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Abstract—A maximum-power-point tracking (MPPT) algo-
rithm is essential in all controllers of solar power electronic
converters due to the nonlinear current-voltage characteristics
of a photovoltaic generator. One of the most widely utilized
algorithms are perturbative MPPT techniques such as per-
turb and observe and incremental conductance methods due
to their simple implementation with relatively good tracking
performance. However, in order to optimize the performance of
such algorithms, the design parameters – sampling frequency
and perturbation step size – need to be designed in respect
to interfaced power electronic converter. Recent studies have
provided state-of-art MPP-tracking design rules for single and
two-stage grid-connected PV systems. Unfortunately, the analysis
of those studies does not provide analytical results for PV
power transient response under feedback-controlled converters.
This paper provides reduced-order transfer functions for the
converters equipped with either I-type or PID-type controllers
in order to approximate the maximum sampling or perturbation
frequency for MPP-tracking algorithms. The analysis reveals the
factors affecting the transient behavior similarly as in open-loop
converter providing valuable tools for optimizing MPP-tracking
perturbation frequency design.

I. INTRODUCTION

A maximum-power-point tracking algorithm is essential in
all controllers of solar power electronic converters due to
the nonlinear current-voltage characteristics of a photovoltaic
generator (PVG). One of the most widely utilized algorithms
are perturbative maximum-power-point (MPP) tracking tech-
niques such as perturb and observe (P&O) and incremental
conductance (IC) methods due to their simple implementation
with relatively good tracking performance. These algorithms
can be designed either to maximize the energy yield or, with
a few modifications, limit the active power in order to prevent
exceeding certain power level in the power grid [1], [2]. In both
cases, however, the parameters of a tracking algorithm need
to be optimized to obtain the highest tracking accuracy. The
problem in optimization process of the fixed-step perturbative
algorithms is the well-known trade-off between fast tracking
performance and low steady-state oscillations, which requires
more detailed analysis of the PV system to tune the algo-
rithm design parameters: perturbation step-size and sampling
frequency or perturbation frequency. Furthermore, it has been
shown that those algorithms can be confused, and operation
point can drift further from an MPP if the design parameters
are not properly chosen [3].

The perturbation frequency of MPP-tracking process is rec-
ommended to be designed by assuming that the operating point
lies at the MPP in [3], where PV dynamic resistance is known
to equal the corresponding static resistance [4]. It is well
known that PV dynamic resistance (rpv) affects the dynamic
behavior of the PV-interfacing converter [5], [6], [7]. Its main
effect is usually the modification of the damping behavior of
the internal resonance of the duty-ratio-operated or open-loop
converter [5]. According to Fig. 1, we can conclude that the
damping of converter resonant behavior would be minimized,
when the operating point is moved into the constant-current
region (CCR) due to the high value of the dynamic resistance.
In case of a duty-ratio-operated MPP-tracking converter, this
also means that the PV-power-transient-settling time will be
longest in CCR, and thus the maximum perturbation frequency
shall be determined by assuming the operating point to lie
in CCR as well [8]. The basic principle to select the proper
perturbation step size is to ensure that the power change
induced by the perturbation step shall always be higher than
the power change induced by the change in the environmental
conditions during the perturbation interval [3]. In practice, the
maximum PV power change caused by the changes in the
environmental conditions will take place when the operating
point lies at the MPP [3].

Similar perturbation-frequency design rules are not avail-
able or published for input-voltage-feedback-controlled PV-
interfacing converters: Ref. [9] recommends to using sim-
ulation to extract the proper settling time, which can be
then used to compute the maximum allowed perturbation
frequency according to the guidelines presented in [3]. Ref.
[10] recommends to using perturbation frequency less than
1/10 of the input-voltage-feedback-loop crossover frequency
without any scientific arguments. This paper will provide
the missing information by first proving that in case of
a input-voltage-feedback-controlled PV-interfacing converter
under direct-duty-ratio (DDR) control, the PV-power-settling
time will not be any more dependent on the properties of
the PV generator, but only on the design of the input-voltage
feedback loop. In case of cascaded control (i.e., current-mode
control), the dependency on the PV-generator properties may
exist and therefore, the methods presented in this paper may
not be valid [11], [12]. This paper will further show that the
dynamic behavior of the PV-power transient can be character-



ized by means of the undamped natural frequency (ωn) and
damping factor (ζ) of the closed-loop system. The simulated
and experimental evidence is provided using a boost-power-
stage converter [7], which validates the proposed methods to
be sufficiently accurate with certain limitations.

II. GENERAL DYNAMICS OF PV POWER

A simplified electrical equivalent circuit of a PV cell
composes of a photocurrent source with a parallel-connected
diode and parasitic elements, where photo-induced current
is linearly depended on the irradiance level, and the series
and parallel resistances represent various nonidealities in a
real PV cell. The relation between diode current and voltage
can be modeled with an exponential equation, yielding a
nonlinear resistance that can be used to analyze the PV effect
on switched-mode converter dynamics [13]. From the power
electronics point of view, the behavior of the dynamic (rpv)
and static (Rpv = Vpv/Ipv) resistances of the solar cell are
very important because the dynamic changes in the power
electronic interfacing converters are dependent on the ratio
of the dynamic and static resistances.

The I-V curve of a PV generator (cf. Fig. 1) contains
basically two distinct regions separated by the MPP (i.e.,
CCR) at the voltages less than the MPP voltage, and constant-
voltage (CVR) region at the voltages higher the MPP voltage,
which are categorized based on the variable, which stays prac-
tically constant within the named region. The finite resolution
of the digitally controlled measurement system will make
it impossible to locate exactly the MPP and therefore, the
vicinity of MPP will form a region, which can be named as
constant-power region (CPR) (cf. Fig. 1). The existence of
the CPR is actually utilized in the MPP-tracking algorithm
known as ripple correlation control [14]. The low-frequency
dynamic resistance (rpv) of the PV generator follows the si-
milar resistance behavior characteristic to the named electrical
sources as well [6]. At the MPP, the static (Rpv) and dynamic
(rpv) resistances are equal [4]. In the other regions, the static
resistance (Rpv) (i.e., Vpv/Ipv) behaves as shown in Fig. 1.
The normalization in Fig. 1 is done by dividing ipv and vpv by
their MPP values (i.e., 0.91 A & 16.0 V), rpv is divided by its
maximum value (i.e., 1 kΩ) as well as Rpv by the maximum
value of rpv, respectively.

The dynamics related to PV power can be approximated as
follows

p̂pv = Vpv îpv + Ipvv̂pv + v̂pv îpv, (1)

which can be derived from the definition of power in terms
of voltage and current (i.e. ppv = (Vpv + v̂pv)(Ipv + îpv))
and discarding the steady-state value at the operation point.
If considering only the dynamic behavior of the PV power
induced by a step-change at the operation point of the DC-
DC converter (i.e. irradiance and output voltage variations of
DC-DC converter are neglected) then (1) can be given by

p̂pv ≈ Vpv
(

1

Rpv
− 1

rpv

)
v̂pv −

v̂2pv
rpv

, (2)

Fig. 1. Normalized behavior of Ipv, Ppv, rpv, and Rpv as function Vpv

when the operating point is varied.

because îpv ≈ −(1/rpv)v̂pv and static PV resistance equals
Rpv = Upv/Ipv. According to (2), we can state that the
PV power ripple can be defined in CCR by p̂pv ≈ Ipvv̂pv
(i.e., rpv � Rpv), in CPR by p̂pv ≈ −v̂2pv

/
Rpv (i.e.,

rpv = Rpv), and in CVR by p̂pv ≈ (−Vpv/rpv) v̂pv (i.e.,
Rpv � rpv), respectively, based on the behavior of rpv and
Rpv at the different operation points of the PV generator in
Fig. 1. Therefore, the behavior of the PV power transient
can be predicted by studying the dynamic resistance rpv and
perturbed PV voltage v̂pv in different operational regions [8].

III. PV-INTERFACING CONVERTER OPERATING AT
CLOSED LOOP

Figure 2 illustrates a grid-connected two-stage PV system,
where PV interface can be disturbed by the change in irradi-
ation (i.e., direct effect on the photovoltaic current iph), the
settling behavior of the DC-DC converter, and the ripple of
the DC-link voltage caused, for example, by the grid power
fluctuation at twice the grid frequency, etc. In order to capture
the effect of these noise sources on the behavior of the PV
power (ppv), voltage (vpv), and current (ipv), the dynamic
constellation of the PV-generator-converter interface can be
given as shown in Fig. 3, where all the vital elements are
considered. The notation ĉ in Fig. 3 denotes the duty ratio
(d̂) when the DC-DC converter is applied at open loop and
the PV-voltage reference (v̂ref−pv) when the DC-DC converter
is applied at closed loop, respectively. In principle, all the
information given below is equally valid for a single-stage
PV system, but the analysis of such a system may be more
challenging due to the complexity of the inverter. It shall also
be understood that the controlled-source elements (i.e., Gci and
Toi) can be affected by the load impedance or the inverter input
impedance, which can naturally change the dynamic behavior
of the DC-DC converter.

A. PV-Interfacing Converter Operating at Open Loop

The MPP-tracking converters can be operated at open loop,
i.e., the perturbation is applied directly to the duty ratio of the
corresponding converter or at closed loop, where the feedback



Fig. 2. A grid-connected two-stage PV system.

Fig. 3. The dynamic representation of the PV-generator-converter interface.

variable is the PV voltage and the perturbation is applied
to the reference of PV voltage [6]. The controlled variable
cannot actually be the PV current because of the current-source
nature of the PV generator, which would cause a violation
of Kirchhoff’s current law and saturation of the controller
especially during the varying climatic conditions as discussed
and demonstrated explicitly in [6]. The MPP-tracking design
variables are the size of perturbation step and the sampling
frequency of the PV voltage and current, which is usually
also the same as the perturbation frequency. If the size of the
perturbation step is too small and/or the sampling frequency is
too high, then the MPP-tracking process can become unstable
because the computed voltage derivative of the PV power does
not comply to the real derivative [3], [9], [15]. The reasons
for the errors can be the change of irradiance level, the ripple
in the measured variables or the transient settling process of
the corresponding power electronic converters [15].

According to Fig. 3, we can compute that the dynamic
related to the PV voltage and current can be given by [13]

v̂pv =
Zin

1 + ZinYpv
îph +

Toi
1 + ZinYpv

v̂o +
Gci

1 + ZinYpv
ĉ

îpv =
1

1 + ZinYpv
îph −

YpvToi
1 + ZinYpv

v̂o −
YpvGci

1 + ZinYpv
ĉ,

(3)

where ĉ denotes the general control variable (i.e., in this case,
the perturbed PV-voltage reference), Gci, Toi and Zin denote
the control-to-input-voltage transfer function, output-to-input
or reverse transfer function, and input impedance of the PV
interfacing converter, respectively. It is well known that the
temperature of the PV modules has significant effect on the PV
power but its dynamics is quite slow due to the large thermal
capacity of the PV panels as discussed also in [3]. Therefore,
its effect is not considered in (3). From the perturbation-
frequency design point of view, the control-to-input-voltage-
related dynamics is of interest in (3) (i.e., the last terms of the
equations in (3)).

The experimental transient waveforms of PV voltage, cur-
rent, and power shown in Fig. 4 clearly confirms the validity

Fig. 4. Behavior of PV voltage (dashed line), current (dash-dotted line),
and power (solid line) when a step change in a duty ratio is applied in
a duty-ratio-operated boost-power-stage converter in different PV-generator
operational regions. [8]

of the theoretical formulation for the behavior of the PV-
power transient in the different operational region. Fig. 4 is
constructed in such a manner that all the original waveforms
are divided by their final values to maximize the information of
the settling behavior: In CCR, the PV-power transient follows
the settling behavior of the PV voltage directly. In CPR, the
PV-power transient is very small because the PV-voltage and
current behaviors tend to cancel each other. In CVR, the PV-
power transient follows the settling behavior of the PV current
directly. The PV-power settling time is also longest in CCR,
which is clearly visible in Fig. 4. The changes in the settling
time are induced by the changes in the damping behavior
of the internal resonance due to the PV-generator dynamic
resistance, which affects the time constant of the system,
i.e., τ = 1/ζpvωn. The PV-generator-affected damping factor
ζpv of a duty-ratio or voltage-mode-controlled (DDR/VMC)
converter can be given in general [7] by

ζpv ≈
1

2

(
rloss

√
C2

L1
+

1

rpv

√
L1

C2

)
, (4)

where rloss denotes the parasitic losses of the power-stage
components as well as L and C denote the power stage
inductance and capacitance values, respectively. The observed
settling-time differences in Fig. 4 can be explicitly addressed
to the behavior of the time constant according to (4) and the
behavior of rpv in Fig. 1.

B. PV-Interfacing Converter Operating at Closed Loop

In case of input-voltage-feedback-controlled converters, the
PV-generator effect on the system damping behavior is quite
different, especially, when the input-voltage-feedback-loop
crossover frequencies are designed to be sufficiently lower
or higher than the resonant frequency. That is because the



closed-loop input impedance (Zin−c) is rather small especially
at the frequencies, where the feedback-loop gain is high (i.e.
Zin−cYpv ≈ Zin−c/rpv � 1). The corresponding predicted
frequency responses (i.e. 1/(1 +Zin−cYpv)) are given in Fig.
5, where the solid, dashed, and dash-dotted lines correspond
to the operation in CCR, CPR, and CVR, respectively. The
figure indicates that the PV generator affects significantly the
damping of the internal resonance (i.e., ζpv) of the converter in
CVR. In contrast, it affects only marginally the magnitude of
the loop and the phase margin when the crossover frequency of
the input-voltage loop gain is located far enough from resonant
frequency. Therefore, the set of equations in (3) becomes

v̂pv ≈ Zin−cîph + Toi−cv̂o +Gci−cĉ

îpv ≈ îph − YpvToi−cv̂o − YpvGci−cĉ,
(5)

where subscript extension ’c’ denotes the closed-loop transfer
functions.

Fig. 5. Predicted PV-generator effect on the closed-loop transfer functions of
an input-voltage-feedback-controlled boost power-stage converter (i.e., 1/(1+
Zin−c/rpv), where the crossover frequency of the input-voltage feedback
loop is placed higher than the resonant frequency (i.e., 1 kHz vs. 3 kHz).

If we assume that changes in atmospheric conditions and
output voltage v̂o is negligible, the only relevant elements from
the MPP-tracking sampling-frequency point of view are the
last right-most elements in (5), where Gci−c stands for

Gci−c =
1

Gse−in

Lin

1 + Lin
. (6)

Therefore, the only stimulus to the PV-generator voltage and
current is the voltage reference through the PV-affected loop
gain Lpv

in as given by

Lpv
in = GseGaGccG

pv
ci−o, (7)

where Gse is the sensing gain, Ga is the modulator gain, Gcc

is the controller transfer function and Gpv
ci−o refers to the PV-

affected open-loop control-to-input voltage transfer function.
Figures 6 and 7 show the frequency responses of the closed-

loop control-to-input voltage transfer functions (Gpv
ci−c) by

using I-type controlled (8) and PID-type controlled (9) boost
power-stage converter including the effect of PV generator.

GI
cc =

Kcc

s
(8)

GPID
cc =

Kcc(1 + s/ωz1)(1 + s/ωz2)

s(1 + s/ωp1)(1 + s/ωp2)
, (9)

where ωz1, ωz2 and ωp1, ωp2 equal to zeros and poles of
the controller, respectively, It is worth noting that the input-
voltage scaling factor (Gse−in) in (6) equals unity in Figs.
6 and 7. According to Fig. 6 , Gci−c reassembles a first-
order system when the phase margin is rather high (i.e., close
to 90 degrees). Correspondingly, Fig. 7 indicates that Gci−c

resembles a second-order resonant system when the phase
margin is in the order of 50 degrees. The next section will
introduce methods to find a reduced-order models for the
closed-loop converter, which can be utilized in the design
of the perturbation frequency in case of closed-loop MPP-
tracking converters.

Fig. 6. Estimated frequency response of the closed-loop control-to-input
voltage transfer function under I control in different operation regions (CCR:
solid line, CPR: dashed line, CVR: dash-dotted line).

IV. MPP-TRACKING PERTURBATION FREQUENCY DESIGN

The behavior of the PV voltage and current transient in-
duced by a step change in the PV reference voltage can be
naturally analyzed using software packages as performed, for
example, in [3]. This kind of approach does not, however,
give enough information on the factors affecting the transient
behavior similarly as in case of an open-loop converter in
[9]. If the input-voltage loop gain is substituted as such
(i.e. (5)) in the corresponding sensitivity function to extract
the time-domain functions associated with the corresponding
transient behavior, the inverse transformation process will
be too complicated and involve unnecessary time functions.
Fortunately, settling time of the power transient in closed-loop
systems can be approximated by neglecting additional low or
high-frequency elements in the input voltage-loop as can be
seen from the upcoming analysis.



Fig. 7. Estimated frequency response of the closed-loop control-to-input
voltage transfer function under PID control in different operation regions
(CCR: solid line, CPR: dashed line, CVR: dash-dotted line).

According to Fig. 7, the corresponding closed-loop transfer
functions in (6) are clearly of second-order. Therefore, the
input-voltage loop gains have to be basically of second-
order transfer functions, where the behavior of the transfer
functions in the vicinity of the loop crossover frequency will
determine the dynamic behavior of the closed-loop system.
Correspondingly, the input-voltage loop gains determining the
low-frequency behavior can be approximated in case of I
control by

LI
in−RO ≈

GseGaKccVe
s

, (10)

and in case of PID control by

LPID
in−RO =

GseGaKccVe
ωz1ωz2

· ω2
n

s(1 + s/ωp2)
, (11)

where Ve = Vo + VD + (rd− rds)Ipv. Therefore, the reduced-
order closed-loop control-to-input-voltage transfer functions
can be given for I control by

GRO−I
ci−c =

1

Gse−in

Gse−inGaKccVe
s

1 +
Gse−inGaKccVe

s

(12)

=
GaKccVe

s+Gse−inGaKccVe

and for PID control by

GRO−PID
ci−c =

GaKccVe
ωz1ωz2

ω2
n

s(1 + s/ωp2)

(1 + s/ωp2) +
GseGaKccVe
ωz1ωz2

(13)

=

GaKccVeω
2
n

ωz1ωz2

s2 + sωp2 +
GseGaKccVe
ωz1ωz2

ωp2

.

If the roots of the denominator polynomial are well separated,
then Eq. (12) can be approximated at low frequencies by

LI
in

1 + LI
in

≈ ωn/2ζ

s+ (ωn/2ζ)
. (14)

Moreover, the equation (13) has similar form as general
second-order transfer function, which can be given as follows

LPID
in

1 + LPID
in

≈ ω2
n

s2 + s2ζωn + ω2
n

(15)

In case of first-order system (i.e., (14)), the system time
constant is τ = 2ζ/ωn, and in case of the resonant type system
(i.e., (15)), the system time constant is τ = 1/ζωn, respec-
tively. As discussed in case of the open-loop operated MPP-
tracking converter, the system time constant will determine
the settling time of the power transient as well. According to
(12)-(15), the time constants can be given by

τ I ≈ 1/(Gse−inGaKccVe)

τPID ≈ 2/ωp2.
(16)

In case of resonant system, ωn and ζ can be given based on
(13) by

ωPID
n−RO =

√
GseGaKccVeω

2
n

ωz1ωz2
ωp2

ζPID
RO =

1

2

√
ωz1ωz2ωp2

GseGaKccVeω2
n

.

(17)

Proper operation of the MPP-tracking process necessitates
that the PV power transient has to be settled down to a certain
percentage of the final value before the measurement of vpv
and ipv can be performed [15]. Based on the prior analysis
and computations, the corresponding minimum sampling pace
of the MPP-tracking algorithm can be calculated according to
the similar principle as done in [3] yielding

TPID
s ≈ 2

ωp2
ln

 1

∆

√
1− ωz1ωz2ωp2

4GseGaKccVeω2
n

 (18)

and in case of first-order system (i.e., (14)) by

T I
s ≈

1

Gse−inGaKccVe
ln

(
1

∆

)
, (19)

which corresponds the time period where the PV power
transient has reached (1±∆) · 100 % of its final steady-state
value. The perturbation frequency shall be naturally less than
the inverse of the defined settling times in (18) and (19) for
ensuring proper operation of the MPP-tracking algorithms [3].



V. REDUCED-ORDER MODEL VERIFICATION

The boost-power-stage converter (cf. Fig. 8) is very often
used as the MPP-tracking converter, and therefore, we have
taken it also as an example converter in this paper. The
information given in the earlier sections is not, however,
limited to the boost-type converter but is equally applicable
also to the other converters under input-voltage-feedback-
operated MPP-tracking mode. More detailed characterization
of the PV panel and the dynamic modeling of the boost-
power-stage converter in Fig. 8 can be found from [6] and
[7], respectively. The operating points, where the transient
behavior of the PV power is analyzed, are 0.97 A & 12 V in
CCR, 0.91 A & 16 V in CPR, and 0.82 A & 17 V in CVR. The
predicted dynamic behavior of the converter is not relevant in
the context of the paper but the model given in [7] is shown to
be accurate. Fig. 8 shows, in addition to the power stage, also
the simplified control system and measurement interface. The
output-terminal voltage source is a valve-regulated lead-acid
battery of 7.2 Ah with the nominal voltage of 24 V.

Fig. 8. The schematics of the boost-power-stage converter with component
values.

A. Simulated Evidence

Figure 9 shows the estimated frequency responses of input-
voltage loop gain (dotted line) vs. the corresponding full-
scale frequency responses under the I control. The gain for
I-controller is placed at Kcc = 12.6. Figure 9 indicates that
reduced-order method equals original full-order response in
the vicinity of the input-voltage-loop crossover frequency (i.e.,
ωc = 2π ·50 Hz and phase margin (PM) is 89.8 degrees). The
corresponding time constant (cf. Eq. (16)) and settling time (cf.
Eq. (19)) to the 5-% settling band can be computed to be 3.0
ms and 9.0 ms, respectively. Moreover, Fig. 11 (i.e., the bottom
figure) shows the corresponding simulated PV power transient
from which the settling time can be found to be approximately
8.3 ms. This shows that the method will give a quite accurate
estimate on the settling time when a system has first-order
dynamics.

Figure 10 shows the estimated frequency response (dotted
line) of input-voltage loop gain vs. the corresponding full-
scale frequency responses (solid line) under the PID control.
The PID controller parameters in (9) are placed as follows:
ωz1 = ωz2 = 1/

√
L1C2, ωp1 = 1/rC2C2, ωp2 = πfs/3 and

Fig. 9. The reduced-order frequency response (dotted line) vs the full-order
frequency response of the input-voltage loop gains under I control in different
operation regions (CCR: solid line, CPR: dashed line, CVR: dash-dotted line).

Kcc = 2818. Figure 10 indicates that the reduced-order model
(dotted line) produces a phase response, where the phase
margin equals 59 degrees when the original phase margin is
49 degrees. The crossover frequency is at 10 kHz in both
cases. According to Eq. (17), the estimated undamped natural
frequency (ωn) and the damping factor (ζ) of the full-order
system will be 88.3 krad/s and 0.593, respectively. Therefore,
predicted settling time in respect to 5% settling band is 62
µs. Figure 11 (i.e., the top figure) shows the corresponding
simulated PV power transient from which the settling time can
be found to be approximately 89 µs. As the PM of 59 degrees
implies, the reduced-order method gives slightly too short
approximation for the settling time. If the resonant frequency
had designed slightly lower frequency, reduced-order model
would have estimated settling time more accurately.

Fig. 10. The reduced-order frequency response (dotted line) vs the full-order
frequency responses of the input-voltage loop gains under PID control in
different operation regions (CCR: solid line, CPR: dashed line, CVR: dash-
dotted line).



Fig. 11. The simulated power-transient induced by a step change in PV
voltage in CCR: (a) under PID control, and (b) under I control.

B. Experimental Evidence

Figure 12 shows the measured PV-generator-affected input-
voltage-feedback loop gains in case of I controller, where the
effect of PV generator is clearly visible around the internal res-
onant frequency of the power stage. The crossover frequencies
and PMs of converter under I control (Fig. 12) are as follows:
: CCR: 54 Hz, 89.6◦, CPR: 52.3 Hz, 89.2◦, and CVR: 50.5
Hz, 89.0◦, respectively. Figure 12 shows that the PV-generator
effect on the low-crossover feedback-loop gain is insignificant,
and therefore, the crossover frequencies and PMs will stay
practically as 50 Hz and 89.0 degrees.

Fig. 12. The measured PV-generator-affected frequency responses of the
input-voltage-feedback loops under I control (CCR: solid line, CPR: dashed
line, CVR: dash-dotted line and reduced-order model: dotted line).

Figure 13 shows the measured PV-power transient for the I-
controlled converter, where the first settling time corresponds
to the measured value and the last one to the predicted value.
Since the parameters in (19) are the same as in Fig. 11, the
time constant and settling time can also be calculated to be
3.0 ms and 9.0 ms, respectively. It can be concluded that the

estimated settling time for I-type control is quite close to the
measured settling times in case of 5-% settling band. (Note:
The normalization in Fig. 13 is performed by dividing the
waveform by its final value.)

Fig. 13. The measured power-transients induced by a step change in PV
voltage in CCR under I control.

Fig. 14. The measured PV-generator-affected frequency responses of the
input-voltage-feedback loops under PID control (CCR: solid line, CPR: dashed
line, CVR: dash-dotted line and reduced-order model: dotted line).

Figure 14 shows the measured frequency responses of
input-voltage-feedback loops of a boost-power-stage converter,
where the PID feedback-loop design have been performed
slightly differently what shown in the previous subsections.
In this case, the gain Kcc for PID controller was selected to
be 501 due to existing delay in the system as discussed more
detail in the following subsection. Therefore, the crossover
frequency of the feedback loop in Fig. 14 is approximately
3 kHz. The corresponding phase behaviors indicate that the
phase margin will vary slightly along the changes in the PV-
generator operating point (i.e., CCR: 37 degrees, CPR: 41
degrees, and CVR: 45 degrees), which means that the system
time constant will also vary accordingly. The variation does
not pose problems in perturbation frequency point of view
since the model in (13) assumes CCR operation, which will
give the longest settling time regardless.

It can be concluded from Fig. 14, however, that in case of
PID-type control the resonant frequency is too close to the
crossover frequency (i.e., 1 kHz vs 3 kHz) and therefore, the



system cannot be estimated accurately with (15). Moreover,
the sampling delay has a significant effect on the phase of
the input-voltage loop gain, which can also be noticed by
comparing reduced-order transfer functions (dotted lines) in
Fig. 14 with and without the effect of delay. The following
subsection presents the further discussion about design issues
on high-bandwidth controllers.

C. Design Issues

According to Fig. 14, the closed-loop system in (15) will be
slightly affected by the PV generator as visible also in Fig. 10.
The original crossover-frequency goal was 10 kHz, where the
variations in the named parameters would be very small as
can be easily detected from Fig. 14. Under digital control,
the feedback loop gain will be affected by the sampling
delay Td, which is usually considered to be in the order
of 1.5 × Tsw, where Tsw denotes the switching cycle. The
delay produces phase shift which would be already close to
-45 degrees at 1/10 of the switching frequency posing real
problems for control design when the goal is to place the
crossover at the corresponding frequencies. As a consequence
of this, the crossover frequency was designed to be about 3
kHz. In that case, however, crossover frequency appears to be
too close to the resonant frequency and therefore, the second-
order model of the closed-loop system does not produce a
good approximation of the full-order transfer function in the
vicinity of crossover frequency.

In practice, this means that the resonant frequency should
be designed to be at lower frequencies so that the crossover
would be selected close to 10-times the resonant frequency to
reduce more the dependence on the PV generator. Moreover,
the switching frequency needs to be about two decades higher
than the corresponding crossover frequency in order to achieve
sufficient stability margins and approximate system settling
time accurately using the second-order model in (15). It is
also worth noting that even if there are slight variations in the
crossover and PM, they do not affect the closed-loop transient
settling time significantly. The most practical case of verifying
the designs is to use constant-current input sources, which will
yield the worst case in the crossover frequency and PM with
respect to the system time constant, i.e., the longest settling
time.

VI. CONCLUSION

The paper proposes an analytical method to analyze settling
time of PV power transient in input-voltage controlled PV-
interfacing converter by focusing on low or high-frequency
behavior around the loop gain crossover frequency. Both I-
type and PID-type controllers were studied and verified by
experimental results. The paper reveals that the closed-loop
control-to-input-voltage transfer functions of I-type and PID-
type equipped converter can be reduced to first-order and
second-order transfer functions, respectively. That enables to
approximate PV power transient analytically revealing the
factors affecting the transient behavior similarly as in open-
loop converter providing valuable tools for determining the

maximum MPP-tracking perturbation frequency. However, it
is worth noting that the method has some limitations: The
first-order model requires that a resonant frequency needs to
be 5-10 times higher than the designed crossover frequency
in order to give accurate results. Correspondingly, the second-
order model gives a good estimate for a full-order closed-
loop system as long as crossover frequency is at least 10
times higher that resonant frequency. In addition, the crossover
frequency needs to be about two decades lower than switching
frequency in order to prevent phase mismatch due to the
sampling delay of a digital control system. Fortunately, it is
possible to overcome these limitations and further develop the
models by using well-known methods in control engineering.
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