
A solution for processing supply chain events within
ontology-based descriptions

Borja Ramis Ferrer, Wael M. Mohammed and Jose L. Martinez Lastra
FAST-Laboratory

Tampere University of Technology
PO Box 600, 33101 Tampere

{borja.ramisferrer, wael.mohammed, jose.lastra}@tut.fi

Abstract—The industry is constantly moving towards the
research, implementation and deployment of new solutions that
permit the optimization of processes. Nowadays, such solutions
consist mostly on ICT developments, which permit the collection,
distribution, integration, analysis, and manipulation of
heterogeneous data. The under way Cloud Collaborative
Manufacturing Networks (C2NET) project targets the
development of cloud-enabled tools for supporting the SMEs
supply network optimization of manufacturing and logistic
assets. The C2NET solution includes the implementation of
paradigms as e.g. cloud computing or service-oriented and event-
driven architectures, used for wide data integration. Among its
requirements, the C2NET platform needs a solution for catch,
process and react to events triggered in different locations of
collaborative manufacturing networks, which are endowed with
devices that permits the integration of Cyber-Physical Systems
(CPS). This paper presents the architecture and main
functionality of a knowledge-based approach that allows
processing supply chain events handled by CPS devices. The
main component of the presented solution is the SECA ontology,
which is a knowledge base that can be updated at runtime. The
main purpose of the ontology is to describe events, their status
and the actions to be performed once a set of events are triggered
in certain order. This research work offers a solution that can be
employed by the C2NET platform not only to catch and process
events; but also to notify linked data consumers.

Keywords—knowledge-based system, ontology, SPARQL, event
processing, cyber-physical systems

I. INTRODUCTION
Nowadays, industrial enterprises need to manage and adapt

to user demands, which accentuate more the dynamism and
reconfiguration of contemporary industrial systems. Therefore,
one of the priorities of the industry is to employ new ICT
solutions that are capable of managing and analysing a vast
amount of heterogeneous data, which is retrieved from
different data sources. The customization of products and
optimization of processes to enhance enterprise’s efficiency are
two factors that directly imply the need of exhaustive
monitoring and control on events, which occur in different
systems involved in supply chain product life-cycle.

The employment of ICT in the industry ends up in the
implementation of different paradigms as cloud computing or
Service-Oriented and Event-Driven architectures (SOA and

EDA, respectively). Such different approaches can be used for
wide data management, integration and distribution. For
instance, Event-driven Service Oriented Architectures (event-
driven SOAs) can be considered in manufacturing systems to
be implemented and exploited within the actual generation of
of programmable logic controllers [1] and Web Service (WS)
enabled devices [2]. WS enabled industrial controllers (e.g.
S1000 from Inico Technologies1) permit the implementation of
SOA in actual production lines [2]–[4]. Basically, the use of
SOA in manufacturing systems offers a robust solution for
monitoring the status of industrial system resources and
controlling processes. Such control on system’s components
permits the calculation of Key Performance Indicators (KPIs),
which are indicators used to measure and, then, enhance the
efficiency of industrial systems. Examples of standardized
KPIs can be found in [5]. On the other hand, the integration of
Cyber and Physical Systems (CPS) permits distributed,
modular, flexible and reconfigurable solutions for industrial
systems. Some of the challenges of CPS were firstly addressed
in [6] and current advances presented in [7].

The European Commission stated that the research and
consequent developments of ICT are mature enough to be
implemented in enterprises, aiming e.g. the simplification of
activities and improvement of communications between intra
and inter systems [8]. This will benefit SMEs to overcome their
constrained resources and make them more visible and active
in collaborative networks, increasing their competitiveness.

In this context, the Cloud Collaborative Manufacturing
Networks (C2NET) project 2 has the objective of creating
cloud-enabled tools for supporting supply network
optimization of SMEs’ manufacturing and logistic assets,
based on collaborative demand, production and delivery plan
[9]. One of the requirements for creating the C2NET solution is
the integration of different IT systems, which belong to
participants or partners working in the same supply chain for
sharing data to optimize overall processes in products’ life-
cycle. The C2NET project needs a solution for mapping the
occurrence of certain sets of events to certain actions, which
are monitored and/or controller by consumers (i.e. both internal
and external systems from the C2NET platform).

1 http://www.inicotech.com/
2 http://c2net-project.eu/

The integration of EDA and knowledge-based systems
within CPS permit the implementation of solutions to collect,
distribute, integrate, analyse, and manipulate events (controlled
by WS enabled devices), which occur in different locations of
supply chains. In fact, this article presents an approach to
implement such solution for processing supply chain events.
Then, the manuscript describes the principles, architecture,
used ontological model and proof of concept for implementing
and testing the approach.

The rest of the paper is structured as follows: Section II
describes the main research work related topics. Then, Section
III presents the approach for creating a knowledge-based
engine for processing supply events. Afterwards, Section IV
shows a proof of concept and some results for validating the
presented approach. Finally, Section V concludes the article.

II. RELATED WORK

A. Supply chain events and data collection
Currently, with the support of computer and networks

development, manufacturing systems term became wider and
more comprehensive. As defined in ISA-953, the automation
pyramid is constructed mainly by three layers, Enterprise
Resource Planning (ERP), Manufacturing Execution System
(MES) and shop floor [10]. One of the key terms is provided as
supply chain in the ERP level. Supply chain represents the
relation between suppliers, manufacturer and customers. ERP,
which is managing the supply chain, bonds all three players of
the supply chain. The definition of supply chain management
comprises as a process for planning, implementing and
controlling resources between the three main players in order
to achieve the optimal results such as time efficiency and/or
cost efficiency [11]–[13].

Therefore, supply chain events includes all the
communication information between supply chain partners.
The communication may involve negotiations, payments,
orders, offers, supply and delivery planes. Due to the massive
amount of events in supply chain, controlling and processing
mechanisms are required.

Many projects tend to provide solutions for such problem.
The C2NET project is creating a platform for supply chain
management. The C2NET platform aims to provide a media
for supply chain partners to communicate. One of the main
development tasks is presented as Data Collection Framework
(DCF). DCF allows the users to communicate with each other
regardless the variations in the technologies which they use. A
CEP (Complex Event Processing) engine is required for
achieving such a requirement. Ordinary CEP engines provides
an excellent result in terms of functionality. However, these
CEP engines require a reasonable time for configurations and
rule design as e.g. in [14] wherein users must define the events,
status and methods based on Complex Event Detection and
Response (CEDR) queries and its translation to concurrent
reactive objects.

3 https://isa-95.com/

B. Knowledge-based systems
Within the appearance of ICT and web-based technologies,

the development and implementation of knowledge-based
systems is increasing. One of the common practices is to have
a central knowledge base that can be accessed to either update
or request information. Such repository of system information
become a critical component for knowledge-driven solutions
[15], [16]. Currently, aforementioned research works use
semantic descriptions that are both machine and human
readable. Then, it is easy to implement by humans and there
are not problems for machines to reuse such knowledge. For
instance, ontological models can firstly be designed by humans
but afterwards be populated and manipulated by cyber systems.

Ontologies [17] are nowadays employed as a mean to
describe knowledge of the system to be controlled, which is
encapsulated as an engineering artifact that can be updated and
consulted at operation runtime. Although there are several
languages for designing ontologies [18], probably, the
Ontology Web Language (OWL) [19] is the most famous one
due to its level of description. OWL is an RDF-based language
[20] that permits the representation of knowledge of any
domain within different elements as e.g. individuals, classes,
relations, restrictions, functions, axioms or rules.

As OWL is RDF-based, it can be queried within SPARQL
Protocol and RDF Query Language (SPARQL), which permits
to consult ontological data within different sorts of query types
as e.g. ASK or SELECT, among others [21]. In addition, an
extension of SPARQL, sometimes referred as SPARUL
(SPARQL Update) allows to update RDF graphs with e.g.
INSERT or DELETE query types [22].

Moreover, reasoning engines (or reasoners) are capable of
analyzing ontologies and inferencing knowledge.
Conceptually, reasoners are capable of concluding or creating
new facts (implicit knowledge) out of stated facts (explicit
knowledge). To assist such inference of knowledge, the
definition of semantic rules is a common practice, within e.g.
the Semantic Web Rule Language (SWRL) [23] for ontologies
implemented with RDF-based languages. On the other hand,
reasoning engines are also employed to validate ontologies so
they are capable of identifying any type of model
inconsistency.

III. APPROACH
This section presents the approach for developing a

knowledge-based engine for processing supply chain events.
As appears in Fig. 1, the proposed knowledge based engine
may interact with various devices that runs on different
platforms, as well as for consumers. On the other hand, the
user may interact with the engine using web-based user
interface for uploading the ontology.

Following subsections describe the principles, ontology
model, architecture and interaction of components of the
approach.

Fig. 1. View of the KB engine and interactions with a supply chain entities

A. Processing events within a knowledge based engine
The supply chain englobes all components and stages that

participate in the development and shipment of products.
Moreover, the manufacturing process starts from the
management enterprise layer to the factory shopfloor. In event-
driven environments, all manufacturing components connected
to contemporary industrial controllers publish events in order
to notify about status of machines.

In this research work, all events are considered as self-
described events. This means that events are issued from the
WS enabled device once a logic criterion is matched. For
instance, a machine in the factory shopfloor measures the
current continuously and if the current exceeds a certain limit
an event will be issued, notifying to the interested event
subscribers that the machine entered in the state of high current
value. An example of a simple JSON formatted event to be
published is shown in following Fig. 2.

{
“eventId”:+ “highCurrent”,
“publisherId”:+ “robotA”,
“timestamp”:+ 1462095503510

}

Fig. 2. An example of JSON event message

Such event format permits the low level of event
processing to be occurred in the device, while higher-level to
be achieved in the knowledge-based engine. In this way, the
knowledge-based engine can state a high-level conclusion,
which is defined by the occurrence of a set of events within a
time window. Because the time is important to determine if the
set of events occur in certain time window, the timeStamp
attribute is included in the JSON message and will be taken
into account in updating the KB of the engine, each time that
an event is caught.

The ontology designed to handle such information and the
manner how devices and the interface of the KB engine
communicate is described in following subsections.

B. The SECA ontology

As previously described, the presented approach employs
an ontology, which includes semantic descriptions of status and
event-related information. The main ontology concepts are
presented in Fig. 3. The model can be implemented with RDF-
based languages as e.g. OWL and the queries used to interact
with it are shown in next subsection.

Fig. 3. SECA ontology class diagram

Previous diagram shows the main concepts of the SECA
ontology. As it can be seen, the main classes of the model are:
Status, Event, Conclusion, Action and Consumer.

The Status concept includes two instances to determine the
status of events: triggered and nontriggered. The Event class
includes device notified events, which will include their URL,
timestamp, device id and event id as hasUrl, hasTimestamp,
hasDeviceID and hasEventID datatype property values,
respectively. In addition, Event instances are linked to Status
instances and updated each time that an event occurrence is
notified within the hasStatus object property. It should be
noted that the initial status of all the described events is
nontriggered. Afterwards, event status will be updated to
triggered when notified and its timestamp will be added as a
datatype property called hasTimetamp with integer data type.
In this manner, Status class is mainly required at the initial
stage because the hasTimetamp is updated once the event is
triggered.

The Conclusion class includes instances that are linked to
one or more events. As it is advanced in previous subsection,
the approach determines that a conclusion is found when a set
of events related to the conclusion occur during the
conclusion’s time window. Such time window is defined as a
hasTimeWindow datatype property integer value. Moreover,
Conclusion instances are linked to Action instances, which are
actions to be performed once a conclusion is determined. Such
link is described within implies object property. It should be
noted that actions are meant to be service operations that will
be invoked within its URL, which is included as a datatype
property in Action instances.

Finally, Fig. 3 shows the inclusion of Consumer class,
which will describe the consumers that are mapped to their
interested actions. Such relation between actions and
consumers is described as binddedTo object property. It should
be noted that the consumers can be any type of entity that
needs to receive any information regarding actions to perform,
based on occurrence of related events.

C. Architecture
The objective of this research is to provide a simple and

easily reconfigurable approach which processes supply chain
events. The simplicity appears in the architecture of the
approach. As shown in previous Fig. 1, the KB engine can be
seen as a component formed by two main components: an
interface (represented as a thin envelop) for communicating
with the outside world and the ontology, which describes the
required knowledge as semantic descriptions. Following Fig 4
represents the architecture of proposed solution and how it
interacts with both providers and consumers of supply chain
events.

Fig. 4. Proposed architecture

The interface allows the knowledge based engine to interact
with other components (user, publishers and consumers). The
event processing mechanism is produced inside the SPARQL
queries that the interface requests. As Fig. 4 presents, the
interface may include different protocols for communications
to provide more genericity to the engine.

The deployment of the approach starts with a configuration
phase, which consists of designing and uploading the ontology
model to the engine. This is done by a user within a web-based
user interface. The population of the ontological model can be
done within an ontology editor or within SPARQL Update
queries because the ontology service can process RDF-based
queries.

In addition, for the process to start, the engine must
subscribe to all events that it has to handle. Then, the user starts
the engine by invoking a service of the interface, which
automatically requests all the subscription URLs from the
knowledge engine. The SPARQL query shown in Fig. 5 is used
to request the events of the system that the interface needs to
subscribe.

PREFIX' seca:' http://www.tut.fi/FAST9SECAOnt#
SELECT' ?events' ?eventURL
WHERE
{
?Conclusion' seca:needsEvent ?events.
?events' seca:hasURL ?eventURL.'
}

Fig. 5. SPARQL query used for subscribing to events

In order to describe the interaction of the different
components, Fig. 6 presents a sequence diagram. It should be

noted that first steps described to be done in configuration
phase. This phase ends when the interface sends subscription
requests to publishers according to the query result.

Fig. 6. Sequence diagram for the execution of the event processing

Once an event is triggered by a publisher, the interface
updates the event instance information in the knowledge
engine. Therefore, the updating operation affects the
hasTimestamp and the hasStatus datatypes values of the event
in the ontology model. This update is done within an SPARUL
query shown in Fig. 7.

PREFIX' seca:' http://www.tut.fi/FAST9SECAOnt#
PREFIX' xsd:'http://www.w3.org/2001/XMLSchema#
DELETE{
seca:event_A seca:hasStatus ?oldStatus.
}
INSERT{
seca:event_A seca:hasStatus seca:Triggered.
seca:event_A seca:hasTimestamp "1461920085584"^^xsd:int .
}
WHERE{
seca:event_A seca:hasStatus ?oldStatus.
}

Fig. 7. An example for updating the event status after notification

Afterwards, the interface waits until it receives the response
from the engine. A simple examination is occurred on the
response to assure that the update operation is correctly
accomplished. Accordingly, the interface requests list of
consumers which can be notified after the update in the event.

In this stage the high-level event processing is achieved. In
this research work, the processing procedure occurs inside the
SPARQL query. The query depicted in Fig 8 shows the events
processing procedure.

Fig. 8. SPARQL query for processing events

As it can be seen in previous query, the SPARQL query
used for processing queries includes a SELECT subquery. The
main SELECT clause returns the conclusion, action and
consumers by filtering the result according to the time window
for each conclusion. Nevertheless, the subquery is needed for
returning the upper and lower boundaries of the event for each
conclusion. The reason of nesting the subquery is the order of
execution in SPARQL. Since we need the maximum and
minimum timestamp calculations and SELECT clause is the
last one to be executed, the arithmetic operations must be done
before last FILTER operator is validated. Once the query is
executed, the interface notifies each consumer according to the
result of the query.

In this approach, below set of expressions represent the
validation when executing the query shown in Fig. 8.

!"#$ = &'((∀+, ∈ .) (1)

!"#$ = &'((∀+, ∈ .) (2)

!" = $
%&!, ()*+,)-./0" ≥ (2345$(267
89, ()*+,)-./0" < (2345$(267$ (3)

Where, C: conclusion instances in SECA, e: events, tmax
and tmin are the boundaries for the received set of events and Sc
states if the conclusion is satisfied, which is expressed as
YES/NO value. This operation occurs if and only if all set of
events which are needed by the conclusion hasStatus triggered.

Finally, the interface receives conclusions with
corresponding actions and consumers. Actions could be
services invocation from notification or operation in the
consumer which provides URL for reachability in the ontology.
In this research, the focus is directed towards events
processing. Therefore, actions and consumers are limited to
notification operations. However, the ontology can be further
extended or even merged with other ontologies that might
include already such types of descriptions.

IV. PROOF OF CONCEPT
Once the approach has been described, this section presents

a testing case for proving the concept. Firstly, the SECA

ontology is populated with several instances to test when a
conclusion can be achieved and, consequently, which action
and consumer must be executed and advised, respectively. The
main objective of this proof of concept is not only to check that
mappings between Status, Event, Conclusion and Action class
instances is correct; but also to test critical timing on triggering
of events, which happen in different time window of
corresponding conclusions.

A. Testing case
The first step for testing the approach is to populate the

ontology with the events that are handled by devices, which are
connected to the KB engine interface. In addition, the
conclusions to be verified and their links between events and
actions are also included in the model. Finally, the consumers
that are interested in certain actions, are inserted in the
ontology. It should be noted that the designed model has been
implemented in OWL, using Olingvo, which is an ontology
editor developed at Tampere University of Technology.

Following tables Table I, Table II and Table III show the
status of the SECA ontology instances, before uploading the
model to the interface. Meanwhile Table I shows the instances
of the model, Table II shows the property assertions of
instances and Table III shows the datatype property value
assertions, which in configuration stage are only the time
windows of conclusions. As it can be deducted from the
abstract naming of instances, this is an artificial test.
Nevertheless, adding correct URLs, this testing model could be
employed in a real scenario.

TABLE I. TESTING MODEL INSTANCES

Class Instances
Status triggered, nonTriggered
Event event_A, event_B, event_C, event_D, event_E, event_F
Conclusion conclusion_A, conclusion_B, conclusion_C, conclusion_D
Action action_A, action_B, action_C, action_D
Consumer consumer_A, consumer_B

TABLE II. PROPERTY ASSERTIONS OF TESTING MODEL INSTANCES

Instance Object property Instance
event_A

hasStatus

nonTriggered
event_B nonTriggered
event_C nonTriggered
event_D nonTriggered
event_E nonTriggered
event_F nonTriggered
conclusion_A

needsEvent

event_A, event_B, event_C
conclusion_B event_D, event_E, event_F
conclusion_C event_B, event_F
conclusion_D event_B, event_C
conclusion_A

implies

action _A
conclusion_B action _B
conclusion_C action _C
conclusion_D action _D
action_A

bindedTo

consumer_A
action_B consumer_A
action_C consumer_B
action_D consumer_B

TABLE III. DATATYPE PROPERTY VALUE ASSERTIONS

Instance Datatype property Value
conclusion_A hasTimeWindow 1000
conclusion_B hasTimeWindow 500

a. These values are integers. Then, as an example, 1000 is added in the model as
"1000"^^<http://www.w3.org/2001/XMLSchema#integer>

It should be noted that Table II shows the initial status of
events as nonTriggered. It will be the first event occurrence
that will cause the change of status to triggered due to the
execution of the query shown in Fig. 7. In fact, Table III does
not show any event timestamp because the hasTimestamp
value will be updated after the execution of the query shown in
Fig. 7. Also, URLs of instances have not been added to Table
III because the main focus of this experiment is to verify that
conclusions can be correctly mapped to a concrete set of event
occurrence. In any case, the URLs are added as hasURL
datatype property values, which has String type.

B. Results
To proof the concept and, hence, the described approach

the experiment has two main tests, according to the sequence
diagram shown in Fig. 6. Firstly, the query shown of Fig. 7
must be executed each time that events occur. Then, whenever
a conclusion is satisfied by the occurrence of all needed events,
the query shown in Fig. 8 must send as an output the mapping
between Conclusion, Action and Consumer instances.

In order to depict the times in which certain events have
been triggered and, then, the event status of the model updated,
Fig. 9 shows a time line of event execution. It should be noted
that the unit of time in such diagram is milliseconds.

Fig. 9. Timing diagram of event execution

As it can be seen, up to four possible cases between two
conclusions that share events has been tested. The graph shows
that conclusions are satisfied whenever related events occurred
inside their corresponding time window. Finally, to support the
proof of concept, Fig. 10 depicts the third case in which
conclusion_A is not satisfied because even though all needed
events have occurred, it has not happened inside the
conclusion’s time window. Nevertheless, the time window of
conclusion_D is 500 ms and because of needed events have
occurred at timestamp 1000 ms and 1100 ms (they have
occurred in 100 ms) they satisfy the condition. Therefore, the
result is the satisfaction of conclusion_D and, then, the query
result also output the mapping between conclusion_D,
action_D and consumer_B.

Fig. 10. Query execution and case 3 result validation

V. CONCLUSION
This article presents the concepts, architecture, ontology

design and proof of concept for implementing and testing a
knowledge-based approach for processing events. The
ontology model is hosted by an ontology service that interfaces
WS enabled devices and Consumers of event information.

As described, the resulting solution of described research
work that might be used to process supply chain events. In
principle, such task is normally addressed by CEP tools. The
authors of this research claim that presented work is a light
alternative to such solutions, which definitely fits in the
C2NET framework and can be easily integrated with current
modules. In addition, the level of abstraction offered by
ontologies, may facilitate the design phase of Conclusion
instances, which, indeed, would be implemented as rules in
CEP engines. In fact, presented solution might be directly
deployed in the C2NET platform as a module that interfaces
WS enabled devices and systems pertaining or with access to
the platform.

Moreover, in terms of configuration, one of the direct
benefits of presented approach is the reduction of time and
effort that users could experience using CEP approaches based
on CEDR queries [14]. Fundamentally, our research work
allows users only to take care about definition of relations
between events and actions with no need of understanding the
insights of the implementation. This is because the queries of
the solution are generic and includes the required logic for
triggering actions according to their corresponding set of
events.

Further, the solution will be tested in a real case scenario, in
which the ontology will be populated with real data and service
descriptions. Moreover, the speed of communication and
amount of events to be handled must be tested before
deploying presented solution in the real platform. These tests
might imply slight modifications in the ontology service.
Besides that, this approach can be extended for achieving more
genericity. Consequently, the ontology mode could be
expanded as well. For instance, the interface could handle more
protocols if these protocols are defined properly in the
ontology model. Moreover, during this research work, more
ideas and implementations have raised such as including
priorities for event and adding the correct definition for the
order of received event. In any case, presented research work is
the first step for implementing improvements and testing new
ideas.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Union’s Horizon 2020 research and
innovation program under grant agreement n° 636909,
correspondent to the project shortly entitled C2NET, Cloud
Collaborative Manufacturing Networks.

REFERENCES

[1] B. R. Ferrer, S. Iarovyi, A. Lobov, and J. L. M. Lastra, “Towards

processing and reasoning streams of events in knowledge-driven
manufacturing execution systems,” in 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN), 2015, pp. 1075–1080.

[2] L. E. G. Moctezuma, J. Jokinen, C. Postelnicu, and J. L. M. Lastra,
“Retrofitting a factory automation system to address market needs and
societal changes,” in IEEE 10th International Conference on Industrial
Informatics, 2012, pp. 413–418.

[3] M. J. A. G. Izaguirre, A. Lobov, and J. L. M. Lastra, “OPC-UA and
DPWS interoperability for factory floor monitoring using complex
event processing,” in 2011 9th IEEE International Conference on
Industrial Informatics, 2011, pp. 205–211.

[4] I. M. Delamer and J. L. M. Lastra, “Service-Oriented Architecture for
Distributed Publish/Subscribe Middleware in Electronics Production,”
IEEE Trans. Ind. Inform., vol. 2, no. 4, pp. 281–294, Nov. 2006.

[5] Y. C. Dufort, “ISA-95-Based Operations and KPI Metrics assessment
and Analysis,” White paper 24, A Mesa International, ISA and Ivensys
Wonderware co-branded white paper, Nov. 2006.

[6] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), 2008, pp. 363–369.

[7] J. Lee, E. Lapira, B. Bagheri, and H. Kao, “Recent advances and trends
in predictive manufacturing systems in big data environment,” Manuf.
Lett., vol. 1, no. 1, pp. 38–41, 2013.

[8] Europäische Kommission, Ed., Helping firms grow: Commission staff
working document SWD(2014)277 final  ; [a Europe 2020 initiative].
Luxembourg: Publ. Off. of the Europ. Union, 2014.

[9] B. Andres, R. Sanchis, and R. Poler, “A Cloud Platform to support
Collaboration in Supply Networks,” Int. J. Prod. Manag. Eng., vol. 4,
no. 1, p. 5, Jan. 2016.

[10] J. Delsing, F. Rosenqvist, O. Carlsson, A. W. Colombo, and T.
Bangemann, “Migration of industrial process control systems into
service oriented architecture,” in IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, 2012, pp. 5786–
5792.

[11] P. Maheshwari and S. S. Tam, “Events-Based Exception Handling in
Supply Chain Management using Web Services,” in Advanced Int’l
Conference on Telecommunications and Int’l Conference on Internet
and Web Applications and Services (AICT-ICIW’06), 2006, pp. 151–
151.

[12] T. Lu, X. Guo, B. Xu, L. Zhao, Y. Peng, and H. Yang, “Next Big Thing
in Big Data: The Security of the ICT Supply Chain,” in 2013
International Conference on Social Computing (SocialCom), 2013, pp.
1066–1073.

[13] Baofeng Huo, Yinan Qi, Zhiqiang Wang, and Xiande Zhao, “The
impact of supply chain integration on firm performance: The
moderating role of competitive strategy,” Supply Chain Manag. Int. J.,
vol. 19, no. 4, pp. 369–384, Jun. 2014.

[14] P. Pietrzak, P. Lindgren, and H. Mäkitaavola, “Towards a lightweight
CEP engine for embedded systems,” in IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, 2012, pp. 5805–
5810.

[15] B. Ramis, L. Gonzalez, S. Iarovyi, A. Lobov, J. L. M. Lastra, V.
Vyatkin, and W. Dai, “Knowledge-based web service integration for
industrial automation,” in 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), 2014, pp. 733–739.

[16] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M.
Lastra, “Cyber-Physical Systems for Open-Knowledge-Driven
Manufacturing Execution Systems,” Proc. IEEE, vol. 104, no. 5, pp.
1142–1154, May 2016.

[17] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?,” Int. J. Hum.-Comput. Stud., vol. 43, no. 5, pp.
907–928, 1995.

[18] D. Kalibatiene and O. Vasilecas, “Survey on Ontology Languages,” in
Perspectives in Business Informatics Research, J. Grabis and M.
Kirikova, Eds. Springer Berlin Heidelberg, 2011, pp. 124–141.

[19] “OWL Web Ontology Language Reference.” [Online]. Available:
https://www.w3.org/TR/owl-ref/. [Accessed: 01-May-2016].

[20] “RDF - Semantic Web Standards.” [Online]. Available:
https://www.w3.org/RDF/. [Accessed: 01-May-2016].

[21] “SPARQL Query Language for RDF.” [Online]. Available:
https://www.w3.org/TR/rdf-sparql-query/. [Accessed: 01-May-2016].

[22] “SPARQL 1.1 Update.” [Online]. Available:
https://www.w3.org/TR/sparql11-update/. [Accessed: 01-May-2016].

[23] “SWRL: A Semantic Web Rule Language Combining OWL and
RuleML.” [Online]. Available:
https://www.w3.org/Submission/SWRL/. [Accessed: 01-May-2016].

Powered by TCPDF (www.tcpdf.org)

