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ABSTRACT

This paper proposes to use low-level spatial features ex-
tracted from multichannel audio for sound event detection.
We extend the convolutional recurrent neural network to han-
dle more than one type of these multichannel features by
learning from each of them separately in the initial stages.
We show that instead of concatenating the features of each
channel into a single feature vector the network learns sound
events in multichannel audio better when they are presented
as separate layers of a volume. Using the proposed spatial
features over monaural features on the same network gives
an absolute F-score improvement of 6.1% on the publicly
available TUT-SED 2016 dataset and 2.7% on the TUT-SED
2009 dataset that is fifteen times larger.

Index Terms— Sound event detection, multichannel au-
dio, spatial features, convolutional recurrent neural network

1. INTRODUCTION

Sound event detection (SED) task involves recognizing the
onset and offset of a sound event in an acoustic scene and fur-
ther labeling the sound event. The world we live in offers a
rich variety of sound events. For example, recognizing envi-
ronmental sounds [1][2] will give an idea about the local bio-
diversity. Detecting sound events such as glass breaking and
alarm detection can be used for surveillance [3][4]. Further-
more, the detected sound events can be used as a mid-level
representation to help retrieval of content based query [5].

Traditionally SED systems have been using monaural au-
dio. Temko et al. [6] proposed to use multichannel audio, and
combined classification likelihoods across channels. While
the multichannel audio was used, the actual potential of mul-
tichannel features was not exploited. Features like time differ-
ence of arrival (TDOA) and mel-band energies from the mul-
tichannel audio can potentially help the system differentiate
the overlapping sound events. Similar multichannel features
have been proposed in automatic speech recognition (ASR)
[7] and source separation [8]. Just like humans have evolved
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to exploit the spatial data available at their ears (multichannel)
to identify both isolated and polyphonic sound events [9], we
can potentially train the SED systems to learn similar spatial
information with multichannel data. Recently, such spatial
features motivated by the binaural hearing of humans were
proposed and shown to be promising for SED task in [10].
Although the features showed improvement over monoaural
features, the dataset was too small (around one hour) to con-
clusively prove the superiority of binaural spatial features (re-
ferred as binaural features in future).

In this paper, we propose to use low-level features and
compare it with using high-level features. For example, we
compare using generalized cross-correlation with phase based
weighting (GCC-PHAT ) instead of the high-level TDOA
feature which is extracted from GCC-PHAT , and show that
the network learns powerful representation from just the low-
level features. We show that arranging features from each
channel as different layers of a multi-layered input volume
enables the network to learn the sound events in multichannel
audio better than a simple concatenation of the features. We
propose to extend the convolutional recurrent neural network
(CRNN) to handle more than one feature type and use a bi-
directional LSTM. Finally, we evaluate the improvement of
using binaural over monaural features on the 19 hours large
TUT-SED 2016 dataset.

We present the binaural features used for SED in Section
2, the extended CRNN architecture in Section 3, the experi-
mental set-up and results on two different real-life datasets in
Section 4 and our conclusions in Section 5.

2. BINAURAL FEATURES FOR POLYPHONIC SED
Polyphonic SED is the task of recognizing overlapped sound
events along with the isolated sound events. The proposed
polyphonic SED system has two parts, feature extraction, and
a neural network. The neural network described in Section
3 outputs a vector for every sound event class, where each
entry in the vector indicates if the sound event was active or
not. The feature extraction part extracts the following binau-
ral features at a constant hop length of 20 ms.

2.1. Binaural mel-band energies
Sound sources which have different spatial locations have dif-
ferent intensities in the binaural channels. Furthermore, most
overlapping sound events have different frequency spread in



the spectrum. The combination of this intensity difference in
different bands of frequencies can be exploited to differenti-
ate overlapping sound events. This idea is motivated from the
interaural intensity difference (IID) used by humans [9].

Log mel-band energies (referred as mel in future) ex-
tracted from both of the binaural channels using 40 mel-bands
in 40 ms Hamming window are used as the features. A neu-
ral network which is capable of performing linear operations,
which includes the difference, can learn to obtain the IID in-
formation from these channel-wise energies. By using the
channel-wise energies instead of the multichannel energy dif-
ference directly, we allow the network to learn other poten-
tially more informative features.

2.2. Time difference of arrival vs cross-correlation
Based on how the sound sources are spatially located with re-
spect to the binaural microphones, they might have different
TDOA values. Furthermore, sound events which are over-
lapping do not always have the same frequency spread in the
spectrum. The combination of this TDOA difference in dif-
ferent frequency bands can be exploited by a network to dif-
ferentiate overlapping sound events. We implemented it by
dividing the spectral frame into five mel-bands and calculat-
ing the TDOA values in each of the bands. The TDOA is
estimated using the GCC-PHAT [11]. The GCC-PHAT
for each mel-band b is extracted separately:

Rb(∆12, t) =

N−1∑
k=0

Hb(k)
X1(k, t) ·X∗

2 (k, t)

|X1(k, t)||X2(k, t)|
e
i2πk∆12

N , (1)

where, X1 and X2 are the FFT coefficients of the two bin-
aural channels. X1(k, t) specifies the coefficient at time
frame t and kth frequency bin, of the total N bins. Hb(k)
is the magnitude response of the bth band in B mel-bands
and ∆12 ∈ [−τmax, τmax], where τmax = 30 is the maxi-
mum sample delay for a sound wave to travel between bin-
aural microphones. Finally, the peak magnitude for each
mel-band and time frame is picked in the GCC-PHAT by
τ(b, t) = argmax

∆12

{|Rb(∆12, t)|}.

TDOA’s for each band are extracted using multi-resolution
windows of 120 ms, 240 ms, and 480 ms to accommodate
sound events of variable length. Five TDOA values picked
from five bands, for each of the three resolutions, results in
15 TDOA values per time frame.

Neural networks have the potential to learn powerful rep-
resentations from the raw data. We investigate this by using
low-level GCC-PHAT and comparing it with high-level
TDOA feature (which are picked from the GCC-PHAT ).
GCC-PHAT ’s are extracted using Eq. 1 with B set to
one. To have a factorizable feature length for max pooling,
60 GCC-PHAT values are picked in -29 to +30 lag for
each of the three multi-resolution (same as TDOA), amount-
ing to 180 GCC-PHAT values per time frame. By using
GCC-PHAT instead of TDOA, we take the data-oriented
approach and get rid of empirical limitations and let the
network learn the representation best suited for the problem.

2.3. Dominant frequencies vs auto-correlation
In [10], it was shown that the three most dominant frequen-
cies and their magnitudes (referred as dom-freq in future)
helped in the SED task. This was motivated by the idea
that overlapping sound events do not always have the same
dominant frequencies, and the network can learn to differ-
entiate these overlapped events using the dominant frequen-
cies. The dom-freq values were picked from thresholded
parabolically-interpolated STFT [12] in the 100 to 4000 Hz
range from each of the binaural channels in frames of 40 ms.
We continue to use this feature in this paper.

The pitch is a perceptual feature which human listeners
have been using to recognize overlapping sound events [13].
One of the prominent way to estimate pitch values are from
the auto-correlation (ACR). In the presented work, ACR
is calculated on the binaural channels by time domain auto-
correlation in 40 ms windows and choosing 400 correlation
values in the range of 107.5 Hz to 4410 Hz. This was selected
to be close to the dom-freq extraction range and the number
of correlation values easily factorizable during max pooling.

3. CONVOLUTIONAL RECURRENT NEURAL
NETWORK

The best results to date in polyphonic SED was reported in
[14], where an architecture exploiting the combined model-
ing capacities of a convolutional neural network (CNN), re-
current neural network (RNN) and fully connected (FC) layer
termed as the convolutional recurrent neural network (CRNN)
was proposed. We use this CRNN network and extend it for
multichannel audio features.

Features from each channel of the multichannel features
are layered one over the other to form a volume. More con-
cretely, M frames of a feature, each of length L, from two
channels are layered into a M × L × 2 volume. On slicing
such a volume along a particular time frame, we get all the
multichannel features corresponding to that time frame. The
two-dimensional CNN’s by design are built to learn on such
volumes, i.e., it initially learns channel-wise filter weights,
and further builds an activation map that is obtained as a com-
bination of these channel-wise filter weights, which serves as
the inter-channel information. This way we enable the CNN
layers in the initial stages of the CRNN network to learn inter-
channel information from multichannel features. We report
the improvement in performance of using such a volume in-
put over simple multichannel feature concatenation (M×2L)
in Section 4.4.

Separate volumes of each of the multichannel features are
created. T time frames of 40 mel features from the two bin-
aural channels are layered into one volume of size T ×40×2.
When using dom-freq, dominant frequencies and their mag-
nitudes are treated as different features, and since their fea-
ture lengths are the same (3) we layer them in T × 3× 4. For
ACRwe layer the 400 correlation values of each channel into
a T × 400 × 2 volume. Similarly, the three multi-resolution
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Fig. 1. Convolutional bi-directional recurrent neural network
(CBRNN) architecture for multichannel audio features

TDOA features are layered to T × 5× 3 and the 60 values of
GCC-PHAT are layered to T × 60× 3.

Separate CNN’s are used to learn local shift-invariant fea-
tures in each of these volumes as shown in Figure 1. Since
the dimensions of mel, GCC-PHAT , and ACR are high,
we use three CNN layers followed by max pooling to reduce
the final feature map dimension to T × 5× 100. When using
TDOA and dom-freq features, a single 100-filter CNN layer
is used without max pooling. To keep the time information in-
tact for final sound event onset and offset detection, we do not
apply max pooling in time (T ) axis. Post CNNs, the feature
maps are merged using concatenation and fed to two consecu-
tive bi-directional long short term memory (LSTM). The out-
put layer is a fully-connected time distributed layer which has
as many units as the number of classes in the dataset. A sig-
moid activation function is used at the output layer to allow
several classes to be predicted as active simultaneously. We
refer to this as the CBRNN system in future.

Batch normalization [15] is used in all the CNN layers.
A 50% dropout [16] is utilized in all CNNs and LSTMs to
avoid over-fitting of the network. The combined architec-
ture was trained by backpropagation through time [17] us-
ing Adam optimizer [18] and binary cross-entropy objective.
Early stopping was used to reduce overfitting if the F-score
(Section 4.2) did not change for 50 epochs. A sequence length
of 100 frames (2 seconds) and a batch size of 32 was chosen
after calibrating. At test time the sigmoid layer outputs are
thresholded with a fixed value of 0.5.

4. EVALUATION AND RESULTS
4.1. Datasets
The proposed SED system is evaluated on two real-life
datasets -TUT Sound Events 2009 (TUT-SED 2009) [19] and
TUT Sound Events 2016 Development set (TUT-SED 2016)

[20]. Both datasets have been recorded using in-ear micro-
phones. TUT-SED 2009 has been used for SED in monaural
context [14], but no previous work has reported using the
binaural recordings on this dataset. TUT-SED 2016 was pub-
lished as part of the DCASE 2016 challenge [21], to allow
public benchmarking. TUT-SED 2009 is fifteen times larger
than TUT-SED 2016, by showing considerable improvement
on TUT-SED 2009 we can conclusively say the proposed
system is learning and exploiting spatial information.

All the work proposed in this paper is done in a context-
independent manner, i.e., we train a single system to learn
sound event classes across contexts.

The first dataset - TUT-SED 2009 consists of 103 binaural
recordings from 10 different contexts (listed in Table 2). Each
context consists of 8 to 14 recordings which vary from 10 to
30 minutes, amounting to an overall length of 1133 minutes.
The recordings have been manually annotated, and the an-
notated events have been grouped into 61 event classes [19].
Each context has 9-16 event classes, while some events occur
in multiple contexts, some are context specific. The dataset
defines five-folds for training, validation, and testing.

The second dataset - TUT-SED 2016 consists of 22 bin-
aural recordings for two contexts - home and residential area,
amounting to 78 minutes. The home context has ten record-
ings with 11 sound event classes, and the residential area
has 12 recordings with seven sound event classes [20]. The
dataset defines four-folds for training and testing. We use
20% of the training data for validation, and the same vali-
dation is used for all our evaluations.

4.2. Metrics
The SED system output is evaluated with the reference in
fixed length intervals, also called as segment-based evaluation
[22]. For each segment k, the following are calculated (i) true
positive (TP (k)): total number of events active in both refer-
ence and system output segment. (ii) False positive (FP (k)):
total number of events active in system output segment but
not in reference. (iii) False negative (FN(k)): total number
of events active in reference segment but not in system output.
The first metric, F-score is then calculated as,

F =
2 ·

∑K
k=1 TP (k)

2 ·
∑K

k=1 TP (k) +
∑K

k=1 FP (k) +
∑K

k=1 FN(k)
(2)

The second metric, error rate (ER) evaluates the system
output based on the number of insertions (I), deletions (D)
and substitutions (S).

ER =

∑K
k=1 S(k) +

∑K
k=1D(k) +

∑K
k=1 I(k)∑K

k=1N(k)
(3)

Where N(k) is the number of sound events marked as active
in the reference segment k, and

S(k) = min(FN(k), FP (k)) (4)
D(k) = max(0, FN(k)− FP (k)) (5)
I(k) = max(0, FP (k)− FN(k)) (6)



We use a segment length of one second for ER and F-score es-
timation. The evaluation metrics are calculated for each con-
text separately and averaged result is presented.

4.3. Baseline
The proposed CBRNN architecture with binaural features is
compared with the state of the art monaural SED system in-
troduced in [14]. The system used 40 monaural log mel-band
energies (mel-monaural) as features. The network had three
CNN’s each of 96 filters, followed by max pooling in fre-
quency axis reducing the dimension to one. The feature map
from CNN was then fed to three LSTMs with 256 units each.
The output was a fully-connected layer with units equal to the
number of classes in the dataset.

4.4. Results
Table 1 shows the metrics for multi-layered input of the bin-
aural log mel-band energy features (mel) and concatenating
it (mel-concat) for TUT-SED 2009 dataset. Using a multi-
layered input is seen to perform relatively better than a sim-
ple concatenation. Similar improvement was observed us-
ing multi-layered input of TDOA, dom-freq,GCC-PHAT
and ACR (not tabulated).

From Table 1 we see that using binaural features im-
proves both the ER and F-scores over monaural features
(mel-monaural) across datasets. While the dom-freq and
mel feature combination gave the best performance in TUT-
SED 2009, TDOA andmel performed the best for TUT-SED
2016. In numbers, using binaural over monaural features on
the same network gives an absolute F-score improvement of
2.7% for TUT-SED 2009 and 6.1% for TUT-SED 2016. By
showing this improvement on a larger dataset like TUT-SED
2009, we can more confidently say that the network is truly
learning the binaural information.

From the metrics in Table 1 and 2 we see that the perfor-
mance of usingGCC-PHAT instead of TDOA orACR in-
stead of dom-freq, is comparable. This is a significant result,
showing that the network can learn equivalent information of
powerful high-level features from just the low-level features.
Thereby making the features dataset independent and reliev-
ing the tuning of parameters like the number of dom-freq
and TDOA values.

Most of the sound event classes were seen to be rec-
ognized better with the binaural features. Since we cannot
present all the 79 classes of the two datasets in this paper, we

Feature combination TUT-SED 2009 TUT-SED 2016
ER F ER F

CRNN baseline [14] 0.49 68.8 0.93 31.3
mel-monaural 0.49 68.0 1.03 29.7
mel-concat 0.44 70.3
mel 0.43 71.1 0.99 32.3
mel + TDOA 0.45 70.9 0.95 35.8
mel + GCC-PHAT 0.44 71.1 0.95 34.6
mel + dom-freq 0.43 71.7 0.98 32.8
mel + ACR 0.44 71.2 0.98 33.8
mel + TDOA + dom-freq 0.44 71.0 1.01 33.3
mel + GCC-PHAT + ACR 0.45 70.9 0.99 33.6

Table 1. Error rate (ER) and F-score achieved using binaural
features and CBRNN on TUT-SED 2009 and 2016 datasets.

show the context based F-scores for TUT-SED 2009 dataset
in Table 2. A general observation is that the dom-freq /
ACR and mel are useful for indoor and sound intense envi-
ronment (bus, hallway, office, and basketball), while TDOA
/ GCC-PHAT and mel are seen to help in outdoor contexts
(beach and street). This also explains why dom-freq and
mel gave better results for TUT-SED 2009. While TUT-SED
2016 had one each of indoor and outdoor contexts, TUT-SED
2009 had more indoor contexts than outdoor.

The proposed CBRNN architecture using the same mel-
monaural feature used in CRNN-baseline achieved an F-
score of 68.0% for TUT-SED 2009 and 29.7% for TUT-SED
2016 (Table 1). The difference in the scores with respect to
CRNN-baseline can be associated with using a higher dimen-
sional input to LSTM’s in the proposed CBRNN.

5. CONCLUSION
In this paper, we extended convolutional recurrent neural net-
works to handle multiple feature classes and process feature-
maps using bi-directional LSTM’s. A multi-layered input
of multichannel features which enables the network to learn
sound events in a multichannel audio better was proposed.
Low-level features were used in place of high-level features,
and the network was shown to learn high-level equivalent in-
formation from simple low-level features. The performance
of the system was evaluated on two datasets - a larger dataset
for proving that the binaural features truly help in improving
the sound event detection, and a public dataset, to allow other
researchers to benchmark. The proposed network using bin-
aural spatial features was shown to recognize sound events
better than using just the monaural features.

Feature combination Indoor Outdoor
Basketball Bus Hallway Office Car Restaurant Shop Beach Street Track and Field

mel-monaural 79.7 52.6 59.1 81.8 78.2 80.7 62.4 56.5 60.3 70.1
mel 82.2 56.5 66.6 83.3 81.5 83.1 63.3 59.5 66.0 70.2
mel + TDOA 82.8 58.7 66.0 80.8 79.2 81.2 64.7 60.9 66.9 68.8
mel + GCC-PHAT 81.9 58.9 65.3 80.0 81.2 81.3 65.3 60.4 66.3 72.6
mel + dom-freq 83.7 60.5 67.8 84.6 80.8 81.8 64.6 60.7 66.6 67.6
mel + ACR 82.9 58.6 63.8 83.6 83.4 82.3 65.5 60.4 65.8 69.0
mel + TDOA + dom-freq 83.0 59.4 67.5 83.9 78.6 79.9 65.1 60.5 65.0 70.0
mel + GCC-PHAT + ACR 82.8 59.1 66.8 82.2 79.4 80.4 64.8 60.4 66.1 68.5

Table 2. Context wise F-scores for TUT-SED 2009 dataset.
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