight antenna pattern and simple geometric
considerations.

Without loss of generality, (12) can be written in the form

ĝ(r) =

J−1∑
j=0

ĝj(r), (13)

where

ĝj(r) =

∫ −T
2 +(j+1)T

J

−T
2 +j T

J

ŝs(r; 2rrx,0(r; t), t)ei2kcrrx,0(r;t)dt.

(14)
A similar partitioning of the back-projection integral into J
subapertures can be done for (9). Representing the result of
the integration (14) of a single subaperture j requires far less
resolution elements than the final full-resolution image. This
fact is utilized in the fast factorized back-projection (FFBP)

algorithm [11], [12]. First, subaperture images with coarse res-
olution are reconstructed on a polar grid with a large spacing
in the angular direction using (14). These subaperture images
are then recursively upsampled, interpolated and combined to
yield the final image with full resolution.

We call the image reconstruction using (12) and FFBP
the multispotlight technique. It is based on using FFBP for
each block (and spotlight signal) that is formed using (10)
and geometric considerations. The other FFBP implementation
we use is based on using the phase center approximation in
(9). It allows a straightforward implementation of the FFBP
algorithm [12]; we calculate the approximated locations rn for
the additional samples, presum and downsample the resulting
signal if necessary, and then reconstruct the image using the
FFBP algorithm.

B. Frequency domain algorithms

Matched filtering in the frequency domain relies on
the assumptions that the synthetic aperture is linear
and that the approximated monostatic phase center po-
sitions are uniformly sampled. Without loss of general-
ity, we can substitute the Fourier integrals Ss(kr, yn) =

Fr→kr
{
F−1ky→yn {SS(kr, ky)}

}
and similarly for the point

target response (7) into the time domain correlation integral,
which results in (omitting unimportant constant factors of 2π)

ĝ(r) =

∫ ∞
−∞

∫ ∞
−∞

SS(kr, ky)SS∗ptr(r; kr, ky)dkrdky, (15)

where SS(kr, ky) = Fyn→ky {Ss(kr, yn)} denotes the two-
dimensional Fourier transform of the range-compressed signal
ss. Using the Fourier shift property, (15) can be expressed as

ĝ(r) =∫ ∞
−∞

∫ ∞
−∞

eikyySS(kr, ky)SS∗ptr([x 0 z]T ; kr, ky)dkrdky

= F−1ky→y

{∫ ∞
−∞

SS(kr, ky)SS∗ptr([x 0 z]T ; kr, ky)dkr

}
.

(16)

The importance of (16) is that only one integration kernel
SSptr is needed for every x-coordinate, and the inverse Fourier
transform in (16) produces a single x-slice of the image. Image
reconstruction via (16) is called either the range stacking
(RSA) or wavefront reconstruction algorithm [9].

The fact that the image reconstruction (16) requires a two-
dimensional correlation with a different kernel SSptr for each
x-position results in a high computational burden. For this
reason, several different SAR image reconstruction algorithms
have been developed in the past to reconstruct the SAR image
in a computationally feasible manner. For the linear synthetic
aperture, the reconstruction equation (16) can be further
simplified by deriving analytic expressions for the Fourier
transforms sSptr and SSptr. This results in the range-Doppler
(RDA) [5], [13] and range migration algorithms (RMA, also
called the ω - k and the wavenumber domain algorithm)
[7], [14], [15], respectively. The Fourier transforms cannot



TABLE I: Simulation parameters

Parameter Value (simulation # 1) Value (simulation # 2)
x0 10 km 10 km
z0 0 km 10 km
L 1 km 2 km
λc 0.10 m 0.03 m
N 39 128
d λ/2 λ/2
v 100 m/s 100 m/s
fPR 105.3 Hz 104.2 Hz
Wx 1 km 2 km
Wy 1 km 2 km

TABLE II: Simulation results for simulation # 1.

Algorithm Rel. speed Contrast Max. residual [dB] δy [m]
BP 1 259.7 −∞ 0.2437
FFBP 1 240 187.4 -11 0.2981
FFBP 2 68 226.7 -15 0.2923
RSA 6 205.8 -21 0.2750
RMA 740 169.1 -17 0.3100
CSA 8440 73.7 -7 0.4412

be expressed in closed form, but the principle of stationary
phase (PSP) can be used to derive the required expressions.
The RDA and the RMA require an interpolation to take into
account the x-dependence of the point target response. The
chirp scaling algorithm (CSA) [6], [16], [17] requires only
complex multiplications and Fourier transforms. It requires
an analytic expression for the uncompressed linear frequency
modulated signal in the (r, ky) domain, which is again derived
by using the PSP [16]. The following processing steps of the
CSA rely on additional approximations, which are valid for
small fractional bandwidths and integration angles [6], [14].

IV. NUMERICAL RESULTS

A. Simulation setup

We use a numerical example to perform a comparative study
between the MSAR imaging algorithms analyzed in this paper.
This demonstrates the computational cost and the achieved im-
age quality of the proposed MSAR FFBP algorithms compared
to conventional frequency domain algorithms. Two data sets
using the signal model (1) and a point target model for g were
simulated. The simulation parameters are listed in Table I. The
range resolution is 0.15 m and the PRF has been chosen in
such a way, that the resulting approximated monostatic phase
center positions are uniformly sampled. This represents an
ideal case for the frequency domain algorithms. The locations
of the point scatterers can be seen from the reconstructed
SAR image in Fig. 4 (a). The size of the image was set to
1 km in cross-range (Wy) and 1 km in range (Wx) in the first
example. The image size in the second example was two times
larger. The pixel spacing of the images was set to be half the
theoretical spatial resolution.

B. Simulation results

The image quality was assessed using three different quality
measures. The contrast of the image is defined as the ratio
between the standard deviation and the mean of the image

TABLE III: Simulation results for simulation # 2.

Algorithm Rel. speed Contrast Max. residual [dB] δy [m]
BP 1 499.2 −∞ 0.0930
FFBP 1 368 402.1 -15 0.0973
FFBP 2 96 443.0 -17 0.0947
RSA 5 452.8 -18 0.0940
RMA 1520 398.8 -14 0.0946
CSA 12732 272.5 -10 0.1124

intensities. The residual images for each algorithm were
calculated by coherently subtracting the back-projection (BP)
image from them, and the maximum residual is the maximum
intensity of the residual image. The cross-range resolution (3
dB width of the main lobe of the point target response) was
calculated using four different point scatterers across the image
and taking the mean of those values. These quality measures
were chosen to take into account spatially variant defocusing
effects such as phase and amplitude distortions. The results
of this comparative study are shown in Tables II and III. The
algorithms compared in this study are BP as the gold-standard
reference, FFBP algorithms using the multispotlight technique
(12) (FFBP 1) and the phase center approximation (9) (FFBP
2), RSA, RMA, and CSA.

In both examples, the FFBP algorithms were approximately
two orders of magnitude faster than BP. The multispotlight
technique (FFBP 1) was approximately four times faster than
FFBP 2. However, it resulted in a lower image contrast and
lower resolution than FFBP 2. Only RSA produced a better
image quality than the FFBP algorithms in both experiments.
This is significant, because the simulation setup represents an
idealized case for the frequency domain algorithms. While
CSA was the fastest algorithm, the approximations used in
it broke down in these examples and resulted in the lowest
image quality. RMA was an order of magnitude faster than
any time domain algorithm, but it resulted in a lower contrast
and lower cross-range resolution than RSA or the time do-
main algorithms. Although RSA produced better cross-range
resolution and a smaller maximum residual than the FFBP
algorithms, it was an order of magnitude slower.

V. DISCUSSION

The purpose of the simple numerical example was to
compare the computational speed and accuracy of the MSAR
algorithms. In this completely ideal situation, the FFBP al-
gorithms were not much slower and produced a slightly
better image quality than most of the frequency domain
algorithms. The FFBP algorithms can be utilized for non-
linear flight trajectories and non-uniform spatial sampling
without significantly increasing the computational burden or
reducing the image quality. The same does not hold true for the
frequency domain algorithms, which require more complicated
processing schemes to deal with non-ideal conditions.

The memory requirements are also of practical interest.
As the image size becomes larger, the amount of available
memory becomes a bottleneck for the FFT-based algorithms.
However, the memory requirements of the FFBP algorithms



(a) Reconstructed SAR image using FFBP 2. (b) Point target response (scatterer 3).

Fig. 4: The image quality was assessed by analyzing the contrast, the maximum residual value, and the cross-range resolution
of the SAR image (a). The cross-range resolution was estimated as the mean of the 3 dB widths of the main lobes of four
different point target responses (b) across the image.

can be adjusted. The images are reconstructed in a piecewise
manner, which allows for a compromise between the required
memory and computational speed. This provides yet another
important advantage for time domain image reconstruction.

Time domain algorithms can be utilized for any type of
trajectory or antenna array. They are also tractable for short-
range and near-field imaging applications. Applications such
as along-track interferometry benefit from fast and accurate
image reconstruction, such as the proposed MSAR algorithms.

VI. CONCLUSION

In this paper, we analyzed an MSAR system, in which each
receiver signal is independently quadrature demodulated and
stored. We proposed fast time domain algorithms for MSAR
based on digital beamforming, the phase center approximation,
and the FFBP algorithm. Time domain algorithms significantly
reduce the requirements for the imaging geometry and the
sampling of the MSAR signal. Our comparative study showed
that the proposed algorithms are computationally feasible and
advantageous for MSAR imaging. The flexibility provided by
the combination of a multichannel system and time domain
image reconstruction can be used to significantly increase the
performance of SAR systems.
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