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Abstract—In the context of global navigation satellite systems,
this paper addresses the problem of refining the Doppler fre-
quency estimation provided in the acquisition stage for high-
order binary offset carrier (BOC) signals in post-correlation.
The refinement of Doppler frequency must be done because the
estimation obtained from the acquisition stage is not usually
accurate enough to track the signal in the tracking stage. In this
work, we only use the cross-ambiguity function (CAF) created in
the acquisition stage to perform the refinement. A least squares
estimator has been already applied to mitigate this problem. We
propose a new technique, referred to as multilag least squares
estimator, which improves the performance of the least squares
estimator by exploiting the autocorrelation shape of high-order
BOC signals. Moreover, the Cramer-Rao bound and the expected
Cramer-Rao bound are derived as benchmark to compare the
performance of the least squares and multilag least squares
estimators.

I. INTRODUCTION

The main task of the acquisition stage of a global navigation

satellite systems (GNSS) receiver is to obtain a coarse estima-

tion of the code-delay and the Doppler frequency for each

satellite in view. After that, these estimations are tracked and

refined to accurately follow any possible variation of time and

frequency at the tracking stage [1]. Nevertheless, many times

the coarse estimation of Doppler frequency provided by the

acquisition stage is not accurate enough to pass directly to the

tracking stage. In that situation, the accuracy of the Doppler

frequency estimation must be improved before starting the

tracking stage. This process is usually carried out in GNSS by

a frequency lock loop (FLL) [2], [3]. However, the downside

of the FLL is that it needs a particular architecture and some

additional data [4].

Another alternative is introduced in [5]. This method re-

fines the coarse Doppler frequency estimation obtained in

the acquisition stage by applying an interpolation method,

but the fundamental of this method is based on an empirical

approximation. Another approach is used [4]. This method

estimates the Doppler frequency by application of a formula,

but it only works properly when the receiver uses a specific

configuration to acquire the signal.

An additional technique is proposed in [6]. The proposed

technique estimates the Doppler frequency by performing a

least squares (LS) estimator in post-correlation. Moreover, this

method can be implemented in any receiver because it depends

only on the cross-ambiguity function (CAF) computed in

the acquisition stage. This technique has been used with a

Galileo E1BC signal [7], which is a low-order binary offset

carrier (BOC) signal, obtaining an accurate estimation of the

Doppler frequency. In this work, we focus on estimating the

Doppler frequency of high-order BOC signals, which are being

implemented by new generations of GNSS.

The high-order BOC modulations provide greater accuracy

than conventional BPSK and low-order BOC modulations in

terms of positioning since the main peak of a high-order BOC

correlation is narrower. The drawback of the BOC modulations

is that their correlation functions become ambiguous because

they are formed by several peaks. The larger the order of the

BOC signal, the larger the number of secondary peaks. The

existence of secondary peaks is usually a dramatic problem

since they do not allow us to identify the main peak of

the correlation function, especially in high-order BOC sig-

nals [8], [9], [10], [11], [12]. Nonetheless, the characteristic

multi-peaked of high-order BOC correlations can lead to a

more accurate estimation of the Doppler frequency in post-

correlation. This is because the secondary peaks of high-order

BOC correlations contain a lot of energy and it can be used

to improve the Doppler frequency estimation provided by the

acquisition stage.

In this paper, we propose a new technique, referred to as

multilag least squares estimator (MLS), to refine the coarse

Doppler frequency estimation provided by the acquisition

stage, especially for high-order BOC signals, which outper-

forms the estimator proposed in [6]. The MLS estimator can

be implemented in any GNSS receiver since it is applied in

the acquisition stage and it does not depend on any parameter

of the receiver. The proposed technique herein exploits the

characteristic multi-peaked of these signals to increase the

precision of the Doppler frequency estimation. In addition to

this, the Cramer-Rao bound (CRB) and the expected CRB of

the Doppler frequency estimation are derived as benchmark to

compare the performance of the LS and MLS estimators.

II. SIGNAL MODEL

The baseband form of a received GNSS signal can be

represented as follows [13]:

r[n] =
P

∑
t=1

Ãtbt(nTs − τt)st(nTs − τt)ct(nTs − τt)

×e j(2π fd,t nTs+θ̃t )+ ω̃[n], (1)
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where P is the satellites number, Ts is the sampling interval, Ãt

is the received amplitude of the tth satellite, bt(nTs−τt) is the

unknown navigation data bit, st(nTs−τt) is the subcarrier used

to modulate the signal like a high-order BOC (when st(nTs −
τt) = 1 the subcarrier does not exist and then the signal is

modulated as a conventional BPSK), ct(nTs−τt) is the pseudo

random noise code, τt is the code-delay from the tth satellite

to the receiver, θ̃t is the carrier phase of the received signal,

fd,t is the Doppler frequency owing to the movement of the

satellite, and ω̃[n] is the complex additive white Gaussian noise

(AWGN).

The first task that a GNSS receiver must perform is to

acquire the signals from the satellites currently in view. To

do so, the received signal r[n] is correlated by the different

local replicas of the transmitted signals from the P satellites

with tentative values of code-delay and Doppler frequency.

Nonetheless, in this paper, we focus on acquiring only one

satellite, for instance the kth satellite, because it is enough

to analyze the performance of the frequency estimation. The

local replica of the kth satellite using different tentative values

of the code-delay τk and the Doppler frequency fd,k as τ̃k and

f̃d,k, respectively, is given by

x[n] = sk(nTs − τ̃k)ck(nTs − τ̃k)e
j(2π f̃d,knTs). (2)

The tentative values τ̃k and f̃d,k span all the possible values of

fd,k and τk doing a bidimensional search to find the correlation

peak. The correlation between r[n] and x[n] is so-called the

output of the coherent integration or CAF [14] and it can be

written, in absence of navigation data bit, as

R(τ̃k, f̃d,k) =
Lch

∑
n=1

r[n]sk(nTs − τ̃k)ck(nTs − τ̃k)e
j(2π f̃d,knTs)

= Ake jθk sinc(∆ f Tcoh)v(∆τ)+ωk, (3)

where Ak is the complex received amplitude with phase θk of

the kth satellite after computing the CAF, ∆ f = fd,k − f̃d,k is

the residual frequency offset, ∆τ = τk− τ̃k is the residual delay

offset between the received GNSS signal and the local replica,

v(∆τ) is the autocorrelation function of a GNSS signal, Tcoh

is the coherent integration time, Lch is the samples number

integrated coherently and ωk is AWGN after performing the

coherent integration with zero-mean and variance σ2. The

coherent integration losses due to the residual frequency error

are given by the sinc(∆ f Tcoh) term.

The ideal CAF in time domain of a BPSK modulation

is unambiguous because it only exhibits one peak (without

taking into account Doppler effects nor noise). However,

the ideal CAF in time domain of a BOCcos(15,2.5) modu-

lation, as a representative case of high-order BOC signals, is

ambiguous because it shows several peaks. More precisely,

the BOCcos(15,2.5) correlation contains 25 peaks taking into

account the positive and negative peaks. This fact is be-

cause the total number of peaks of a BOCcos correlation is

2KBOC + 1, where KBOC = 2 fsub
fc

with fsub = 15 · 1.023 MHz

and fc = 2.5 · 1.023 MHz. The high-order BOC modulations

provide an estimation of the code-delay more accurate than
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Fig. 1. Comparison between the CAF in time domain of the BPSK and
BOCcos(15,2.5) signals.

BPSK modulation with the disadvantage of becoming its CAF

in ambiguous owing to the apparition of secondary peaks. The

comparison between the absolute value of the CAF in time

domain of the BPSK and BOCcos(15,2.5) signals is shown

in Fig 1. In any case, the process to acquire the satellite is

always the same: calculating the CAF independently of the

modulation used. After performing the CAF, its absolute value

is computed as

Z(τ̃k, f̃d,k) = |R(τ̃k, f̃d,k)|. (4)

In order to detect if the satellite is in view or the satellite

is not in view, the maximum magnitude of (4) is compared

with a signal detection threshold. The satellite is not in

view if the maximum magnitude of (4) does not exceed the

detection threshold. Nevertheless, if the maximum magnitude

of (4) exceeds the signal detection threshold the satellite is

considered in view and a coarse estimation of the τk and fd,k

is obtained as τ̂k and f̂d,k.

In acquisition stage, the accuracy of the τ̂k is usually given

by the sampling frequency, denoted as fs, used at the receiver.

The error of f̂d,k is comprised between the range [− fst/2,

fst/2], where fst is the search step of Doppler frequency used

in the local replica to compute the CAF. The fst is chosen

taking into account a trade-off between the complexity in

terms of computational burden at the receiver and the accuracy

in the estimation of Doppler frequency. A typical value of

fst to mitigate the coherent integration losses is 1/(2Tcoh).
However, many times the estimation f̂d,k is not precise enough

to track the signal in the tracking stage. For this reason, a more

accurate estimation of fd,k must be done before starting the

tracking stage.

III. FINE FREQUENCY ESTIMATION

According to the estimation theory, the best estimator to

estimate fd,k is the maximum likelihood (ML). In this case,

the ML is the value that maximizes the magnitude of the CAF
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in (3). Nonetheless, it is not possible to apply this estimator

in practice to find an accurate estimation of fd,k since this

estimator has a high computational complexity. Then, we must

resort to other alternatives to get a precise estimation of fd,k

[4].

One way to obtain a fine Doppler frequency estimation is

by the use of a FLL. However, the FLLs need a particular

architecture using filters, numerical control oscillators and

some additional data. Moreover, the FLLs are usually inte-

grated inside the tracking loop and more and more GNSS

receivers are using an open-loop architecture, which do not

have a tracking loop. Another alternative was proposed in [6],

which improves the Doppler frequency estimation based only

on the CAF obtained from the acquisition stage by using a LS

estimator in post-correlation.

A. Least squares estimator

As we have already mentioned, the degradation produced

in the CAF by the residual Doppler frequency between the

received signal and the local replica is affected by a sinc

function. This method exploits this fact to refine the coarse

Doppler frequency estimation obtained in the acquisition stage

[6]. More precisely, the method consists in finding the Doppler

frequency value that provides the best fit between the theo-

retical sinc function and the measured one. To do so, let us

define the received or the measured sinc function in a vector

g containing a set of 3 samples: the maximum value of the

CAF in (4) and the two adjacent values of the CAF in the

frequency domain for the estimation of τ̂k as

g =




Z(τ̂k, f̂d,k − fst)

Z(τ̂k, f̂d,k)

Z(τ̂k, f̂d,k + fst)


 . (5)

We define the vector t( fd,k) containing also 3 samples of the

theoretical sinc function with an unknown Doppler frequency:

t( fd,k) =



|sinc(( fd,k − fst)Tcoh)|

|sinc(( fd,k)Tcoh)|
|sinc(( fd,k + fst)Tcoh)|


 . (6)

It should be added that we only take three points to define

the vectors g and t( fd,k) because we want to guarantee that

the three chosen points are located in the main lobe of the

sinc function. We do not take more points of the sinc function

since the rest of the points contain almost no signal and in

presence of noise, they may cause a worsening of the fine

Doppler estimation of fd,k. Fig. 2 shows an illustrative plot

of the expected theoretical sinc function, the measured sinc

function obtained from the acquisition stage, and the Doppler

frequency of the received signal.

The fine Doppler frequency estimation of fd,k is carried out

by minimizing the following non-linear LS cost function:

J(β , fd,k) = ||g−β t( fd,k)||
2, (7)

where β is the unknown amplitude due to the propagation

effects of the received signal. The non-linear LS, which is

Doppler frequency estimation (Hz)
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Fig. 2. Illustrative plot of the CAF in frequency domain.

affected by two unknown parameters fd,k and β , can be mini-

mized by separation of variables in two steps [15]. Firstly, the

non-linear LS is minimized with respect to β so that the cost

function depends only on fd,k. The unknown amplitude that

minimize the function J is β̂ = (t( fd,k)
T t( fd,k))

−1t( fd,k)
T g.

Replacing this expression in (7), we get

J(β̂ , fd,k) = ||g− (t( fd,k)
T t( fd,k))

−1t( fd,k)
T gt( fd,k)||

2. (8)

Secondly, the problem now reduces to minimize (8). The cost

function must be minimized by the application of an iterative

algorithm since there is no analytical solution in a closed-form

for fd,k. In our simulation, we use simple for loop to estimate

the value of fd,k.

B. Multilag least squares estimator

In this subsection, we propose a novel contribution for

estimating the fd,k in the acquisition stage referred to herein

as multilag least squares (MLS) estimator, especially for

high-order BOC signals. We want to exploit that the ideal

CAF in time domain of a high-order BOC signal contains

a considerable number of secondary peaks. Moreover, the

received signal is always impacted by the sampling frequency

used and this causes that many times the high-order BOC

signals are not sampled in the maximum of the CAF since

the signal arrives with an unknown random code-delay. One

example of the ideal CAF of a BOCcos(15,2.5) signal in time

domain and the received CAF using a fs = 50 MHz, which is

the maximum value of a USRP nowadays [16], is shown in

Fig. 3. The received CAF often exhibits some high peaks with

practically the same magnitude, which may be a useful tool

to estimate fd,k of a more effective way in terms of accuracy

than the estimator explained in III-A.

The method explained in III-A only uses the maximum

value of the CAF and the two adjacent values of the CAF

in frequency domain. Nonetheless, we propose to use the

different large values of the CAF in time domain (including the

maximum value) and each large value with their two adjacent
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Fig. 3. Illustrative plot of the ideal CAF of a BOCcos(15,2.5) signal in time
domain and the received CAF using a fs = 50 MHz (without taking into
account the noise and the Doppler effect).

values of the CAF in frequency domain. This approach can be

solved by minimizing the distance between two matrices. The

method proposed herein deals with the estimation of Doppler

frequency by finding the best fit between the theoretical sinc

functions and the different measured sinc functions. Before

proceeding, we denote the magnitude of the second largest

value of the CAF in time domain as β2 with argument τ2
k and

the magnitude of the thirst largest value of the CAF in time

domain as β3 with argument τ3
k and so on. Thereby, let us

define the C×3 matrix G, with C the number of chosen large

values of the CAF in time domain, containing the different

measured sinc functions from each large value as

G =




Z(τ̂k, f̂d,k − fst) Z(τ̂k, f̂d,k) Z(τ̂k, f̂d,k + fst)

Z(τ̂2
k , f̂d,k − fst) Z(τ̂2

k , f̂d,k) Z(τ̂2
k , f̂d,k + fst)

Z(τ̂3
k , f̂d,k − fst) Z(τ̂3

k , f̂d,k) Z(τ̂3
k , f̂d,k + fst)

...
...

...

Z(τ̂C
k , f̂d,k − fst) Z(τ̂C

k , f̂d,k) Z(τ̂C
k , f̂d,k + fst)



. (9)

The cost function can be expressed by the Frobenius distance

as

H(a, fd,k) = ||G−a · t( fd,k)
T ||2F , (10)

where the vector a = [β ,β2,β3, · · · ,βC]
T have all the unknown

amplitudes, one unknown amplitude for each chosen large

value and t( fd,k) is defined in (6). The estimation of fd,k

is the value that minimize the cost function. To minimize

this problem, we apply separability of variable because the

vector a is linearly dependent over t. Then, we must replace

â =
G·t( fd,k)

||t( fd,k)||
2 by a in (10). Thus,

H(â, fd,k) =

∣∣∣∣
∣∣∣∣G−

G · t( fd,k)

||t( fd,k)||2
t( fd,k)

T

∣∣∣∣
∣∣∣∣
2

F

. (11)

After that, the fine estimation of fd,k is found by applying an

iterative algorithm since there is not any analytical solution

in closed-form. In this case, we also use a simple for loop to

minimize the cost function.

C. Cramer-Rao bound

Theoretical lower bounds become necessary for evaluating

the performance of the proposed estimators in the Subsections

III-A and III-B. The CRB, which expresses a lower bound on

the variance of any unbiased estimator, provides a benchmark

to compare the performance of the LS and MLS estimators.

The CRB is defined by:

var( f̂d,k)≥ CRB( fd,k) =−

[
E

[
∂ 2

∂ f 2
d,k

ln pr(r; fd,k)

]]−1

, (12)

where E[·] is the expected operator, r is a vector containing

the Lch samples of the received signal and pr(r; fd,k) is the

probability density function of the received signal. The CRB

of the Doppler frequency estimation in an AWGN channel is

given by [17]

var( f̂d,k)≥
6

(2π)2SNRT 2
s Lch(L

2
ch −1)

, (13)

where SNR = A2/σ2 and Ts = 1/ fs. Assuming that

Lch = fsTcoh >> 1 the CRB is written as follows:

var( f̂d,k)≥
6

(2π)2SNR fsT
3

coh

. (14)

Typically, the SNR is not a parameter used in GNSS since

it depends on the receiver front-end bandwidth denoted as B.

The parameter usually utilized to analyze the performance of

techniques is the carrier-to-noise ratio (C/N0), which is not

affected by the receiver bandwidth. The relationship between

the SNR and the C/N0 is given by

SNR =
C

N0B
. (15)

The CRB in (14) is the bound for the estimation of fd,k

because it takes into account the C/N0 from the received

signal. However, often in post-correlation, we do not get a

C/N0 as high as in pre-correlation since the received CAF

many times exhibits some high peaks, but none of them match

with the real peak of the CAF (Fig. 3). This fact causes a

degradation at post-correlation in terms of C/N0, which is

due to the sampling frequency and the unknown random code-

delay of the received signal. In order to obtain a benchmark

for the received C/N0 in post-correlation, we must resort to

the Expected CRB (ECRB) [18].

D. Expected Cramer-Rao bound

The effect introduced by the unknown random code-delay

is measured taking into account the term ∆̃τ in the SNR

expression. The SNR considering the degradation provided by

the random code-delay is expressed as

S̃NR =
A2|v(∆̃τ)|2

σ2
, (16)
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where ∆̃τ = τk− τ̂k and v(∆̃τ) is the normalized autocorrelation

function of the GNSS signal with a value equal to 1 for

∆̃τ = 0 and values smaller than 1 for ∆̃τ 6= 0. Then, the

v(∆̃τ) provides an attenuation in the received signal, which

increases the value of the CRB computed in III-C. The

variable v(∆̃τ) follows a uniform distribution because the

signal can be received with any value of code-delay. To avoid

the obstacle of the random variable v(∆̃τ), we can compute

the ECRB( fd,k) = E[CRB( fd,k)] as

−E
v(∆̃τ)



[

Er

[
∂ 2

∂ f 2
d,k

ln pr(r; fd,k,v(∆̃τ))

]]−1

 . (17)

The resulting ECRB is the same as in (14), but applying the

expectation operation as

ECRB( fd,k) = E
v(∆̃τ)


 6

(2π)2 A2|v(∆̃τ)|2

σ2 fsT
3

coh


 . (18)

This expectation in (18) is far from trivial to calculate. For

this reason, we compute an extensive number of Monte Carlo

iterations and then, we calculate the mean of all iterations to

obtain the value of ECRB( fd,k).

IV. SIMULATION RESULTS

Simulations are carried out by the use of BOCcos(15,2.5)

signals, as a particular case of high-order BOC modulations,

using a coherent time of 10 ms, and a sampling frequency of

50 MHz. We consider a frequency search range from - 500 Hz

to 500 Hz since we assume knowing the assisted information

about the Doppler frequency from the satellite and the steps of

the search frequency are every 50 Hz. Moreover, simulations

are performed in an AWGN channel and including an unknown

random code-delay at the received signal, which follows a

uniform distribution.

To measure the performance of the LS and MLS estimators,

the mean square error (MSE) is used

fMSE = E
[(

fd,k − f̂d,k

)2
]
, (19)

which is computed by averaging 3000 Monte Carlo iterations

for each value of C/N0.

Fig. 4 shows the MSE of the LS estimator, MLS estimator,

CRB, and ECRB. In this case, we use C = 3 for the MLS

estimator. The rationale for that will be explained later on.

The result shows that the MLS estimator is the best estimator

because it provides an improvement over the LS estimator in

terms of accuracy in Doppler frequency estimation. The MLS

estimator allows us to recover a part of the energy lost in the

CAF by the unknown random difference between the code-

delay of the received signal and the local replica. Therefore,

the usage of several peaks from the CAF lead to a frequency

estimation more accurate than only using the main peak from

the CAF. However, the MLS estimator is not able to reach the

CRB value. It should be added that the LS estimator has also

a good performance because it is very close to the ECRB.
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Fig. 4. MSE of the MLS and LS estimators using a fs = 50 MHz.

It should also be noted that, in the Fig. 4, the CRB indicates

the best estimate of the Doppler frequency that one estimator

can get because it depends on the C/N0 of the received

signal. For this reason, the LS and MLS estimators cannot

improve the performance of this bound. The ECRB has been

calculated assuming that the C/N0 of the received signal is the

maximum value of the peak of the CAF, which is affected by

the unknown code-delay between the received signal and the

local replica. However, the C/N0 value used to calculate the

ECRB is not completely true because the real value of C/N0

is the one obtained from the received signal. As a result, the

bound that we cannot improve is the CRB, but there may be

estimators between the ECRB and the CRB.

In order to find the optimum number of chosen large values

of the CAF in time domain C, we carry out an extensive

number of simulations with different values of C. Fig. 5 shows

the division between the MSE using the MLS estimator with

C = 3, C = 5, and C = 10 and the MSE of the LS estimator. The

result shows that it makes little difference when the value of

C is changed for values such as 3 or 5. Nevertheless, MLS has

always the best performance for C = 3 using a fs = 50 MHz.

The larger the number of C, the more degradation the MLS

suffers. Moreover, although we do not use the optimal value

of C, the MLS estimator might provide an improvement over

the LS estimator.

Fig. 6 shows the comparison between the LS estimator

and the ECRB for different values of fs. In this simulation,

we analyze the effect of the sampling frequency used in the

receiver, which affects to the separation among the samples

of the CAF in the acquisition stage. This fact causes that

the precision in the Doppler frequency estimation must be

different since it depends on the value of E[v(∆̃τ)].

We choose several values of fs, such as 40 MHz, 62 MHz

and 100 MHz, to perform the simulation. In this case, the

results show that the most accurate estimation of the Doppler

frequency is provided using 100 MHz. Intuitively, one can

think the larger the fs, the more accurate the estimation of the
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C/N
0
 (dB-Hz)

37 38 39 40 41 42 43 44 45 46 47

M
S

E
 (

H
z

2
)

0

10

20

30

40

50

60

70

LS fs=40 MHz

ECRB fs=40 MHz

LS fs=100 MHz

ECRB fs=100 MHz

LS fs=62 MHz

ECRB fs=62 MHz

Fig. 6. MSE comparison using fs = 40, 62 and 100 MHz.

Doppler frequency because the separation among the samples

in the CAF is smaller. Nevertheless, it does not always follow

this rule, as it can be seen for the case of fs = 40 MHz and

fs = 62 MHz. This happens because the separation among

the samples of the received signal using a fs = 62 MHz is

really similar to the distance between the peaks in the CAF

of the BOCcos(15,2.5) signal. More precisely, the distance

between the peaks of a BOC correlation is given by 1/(2 fsub),
where fsub is sub-carrier frequency. In particular, the fsub of

a BOCcos(15,2.5) signal is 15 · 1.023 MHz. In this situation,

using a fs = 62 MHz, we have approximately two samples

equidistant for each peak of the correlation. The CAF of the

BOCcos(15,2.5) signal is sampled in all the different peaks of

the correlation function of the same way, but any secondary

peak cannot outperform the magnitude of the main peak

(without presence of noise). However, using the fs = 40 MHz,

this effect does not happen because the separation among the

samples of the received is not equidistant compare to the
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Fig. 7. Comparison between the MLS and LS estimators using fs = 40, 62
and 100 MHz.

distance between the peaks of the BOCcos(15,2.5) correlation

and, in this case, the magnitude of a secondary peak can

outperform the value of the main peak.

This fact causes the value of E[v(∆̃τ)] for fs = 40 MHz is

larger than the value of E[v(∆̃τ)] for fs = 62 MHz. For this

reason, the estimation of the Doppler frequency can be more

accurate using fs = 40 MHz than fs = 62 MHz. Moreover,

it also produces that the MSE of the LS using fs = 62 MHz

needs a larger C/N0 to reach its ECRB since we have a larger

number of false alarm using this value of fs. In addition to

this, we also prove the MLS estimator for values of fs = 40,

62, and 100 MHz in Fig. 7. In all the cases, the MLS estimator

improves the performance of the LS estimator.

V. CONCLUSIONS

In this work, a new technique is proposed, which is so-

called multilag least squares estimator, to refine the Doppler

frequency estimation obtained in the acquisition stage. This

technique exploits the secondary peaks provided by the CAF

of a high-order BOC signal to get an accurate estimation of

the Doppler frequency. The MLS estimator outperforms the LS

estimator proposed in the literature. The optimum number of

chosen large values of the CAF is 3 to obtain the most accurate

estimation of Doppler frequency using a sampling frequency

of 50 MHz. Moreover, the advantage of the MLS estimator

is that it can be applied in any receiver since it only uses the

CAF generated in the acquisition stage. In addition, we have

analyzed the dependence between the sampling frequency used

to acquire the signal and the accuracy to estimate the Doppler

frequency.
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