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Abstract—The industry is constantly moving towards the 
research, implementation and deployment of new solutions that 
permit the optimization of processes. Nowadays, such solutions 
consist mostly on ICT developments, which permit the collection, 
distribution, integration, analysis, and manipulation of 
heterogeneous data. The under way Cloud Collaborative 
Manufacturing Networks (C2NET) project targets the 
development of cloud-enabled tools for supporting the SMEs 
supply network optimization of manufacturing and logistic 
assets. The C2NET solution includes the implementation of 
paradigms as e.g. cloud computing or service-oriented and event-
driven architectures, used for wide data integration. Among its 
requirements, the C2NET platform needs a solution for catch, 
process and react to events triggered in different locations of 
collaborative manufacturing networks, which are endowed with 
devices that permits the integration of Cyber-Physical Systems 
(CPS). This paper presents the architecture and main 
functionality of a knowledge-based approach that allows 
processing supply chain events handled by CPS devices. The 
main component of the presented solution is the SECA ontology, 
which is a knowledge base that can be updated at runtime. The 
main purpose of the ontology is to describe events, their status 
and the actions to be performed once a set of events are triggered 
in certain order. This research work offers a solution that can be 
employed by the C2NET platform not only to catch and process 
events; but also to notify linked data consumers. 

Keywords—knowledge-based system, ontology, SPARQL, event 
processing, cyber-physical systems 

I.   INTRODUCTION 
Nowadays, industrial enterprises need to manage and adapt 

to user demands, which accentuate more the dynamism and 
reconfiguration of contemporary industrial systems. Therefore, 
one of the priorities of the industry is to employ new ICT 
solutions that are capable of managing and analysing a vast 
amount of heterogeneous data, which is retrieved from 
different data sources. The customization of products and 
optimization of processes to enhance enterprise’s efficiency are 
two factors that directly imply the need of exhaustive 
monitoring and control on events, which occur in different 
systems involved in supply chain product life-cycle. 

The employment of ICT in the industry ends up in the 
implementation of different paradigms as cloud computing or 
Service-Oriented and Event-Driven architectures (SOA and 

EDA, respectively). Such different approaches can be used for 
wide data management, integration and distribution. For 
instance, Event-driven Service Oriented Architectures (event-
driven SOAs) can be considered in manufacturing systems to 
be implemented and exploited within the actual generation of 
of programmable logic controllers [1] and Web Service (WS) 
enabled devices [2]. WS enabled industrial controllers (e.g. 
S1000 from Inico Technologies1) permit the implementation of 
SOA in actual production lines [2]–[4]. Basically, the use of 
SOA in manufacturing systems offers a robust solution for 
monitoring the status of industrial system resources and 
controlling processes. Such control on system’s components 
permits the calculation of Key Performance Indicators (KPIs), 
which are indicators used to measure and, then, enhance the 
efficiency of industrial systems. Examples of standardized 
KPIs can be found in [5]. On the other hand, the integration of 
Cyber and Physical Systems (CPS) permits distributed, 
modular, flexible and reconfigurable solutions for industrial 
systems. Some of the challenges of CPS were firstly addressed 
in [6] and current advances presented in [7]. 

The European Commission stated that the research and 
consequent developments of ICT are mature enough to be 
implemented in enterprises, aiming e.g. the simplification of 
activities and improvement of communications between intra 
and inter systems [8]. This will benefit SMEs to overcome their 
constrained resources and make them more visible and active 
in collaborative networks, increasing their competitiveness. 

In this context, the Cloud Collaborative Manufacturing 
Networks (C2NET) project 2  has the objective of creating 
cloud-enabled tools for supporting supply network 
optimization of SMEs’ manufacturing and logistic assets, 
based on collaborative demand, production and delivery plan 
[9]. One of the requirements for creating the C2NET solution is 
the integration of different IT systems, which belong to 
participants or partners working in the same supply chain for 
sharing data to optimize overall processes in products’ life-
cycle. The C2NET project needs a solution for mapping the 
occurrence of certain sets of events to certain actions, which 
are monitored and/or controller by consumers (i.e. both internal 
and external systems from the C2NET platform). 

                                                             
1 http://www.inicotech.com/ 
2 http://c2net-project.eu/ 



The integration of EDA and knowledge-based systems 
within CPS permit the implementation of solutions to collect, 
distribute, integrate, analyse, and manipulate events (controlled 
by WS enabled devices), which occur in different locations of 
supply chains. In fact, this article presents an approach to 
implement such solution for processing supply chain events. 
Then, the manuscript describes the principles, architecture, 
used ontological model and proof of concept for implementing 
and testing the approach. 

The rest of the paper is structured as follows: Section II 
describes the main research work related topics. Then, Section 
III presents the approach for creating a knowledge-based 
engine for processing supply events. Afterwards, Section IV 
shows a proof of concept and some results for validating the 
presented approach. Finally, Section V concludes the article. 

II.   RELATED WORK 

A.   Supply chain events and data collection 
Currently, with the support of computer and networks 

development, manufacturing systems term became wider and 
more comprehensive. As defined in ISA-953, the automation 
pyramid is constructed mainly by three layers, Enterprise 
Resource Planning (ERP), Manufacturing Execution System 
(MES) and shop floor [10]. One of the key terms is provided as 
supply chain in the ERP level. Supply chain represents the 
relation between suppliers, manufacturer and customers. ERP, 
which is managing the supply chain, bonds all three players of 
the supply chain. The definition of supply chain management 
comprises as a process for planning, implementing and 
controlling resources between the three main players in order 
to achieve the optimal results such as time efficiency and/or 
cost efficiency [11]–[13]. 

Therefore, supply chain events includes all the 
communication information between supply chain partners. 
The communication may involve negotiations, payments, 
orders, offers, supply and delivery planes. Due to the massive 
amount of events in supply chain, controlling and processing 
mechanisms are required. 

Many projects tend to provide solutions for such problem. 
The C2NET project is creating a platform for supply chain 
management. The C2NET platform aims to provide a media 
for supply chain partners to communicate. One of the main 
development tasks is presented as Data Collection Framework 
(DCF). DCF allows the users to communicate with each other 
regardless the variations in the technologies which they use. A 
CEP (Complex Event Processing) engine is required for 
achieving such a requirement. Ordinary CEP engines provides 
an excellent result in terms of functionality. However, these 
CEP engines require a reasonable time for configurations and 
rule design as e.g. in [14] wherein users must define the events, 
status and methods based on Complex Event Detection and 
Response (CEDR) queries and its translation to concurrent 
reactive objects. 

                                                             
3 https://isa-95.com/ 

B.   Knowledge-based systems 
Within the appearance of ICT and web-based technologies, 

the development and implementation of knowledge-based 
systems is increasing.  One of the common practices is to have 
a central knowledge base that can be accessed to either update 
or request information. Such repository of system information 
become a critical component for knowledge-driven solutions 
[15], [16]. Currently, aforementioned research works use 
semantic descriptions that are both machine and human 
readable. Then, it is easy to implement by humans and there 
are not problems for machines to reuse such knowledge. For 
instance, ontological models can firstly be designed by humans 
but afterwards be populated and manipulated by cyber systems. 

Ontologies [17] are nowadays employed as a mean to 
describe knowledge of the system to be controlled, which is 
encapsulated as an engineering artifact that can be updated and 
consulted at operation runtime. Although there are several 
languages for designing ontologies [18], probably, the 
Ontology Web Language (OWL) [19] is the most famous one 
due to its level of description. OWL is an RDF-based language 
[20] that permits the representation of knowledge of any 
domain within different elements as e.g. individuals, classes, 
relations, restrictions, functions, axioms or rules. 

As OWL is RDF-based, it can be queried within SPARQL 
Protocol and RDF Query Language (SPARQL), which permits 
to consult ontological data within different sorts of query types 
as e.g. ASK or SELECT, among others [21]. In addition, an 
extension of SPARQL, sometimes referred as SPARUL 
(SPARQL Update) allows to update RDF graphs with e.g. 
INSERT or DELETE query types [22].  

Moreover, reasoning engines (or reasoners) are capable of 
analyzing ontologies and inferencing knowledge. 
Conceptually, reasoners are capable of concluding or creating 
new facts (implicit knowledge) out of stated facts (explicit 
knowledge). To assist such inference of knowledge, the 
definition of semantic rules is a common practice, within e.g. 
the Semantic Web Rule Language (SWRL) [23] for ontologies 
implemented with RDF-based languages. On the other hand, 
reasoning engines are also employed to validate ontologies so 
they are capable of identifying any type of model 
inconsistency. 

III.  APPROACH 
This section presents the approach for developing a 

knowledge-based engine for processing supply chain events. 
As appears in Fig. 1, the proposed knowledge based engine 
may interact with various devices that runs on different 
platforms, as well as for consumers. On the other hand, the 
user may interact with the engine using web-based user 
interface for uploading the ontology. 

Following subsections describe the principles, ontology 
model, architecture and interaction of components of the 
approach. 



 

Fig. 1.   View of the KB engine and interactions with a supply chain entities 

A.   Processing events within a knowledge based engine 
The supply chain englobes all components and stages that 

participate in the development and shipment of products. 
Moreover, the manufacturing process starts from the 
management enterprise layer to the factory shopfloor. In event-
driven environments, all manufacturing components connected 
to contemporary industrial controllers publish events in order 
to notify about status of machines. 

In this research work, all events are considered as self-
described events. This means that events are issued from the 
WS enabled device once a logic criterion is matched. For 
instance, a machine in the factory shopfloor measures the 
current continuously and if the current exceeds a certain limit 
an event will be issued, notifying to the interested event 
subscribers that the machine entered in the state of high current 
value. An example of a simple JSON formatted event to be 
published is shown in following Fig. 2. 

{
“eventId”:+ “highCurrent”,
“publisherId”:+ “robotA”,
“timestamp”:+ 1462095503510

}
 

Fig. 2.   An example of JSON event message 

Such event format permits the low level of event 
processing to be occurred in the device, while higher-level to 
be achieved in the knowledge-based engine. In this way, the 
knowledge-based engine can state a high-level conclusion, 
which is defined by the occurrence of a set of events within a 
time window. Because the time is important to determine if the 
set of events occur in certain time window, the timeStamp 
attribute is included in the JSON message and will be taken 
into account in updating the KB of the engine, each time that 
an event is caught. 

The ontology designed to handle such information and the 
manner how devices and the interface of the KB engine 
communicate is described in following subsections. 

 

B.   The SECA ontology 

As previously described, the presented approach employs 
an ontology, which includes semantic descriptions of status and 
event-related information. The main ontology concepts are 
presented in Fig. 3. The model can be implemented with RDF-
based languages as e.g. OWL and the queries used to interact 
with it are shown in next subsection. 

 

Fig. 3.   SECA ontology class diagram 

Previous diagram shows the main concepts of the SECA 
ontology. As it can be seen, the main classes of the model are: 
Status, Event, Conclusion, Action and Consumer. 

The Status concept includes two instances to determine the 
status of events: triggered and nontriggered. The Event class 
includes device notified events, which will include their URL, 
timestamp, device id and event id as hasUrl, hasTimestamp, 
hasDeviceID and hasEventID datatype property values, 
respectively. In addition, Event instances are linked to Status 
instances and updated each time that an event occurrence is 
notified within the hasStatus object property. It should be 
noted that the initial status of all the described events is 
nontriggered. Afterwards, event status will be updated to 
triggered when notified and its timestamp will be added as a 
datatype property called hasTimetamp with integer data type. 
In this manner, Status class is mainly required at the initial 
stage because the hasTimetamp is updated once the event is 
triggered. 

The Conclusion class includes instances that are linked to 
one or more events. As it is advanced in previous subsection, 
the approach determines that a conclusion is found when a set 
of events related to the conclusion occur during the 
conclusion’s time window. Such time window is defined as a 
hasTimeWindow datatype property integer value. Moreover, 
Conclusion instances are linked to Action instances, which are 
actions to be performed once a conclusion is determined. Such 
link is described within implies object property. It should be 
noted that actions are meant to be service operations that will 
be invoked within its URL, which is included as a datatype 
property in Action instances. 

Finally, Fig. 3 shows the inclusion of Consumer class, 
which will describe the consumers that are mapped to their 
interested actions. Such relation between actions and 
consumers is described as binddedTo object property. It should 
be noted that the consumers can be any type of entity that 
needs to receive any information regarding actions to perform, 
based on occurrence of related events. 



C.   Architecture 
The objective of this research is to provide a simple and 

easily reconfigurable approach which processes supply chain 
events. The simplicity appears in the architecture of the 
approach. As shown in previous Fig. 1, the KB engine can be 
seen as a component formed by two main components: an 
interface (represented as a thin envelop) for communicating 
with the outside world and the ontology, which describes the 
required knowledge as semantic descriptions. Following Fig 4 
represents the architecture of proposed solution and how it 
interacts with both providers and consumers of supply chain 
events. 

 

Fig. 4.   Proposed architecture 

The interface allows the knowledge based engine to interact 
with other components (user, publishers and consumers). The 
event processing mechanism is produced inside the SPARQL 
queries that the interface requests. As Fig. 4 presents, the 
interface may include different protocols for communications 
to provide more genericity to the engine. 

The deployment of the approach starts with a configuration 
phase, which consists of designing and uploading the ontology 
model to the engine.  This is done by a user within a web-based 
user interface. The population of the ontological model can be 
done within an ontology editor or within SPARQL Update 
queries because the ontology service can process RDF-based 
queries. 

In addition, for the process to start, the engine must 
subscribe to all events that it has to handle. Then, the user starts 
the engine by invoking a service of the interface, which 
automatically requests all the subscription URLs from the 
knowledge engine. The SPARQL query shown in Fig. 5 is used 
to request the events of the system that the interface needs to 
subscribe. 

PREFIX' seca:' http://www.tut.fi/FAST9SECAOnt#
SELECT' ?events' ?eventURL
WHERE
{
?Conclusion' seca:needsEvent ?events.
?events' seca:hasURL ?eventURL.'
}

 

Fig. 5.   SPARQL query used for subscribing to events 

In order to describe the interaction of the different 
components, Fig. 6 presents a sequence diagram. It should be 

noted that first steps described to be done in configuration 
phase. This phase ends when the interface sends subscription 
requests to publishers according to the query result. 

 

Fig. 6.   Sequence diagram for the execution of the event processing 

Once an event is triggered by a publisher, the interface 
updates the event instance information in the knowledge 
engine. Therefore, the updating operation affects the 
hasTimestamp and the hasStatus datatypes values of the event 
in the ontology model. This update is done within an SPARUL 
query shown in Fig. 7. 

PREFIX' seca:' http://www.tut.fi/FAST9SECAOnt#
PREFIX' xsd:'http://www.w3.org/2001/XMLSchema#
DELETE{
seca:event_A seca:hasStatus ?oldStatus.
}
INSERT{
seca:event_A seca:hasStatus seca:Triggered.
seca:event_A seca:hasTimestamp "1461920085584"^^xsd:int .
}
WHERE{
seca:event_A seca:hasStatus ?oldStatus.
}

 

Fig. 7.   An example for updating the event status after notification 

Afterwards, the interface waits until it receives the response 
from the engine. A simple examination is occurred on the 
response to assure that the update operation is correctly 
accomplished. Accordingly, the interface requests list of 
consumers which can be notified after the update in the event. 

In this stage the high-level event processing is achieved. In 
this research work, the processing procedure occurs inside the 
SPARQL query. The query depicted in Fig 8 shows the events 
processing procedure. 



 

Fig. 8.   SPARQL query for processing events 

As it can be seen in previous query, the SPARQL query 
used for processing queries includes a SELECT subquery. The 
main SELECT clause returns the conclusion, action and 
consumers by filtering the result according to the time window 
for each conclusion. Nevertheless, the subquery is needed for 
returning the upper and lower boundaries of the event for each 
conclusion. The reason of nesting the subquery is the order of 
execution in SPARQL. Since we need the maximum and 
minimum timestamp calculations and SELECT clause is the 
last one to be executed, the arithmetic operations must be done 
before last FILTER operator is validated. Once the query is 
executed, the interface notifies each consumer according to the 
result of the query. 

In this approach, below set of expressions represent the 
validation when executing the query shown in Fig. 8. 

!"#$ = &'((∀+, ∈ .)  (1) 

!"#$ = &'((∀+, ∈ .)  (2) 

!" = $
%&!, ()*+,)-./0" ≥ (2345$(267
89, ()*+,)-./0" < (2345$(267$  (3) 

Where, C: conclusion instances in SECA, e: events, tmax 
and tmin are the boundaries for the received set of events and Sc 
states if the conclusion is satisfied, which is expressed as 
YES/NO value. This operation occurs if and only if all set of 
events which are needed by the conclusion hasStatus triggered.  

Finally, the interface receives conclusions with 
corresponding actions and consumers. Actions could be 
services invocation from notification or operation in the 
consumer which provides URL for reachability in the ontology. 
In this research, the focus is directed towards events 
processing. Therefore, actions and consumers are limited to 
notification operations. However, the ontology can be further 
extended or even merged with other ontologies that might 
include already such types of descriptions. 

IV.  PROOF OF CONCEPT 
Once the approach has been described, this section presents 

a testing case for proving the concept. Firstly, the SECA 

ontology is populated with several instances to test when a 
conclusion can be achieved and, consequently, which action 
and consumer must be executed and advised, respectively. The 
main objective of this proof of concept is not only to check that 
mappings between Status, Event, Conclusion and Action class 
instances is correct; but also to test critical timing on triggering 
of events, which happen in different time window of 
corresponding conclusions. 

A.   Testing case 
The first step for testing the approach is to populate the 

ontology with the events that are handled by devices, which are 
connected to the KB engine interface. In addition, the 
conclusions to be verified and their links between events and 
actions are also included in the model. Finally, the consumers 
that are interested in certain actions, are inserted in the 
ontology. It should be noted that the designed model has been 
implemented in OWL, using Olingvo, which is an ontology 
editor developed at Tampere University of Technology. 

Following tables Table I, Table II and Table III show the 
status of the SECA ontology instances, before uploading the 
model to the interface. Meanwhile Table I shows the instances 
of the model, Table II shows the property assertions of 
instances and Table III shows the datatype property value 
assertions, which in configuration stage are only the time 
windows of conclusions. As it can be deducted from the 
abstract naming of instances, this is an artificial test. 
Nevertheless, adding correct URLs, this testing model could be 
employed in a real scenario. 

TABLE I.    TESTING MODEL INSTANCES 

Class Instances 
Status triggered, nonTriggered 
Event event_A, event_B, event_C, event_D, event_E, event_F 
Conclusion conclusion_A, conclusion_B, conclusion_C, conclusion_D 
Action action_A, action_B, action_C, action_D 
Consumer consumer_A, consumer_B 

TABLE II.    PROPERTY ASSERTIONS OF TESTING MODEL INSTANCES  

Instance Object property Instance 
event_A 

hasStatus 

nonTriggered 
event_B nonTriggered 
event_C nonTriggered 
event_D nonTriggered 
event_E nonTriggered 
event_F nonTriggered 
conclusion_A 

needsEvent 

event_A, event_B, event_C 
conclusion_B event_D, event_E, event_F 
conclusion_C event_B, event_F 
conclusion_D event_B, event_C 
conclusion_A 

implies 

action _A 
conclusion_B action _B 
conclusion_C action _C 
conclusion_D action _D 
action_A 

bindedTo 

consumer_A 
action_B consumer_A 
action_C consumer_B 
action_D consumer_B 

 



TABLE III.    DATATYPE PROPERTY VALUE ASSERTIONS 

Instance Datatype property Value 
conclusion_A hasTimeWindow 1000 
conclusion_B hasTimeWindow 500 

a.  These values are integers. Then, as an example, 1000 is added in the model as 
"1000"^^<http://www.w3.org/2001/XMLSchema#integer> 

It should be noted that Table II shows the initial status of 
events as nonTriggered. It will be the first event occurrence 
that will cause the change of status to triggered due to the 
execution of the query shown in Fig. 7. In fact, Table III does 
not show any event timestamp because the hasTimestamp 
value will be updated after the execution of the query shown in 
Fig. 7. Also, URLs of instances have not been added to Table 
III because the main focus of this experiment is to verify that 
conclusions can be correctly mapped to a concrete set of event 
occurrence. In any case, the URLs are added as hasURL 
datatype property values, which has String type. 

B.   Results 
To proof the concept and, hence, the described approach 

the experiment has two main tests, according to the sequence 
diagram shown in Fig. 6. Firstly, the query shown of Fig. 7 
must be executed each time that events occur. Then, whenever 
a conclusion is satisfied by the occurrence of all needed events, 
the query shown in Fig. 8 must send as an output the mapping 
between Conclusion, Action and Consumer instances. 

In order to depict the times in which certain events have 
been triggered and, then, the event status of the model updated, 
Fig. 9 shows a time line of event execution. It should be noted 
that the unit of time in such diagram is milliseconds. 

 
Fig. 9.   Timing diagram of event execution 

As it can be seen, up to four possible cases between two 
conclusions that share events has been tested. The graph shows 
that conclusions are satisfied whenever related events occurred 
inside their corresponding time window. Finally, to support the 
proof of concept, Fig. 10 depicts the third case in which 
conclusion_A is not satisfied because even though all needed 
events have occurred, it has not happened inside the 
conclusion’s time window. Nevertheless, the time window of 
conclusion_D is 500 ms and because of needed events have 
occurred at timestamp 1000 ms and 1100 ms (they have 
occurred in 100 ms) they satisfy the condition. Therefore, the 
result is the satisfaction of conclusion_D and, then, the query 
result also output the mapping between conclusion_D, 
action_D and consumer_B. 

 

Fig. 10.  Query execution and case 3 result validation 

V.   CONCLUSION 
This article presents the concepts, architecture, ontology 

design and proof of concept for implementing and testing a 
knowledge-based approach for processing events. The 
ontology model is hosted by an ontology service that interfaces 
WS enabled devices and Consumers of event information. 

As described, the resulting solution of described research 
work that might be used to process supply chain events. In 
principle, such task is normally addressed by CEP tools. The 
authors of this research claim that presented work is a light 
alternative to such solutions, which definitely fits in the 
C2NET framework and can be easily integrated with current 
modules. In addition, the level of abstraction offered by 
ontologies, may facilitate the design phase of Conclusion 
instances, which, indeed, would be implemented as rules in 
CEP engines. In fact, presented solution might be directly 
deployed in the C2NET platform as a module that interfaces 
WS enabled devices and systems pertaining or with access to 
the platform. 



Moreover, in terms of configuration, one of the direct 
benefits of presented approach is the reduction of time and 
effort that users could experience using CEP approaches based 
on CEDR queries [14]. Fundamentally, our research work 
allows users only to take care about definition of relations 
between events and actions with no need of understanding the 
insights of the implementation. This is because the queries of 
the solution are generic and includes the required logic for 
triggering actions according to their corresponding set of 
events. 

Further, the solution will be tested in a real case scenario, in 
which the ontology will be populated with real data and service 
descriptions. Moreover, the speed of communication and 
amount of events to be handled must be tested before 
deploying presented solution in the real platform. These tests 
might imply slight modifications in the ontology service. 
Besides that, this approach can be extended for achieving more 
genericity. Consequently, the ontology mode could be 
expanded as well. For instance, the interface could handle more 
protocols if these protocols are defined properly in the 
ontology model. Moreover, during this research work, more 
ideas and implementations have raised such as including 
priorities for event and adding the correct definition for the 
order of received event. In any case, presented research work is 
the first step for implementing improvements and testing new 
ideas. 

ACKNOWLEDGMENT 
The research leading to these results has received funding 

from the European Union’s Horizon 2020 research and 
innovation program under grant agreement n° 636909, 
correspondent to the project shortly entitled C2NET, Cloud 
Collaborative Manufacturing Networks. 

 

REFERENCES 
 
[1] B. R. Ferrer, S. Iarovyi, A. Lobov, and J. L. M. Lastra, “Towards 

processing and reasoning streams of events in knowledge-driven 
manufacturing execution systems,” in 2015 IEEE 13th International 
Conference on Industrial Informatics (INDIN), 2015, pp. 1075–1080. 

[2] L. E. G. Moctezuma, J. Jokinen, C. Postelnicu, and J. L. M. Lastra, 
“Retrofitting a factory automation system to address market needs and 
societal changes,” in IEEE 10th International Conference on Industrial 
Informatics, 2012, pp. 413–418. 

[3] M. J. A. G. Izaguirre, A. Lobov, and J. L. M. Lastra, “OPC-UA and 
DPWS interoperability for factory floor monitoring using complex 
event processing,” in 2011 9th IEEE International Conference on 
Industrial Informatics, 2011, pp. 205–211. 

[4] I. M. Delamer and J. L. M. Lastra, “Service-Oriented Architecture for 
Distributed Publish/Subscribe Middleware in Electronics Production,” 
IEEE Trans. Ind. Inform., vol. 2, no. 4, pp. 281–294, Nov. 2006. 

[5] Y. C. Dufort, “ISA-95-Based Operations and KPI Metrics assessment 
and Analysis,” White paper 24, A Mesa International, ISA and Ivensys 
Wonderware co-branded white paper, Nov. 2006. 

[6] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in 2008 11th 
IEEE International Symposium on Object and Component-Oriented 
Real-Time Distributed Computing (ISORC), 2008, pp. 363–369. 

[7] J. Lee, E. Lapira, B. Bagheri, and H. Kao, “Recent advances and trends 
in predictive manufacturing systems in big data environment,” Manuf. 
Lett., vol. 1, no. 1, pp. 38–41, 2013. 

[8] Europäische Kommission, Ed., Helping firms grow: Commission staff 
working document SWD(2014)277 final  ; [a Europe 2020 initiative]. 
Luxembourg: Publ. Off. of the Europ. Union, 2014. 

[9] B. Andres, R. Sanchis, and R. Poler, “A Cloud Platform to support 
Collaboration in Supply Networks,” Int. J. Prod. Manag. Eng., vol. 4, 
no. 1, p. 5, Jan. 2016. 

[10] J. Delsing, F. Rosenqvist, O. Carlsson, A. W. Colombo, and T. 
Bangemann, “Migration of industrial process control systems into 
service oriented architecture,” in IECON 2012 - 38th Annual 
Conference on IEEE Industrial Electronics Society, 2012, pp. 5786–
5792. 

[11] P. Maheshwari and S. S. Tam, “Events-Based Exception Handling in 
Supply Chain Management using Web Services,” in Advanced Int’l 
Conference on Telecommunications and Int’l Conference on Internet 
and Web Applications and Services (AICT-ICIW’06), 2006, pp. 151–
151. 

[12] T. Lu, X. Guo, B. Xu, L. Zhao, Y. Peng, and H. Yang, “Next Big Thing 
in Big Data: The Security of the ICT Supply Chain,” in 2013 
International Conference on Social Computing (SocialCom), 2013, pp. 
1066–1073. 

[13] Baofeng Huo, Yinan Qi, Zhiqiang Wang, and Xiande Zhao, “The 
impact of supply chain integration on firm performance: The 
moderating role of competitive strategy,” Supply Chain Manag. Int. J., 
vol. 19, no. 4, pp. 369–384, Jun. 2014. 

[14] P. Pietrzak, P. Lindgren, and H. Mäkitaavola, “Towards a lightweight 
CEP engine for embedded systems,” in IECON 2012 - 38th Annual 
Conference on IEEE Industrial Electronics Society, 2012, pp. 5805–
5810. 

[15] B. Ramis, L. Gonzalez, S. Iarovyi, A. Lobov, J. L. M. Lastra, V. 
Vyatkin, and W. Dai, “Knowledge-based web service integration for 
industrial automation,” in 2014 12th IEEE International Conference on 
Industrial Informatics (INDIN), 2014, pp. 733–739. 

[16] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M. 
Lastra, “Cyber-Physical Systems for Open-Knowledge-Driven 
Manufacturing Execution Systems,” Proc. IEEE, vol. 104, no. 5, pp. 
1142–1154, May 2016. 

[17] T. R. Gruber, “Toward principles for the design of ontologies used for 
knowledge sharing?,” Int. J. Hum.-Comput. Stud., vol. 43, no. 5, pp. 
907–928, 1995. 

[18] D. Kalibatiene and O. Vasilecas, “Survey on Ontology Languages,” in 
Perspectives in Business Informatics Research, J. Grabis and M. 
Kirikova, Eds. Springer Berlin Heidelberg, 2011, pp. 124–141. 

[19] “OWL Web Ontology Language Reference.” [Online]. Available: 
https://www.w3.org/TR/owl-ref/. [Accessed: 01-May-2016]. 

[20] “RDF - Semantic Web Standards.” [Online]. Available: 
https://www.w3.org/RDF/. [Accessed: 01-May-2016]. 

[21] “SPARQL Query Language for RDF.” [Online]. Available: 
https://www.w3.org/TR/rdf-sparql-query/. [Accessed: 01-May-2016]. 

[22] “SPARQL 1.1 Update.” [Online]. Available: 
https://www.w3.org/TR/sparql11-update/. [Accessed: 01-May-2016]. 

[23] “SWRL: A Semantic Web Rule Language Combining OWL and 
RuleML.” [Online]. Available: 
https://www.w3.org/Submission/SWRL/. [Accessed: 01-May-2016]. 

 

 

Powered by TCPDF (www.tcpdf.org)


