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Abstract—During the recent years, high-level synthesis (HLS)
has gained traction as a viable alternative to traditional
handwritten register transfer level code in describing digital
systems. This has been attributed to the maturing of the HLS
tools and improving quality of their results. However, most
published applications are data path intensive as HLS offers good
tools for loop optimization, such as pipelining and loop unrolling.
HLS is seldom applied to control-oriented applications since
clock is not explicitly present in HLS source code. In this paper,
we show how a clock cycle accurate application can be described
with HLS. We give as a proof of concept an implementation of an
FPGA-based 12C bus controller for an audio codec using
Catapult C, and present a generalized work flow. Compared with
a corresponding handwritten VHDL implementation, the HLS
version consumes 84% more area at the same performance but
productivity is increased by 100% at the first design time and
even more with further design iterations.
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I. INTRODUCTION

For decades now, the register-transfer level (RTL) has been
the dominant method for describing digital systems.
Problematically, RTL languages such as VHDL and Verilog
require expertise that is unfamiliar to engineers from the
software domain who greatly outnumber hardware engineers.
Furthermore, writing RTL code is tedious and time consuming,
which is becoming a challenge in a world where transistors are
cheap and abundant but engineering hours are not.

High-level synthesis (HLS) is the emerging method to
address these problems by raising the abstraction level of the
description language [1]-{5]. In HLS, familiar programming
languages such as C and C++ are used to describe the system at
a behavioral level. An HLS tool takes the high-level source
code as an input along with a platform-specific hardware
library, allocates required computing resources from the
platform, schedules operations, and binds them to the resources
[4]. The output is an RTL language description of the system
that can be synthesized on, e.g., FPGA using downstream tools.
In addition to reducing development time, the benefits of HLS
include fast design space exploration, flexibility in targeting
new platforms, and faster verification [3].

Usually, the reported quality of HLS results, such as area
usage and performance, has been worse than with RTL [6]-
[11]. Recently, there have been promising approaches where
this gap has been lessened or even reversed [12]-[16].
However, most of the reported applications are data path
oriented since HLS is amenable to fast design space
exploration and optimization with loops that transform data.
With control-intensive applications, the benefits are less
prominent, but if the productivity improvement is still there,
the transition from RTL to HLS should be made possible.

Most  control-oriented applications require accurate
operations synchronized to a clock. However, most HLS
languages, such as C++, are timeless, i.e., they do not contain
the concept of time that synchronizes the operations. HLS tools
do the operation scheduling automatically with little possibility
by the designer to affect it. This is an obvious gap between the
need to design clock-accurate applications and the abilities
offered by the HLS tools.

In this paper, we show that clock-accurate systems can be
realized wusing such timeless source code. Our main
contributions are:

1) guidelines on how to write the HLS code to support
clock-accurate behavior;

2) an 12C bus [17] based test case application (an audio
synthesizer) including real-time constraints like user
interaction;

3) comparison of area and development effort between
HLS and handwritten VHDL RTL using the test case
synthesized on FPGA.

The rest of this paper is organized as follows. In Section 2,
we show the hardware architecture of the case study system.
Section 3 introduces our HLS design flow. Section 4 discusses
the relevant implementation aspects, based on which a
recommended work flow is presented in Section 5. Section 6
shows our results and finally, Section 7 contains conclusions
and future research directions.
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Fig. 1. System architecture.

II. SYSTEM DESCRIPTION

As a test case application, we created a simple audio
synthesizer that is able to generate four different tones and their
combinations by pressing push-buttons. More importantly, the
system’s audio codec is configured using an I2C bus requiring
clock-accurate signal handling. Both HLS and VHDL versions
of the system were created for comparison.

We used Altera DE2 FPGA board as the platform for our
application. It provides an FPGA chip, buttons and leds for
user interaction, and an audio codec. Fig. 1 shows the
architecture of the system. The main components are the Altera
Cyclone II FPGA chip and Wolfson Microelectronics
WMS8731 audio codec. The FPGA contains the audio
synthesizer, the 12C controller, and a phase-locked loop (PLL)
circuit as independent blocks.

The synthesizer contains four triangle wave generators that
are controlled by corresponding push-buttons on the FPGA
board. Pressing a button causes the wave generator connected
to it to start generating the signal, and releasing a button resets
the signal to zero until it is pressed again. Each wave generator
is configured to generate a signal of different frequency. The
output of each generator is connected to an adder unit, which
adds the signals together but drops the two most significant bits
from the result to conform to the audio codec’s bit width. This
effectively results in overflow causing distorted sound if many
buttons are pressed simultaneously. However, sound quality
was not our focus in this study.

The adder output is fed to an audio controller which
performs a parallel-to-serial conversion of the data. Since we
use mono sound, the same data snapshot is taken into both left
and right channel inputs at the start of each sample cycle. The
audio controller generates two clock signals and a data signal
that are fed to the external audio codec. The left-right clock
signal (aud _Irclk out) informs the codec whether left or right
channel data is present in its input and the bit clock signal
(aud_bclk out) signifies a bit change in the serial audio data
signal.

The I2C controller configures the audio codec when the
system reset is released. It writes ten configuration bytes into
internal registers of the codec using the 12C bus. For that
purpose, a serial data (sdat inout) and clock signal (sclk out)
are generated for the bus in the controller. The serial data line
is bidirectional requiring an inout port, which introduced some
interesting design issues that are discussed later.

The PLL circuit on the FPGA was generated using a
configurable Altera megafunction block. The purpose of the
PLL is to generate an 18 MHz clock signal for the audio
synthesizer from a 27 MHz signal provided by the oscillator
chip on the FPGA board. The I2C controller directly uses a 50
MHz clock signal from the oscillator.

The architecture in Fig. 1 is the one used in the VHDL
implementation of the system. With the HLS implementation,
it was discovered that the architecture could be simplified as
described next.



III. HLS DESIGN FLOW

In this work, we used Mentor Graphic’s Catapult 8.0 tool
(University Version) for HLS [18]. Catapult accepts as a source
language either ANSI C++ or SystemC and produces VHDL
and Verilog output. For this study, we chose C++ as the input
language as it is inherently timeless and more familiar to most
programmers, thus lowering the learning curve and easing
adoption.

The first step was to write a C++ description of the system.
Initially, the system was partitioned as with the VHDL version
(Fig. 1), but it was soon discovered that this was unnecessarily
complicated for the HLS paradigm. For example, the adder
shown in Fig. 1 does not require its own sub-block as it is a
simple addition operation in C++. It was eventually decided
that the simplest way was to implement the audio synthesizer
in its entirety as a single design unit. The 12C controller
remained a separate unit as in the VHDL design.

Test benches were written at the same time with the system
source codes. The first idea was to use the same VHDL test
benches as for the reference VHDL implementations, but this
was not possible as they contained generic parameters, which
Catapult does not generate into its VHDL output. However,
creating C++ test benches was also beneficial since functional
correctness could be verified on the source code level instead
of the RTL level. Time was also saved in this way as Catapult
did not need to transform all source code iterations into VHDL
descriptions. On the other hand, writing the test benches took
an amount of time comparable to writing the source codes
themselves. After verifying the functionality with C++
simulation, RTL simulation was an easy task. Catapult
automatically creates an RTL test bench from the C++ version
and checks that both representations create the same output.

The modules were synthesized using Mentor Graphic’s
Precision Synthesis software, which can be directly invoked
from Catapult. The clock frequencies used in the synthesis
were the same as shown in Fig. 1. The synthesized designs
were mapped to physical resources on the FPGA using Altera’s
Quartus II program, which was also used for synthesizing the
connected system and programming the FPGA.

Catapult was unable to create a single inout port for the 12C
data signal, but generated separate input and output ports
instead along with a data direction signal. Hence, it was
necessary to create an inout buffer in Quartus II to connect the
12C data pin to the controller as shown in Fig. 2. For this
purpose, an ALT IOBUF wrapper component was used with
the SDAT DIR signal controlling the direction of data.

The functionality of the system on FPGA was finally
verified by sending different configuration values to the audio
codec and checking that they had the desired effect on the
sound.

IV. IMPLEMENTATION DETAILS

Writing the HLS source code for the synthesizer part of the
system was rather straightforward since it is data path oriented.
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Fig. 2.  Serial data connection between the 12C controller and the
audio codec.

Because the synthesizer was created as a single design block,
Catapult was able to schedule its whole operation within one
clock cycle without pipelining.

A. The 12C controller functionality

When the system reset is lifted, the I2C controller
automatically sends ten configuration values to the audio
codec, setting parameters such as volume, audio data format,
and sampling rate. These values are sent as sets of three bytes
on the 12C bus. The first byte contains the device address and a
read/write-bit. The second byte defines the internal register
address in the codec and the third byte the configuration value.

A sample data transfer on the 12C bus is shown in Fig. 3.
The I2C controller creates a clock signal (SCLK) that
synchronizes the transfer. We operated the 12C bus in standard
mode, which defines a maximum SCLK frequency of 100 kHz,
and created a 50 kHz SCLK signal. The data signal (SDAT) is
bidirectional, i.e., it can be driven by both the 12C controller
and the audio codec. When the controller-created SDAT DIR
signal is high, the 12C controller drives the SDAT line, and
when it is low, the audio codec drives it. This signal is not
specified in the I2C standard but was necessitated by Catapult’s
inability to create a true inout port.

The data transfer begins with a start condition, which is
defined as a high-to-low transition on the SDAT line while
SCLK is high. This is followed by eight data bits forming a
byte which is sent most significant bit first. The bit values are
valid during the high period of the SCLK signal. After a byte
has been sent, the I2C controller releases the SDAT line for the
next high period of the SCLK. During this period, the audio
codec acknowledges the reception by pulling the SDAT line
low. If the audio codec, for some reason, is not able to receive
or parse the data, the SDAT line is driven high during this
clock period. In this case, the audio controller sends all the
bytes of the current configuration value again until it receives
an acknowledge signal. After the third byte has been
successfully sent, the controller creates a stop signal by a low-
to-high transition on the SDAT line while SCLK is high. After
this, another configuration value can be sent by creating a new
start signal followed by the data bytes.
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In VHDL, creating the 12C controller is straightforward.
The code explicitly defines the system clock signal, which is
used to synchronize the operations. With C++, even in HLS
environment, there is no such clock signal on the source code
level. We needed to overcome this restriction for our
application with the intent that the solution is also generalizable
to other control oriented systems.

Catapult interprets the main function of the source code as
the system top-level block. Its function arguments are
interpreted as the system’s input/output ports depending on
whether they are read or written to in the code. Functions that
are called in the main function can either be inlined to the top
level or treated as sub-blocks. The I2C controller consists only
of the main function.

During scheduling, Catapult chains the operations in the
code together and divides them into different clock periods if
they cannot be performed during a single period with the given
clock frequency. However, when writing the source code, the
designer is unware of how the operations implied by it will be
scheduled and thus accurate control of timing is difficult.

One solution would be to write the code initially so that the
whole system is assumed to be scheduled during one clock
cycle and then iteratively change the code according to the real
clock cycle count. However, this solution turned out to be
problematic in our case as described later.

We created the SCLK signal using the code shown in Fig.
4!, Declaring the variables as static preserved their value during
different calls to the I2C controller function. The sclkCounter
variable is incremented during each iteration of the function,
and when it reaches the limit value, the variable holding the
SCLK value is toggled from 0 to 1 or vice versa. The limit
value is calculated by dividing the system clock frequency by
the doubled I12C bus frequency, since SCLK value is flipped
every half cycle.

The rest of the 12C controller main function contains a
finite state machine implemented as a switch-case structure,
with different states for sending the start condition, sending

!'In the actual code, bit-accurate Algorithmic C data types
were used, but they are omitted here for clarity

if (sclkCounter == sclkLimit) {

sclkCounter = 0;

sclkvalue = (sclkvalue == @) ? 1 : ©;
}

Fig. 4. Source code for SCLK generation.

data bits, listening to the acknowledge signal, sending the stop
condition, and for staying idle after sending all the
configuration values. This structure was functionally identical
to the one in the VHDL version and contained a comparable
amount of code. The state transitions are primarily dictated by
changes in the SCLK signal. Output is written at the end of the
function.

C. Scheduling results and I/O behavior

After running the Catapult scheduling for the I12C controller
function, it was discovered that with the operating frequency of
50 MHz, it took 2 clock cycles to complete each iteration. This
meant that the effective I12C bus frequency would have been
half the intended, i.e., 25 kHz. While the bus can operate
normally at this frequency, we wanted to maintain the desired
frequency, as meeting the timing specification was the main
purpose of our study. By dividing the sclkLimit value by two,
we could have effectively reached the intended SCLK
frequency, but this was prevented by the I/O behavior of our
system.

As was mentioned in Section 3, Catapult synthesized
separate in and out ports for the SDAT signal, which is a true
bidirectional signal with three-state logic in the VHDL
implementation. To fix this, we instantiated the ALT IOBUF
wrapper component in Quartus II as shown in Fig. 2. The data
direction is driven by the separate SDAT DIR signal, which
was synthesized by Catapult for the I2C controller. This signal
is driven high when output (SDAT OUT) is written. However,
with the throughput period of 2 clock cycles, the output is
written only every second clock period when the end of the
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main function is reached. This causes SDAT DIR to oscillate,
when the controller is driving a value to the SDAT signal. The
oscillation could be eliminated by adding additional logic
between the I2C controller and the ALT IOBUF component,
but that would be an ad hoc solution.

D. Pipelining

Fortunately, Catapult and other state-of-the-art HLS tools
provide an easy way to control pipelining for loop structures,
and the program’s main function is treated as a loop with an
infinite number of iterations. Fig. 5 shows the difference
between an unpipelined and a pipelined solution in a system
with a throughput period of 2, as was the case with our 12C
controller. In Fig. 5(a), the unpipelined solution is shown. Each
iteration of the main function takes 2 clock cycles. Write is
active every second clock cycle causing the SDAT DIR signal
to oscillate in our case.

Fig. 5(b) shows the pipelined version. Each iteration still
takes 2 clock cycles, but with a 2-stage pipeline, two
consequent iterations overlap and one write is always active
causing stable output behavior. Furthermore, with pipelining,
one does not need to change the source code since the
operation incrementing the sclkLimit variable is now performed
every clock cycle.

It should be noted that the pipelining solution works even if
the unpipelined throughput period were 3 clock cycles or more.
After pipeline ramp-up, more iterations would be active
concurrently but a new write would still execute every clock
period.
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Fig. 6. Workflow for creating clock accurate systems with HLS.

V. RECOMMENDATIONS

Based on this study, we suggest the work flow depicted in
Fig. 6 for designing clock cycle accurate systems. First, the
HLS source code is written with the assumption that it can be
scheduled within one clock cycle. After compiling and
scheduling, it is checked if this was actually the case. If not,
there are two options. The code can either be rewritten to take
the real clock cycle count into account or the system can be
pipelined. Rewriting the code is preferable to pipelining
especially in resource-constrained systems but if a throughput
period of one clock cycle is required as in our example, then
pipelining cannot be avoided.

If the code is rewritten, it is possible that the cycle count of
one iteration changes. In this case, the code has to be rewritten
again to accommodate the new cycle count. The aim is to
iterate towards a converging cycle count so adding or removing
time-consuming operations should be avoided when rewriting
the code for this purpose.

As a concrete example of code rewriting, let us return to the
code snippet shown in Fig. 4 and assume that the I/O direction
signal oscillation discussed in the previous Section was not an
issue. In this case, to achieve the correct SCLK frequency with
the unpipelined schedule shown in Fig. 5(a), we could simply
divide the sclkLimit constant by two. The sclkLimit is a
constant value determined at compile time, so this would not
change the cycle count taken by one iteration of the 12C
controller function. The rewriting process would thus converge
immediately.

With more complex applications, the scheduling can fail
under the system clock frequency constraint. This can happen
either before or after applying pipelining. In this case, the



frequency must be lowered or the source code optimized for
allowing scheduling under tight clock frequency limit. For
example, reducing the bit width of data could reduce the delay
of arithmetic operations, albeit at the expense of accuracy.

VI. RESULTS AND EVALUATION

The area results for both the VHDL and Catapult version of
the system are shown in Table 1. Both solutions were
synthesized using the clock frequencies shown in Fig. 1. In
total, the Catapult version consumes about 84% more logic
cells (LCs) on the FPGA than the VHDL version. The audio
synthesizer takes 50% more area and the I2C controller 155%
more area. The relatively larger area of the 12C controller is
due to the pipelining that requires additional resources for
pipeline registers, computation, and control. If pipelining were
not necessary, the I2C controller would have consumed only
72% more LCs (the figure in parentheses in the Table), which
is similar to the figure with the audio synthesizer.

The lines of code of the Catapult version including test
benches is roughly half of that of the VHDL version. It can be
approximated that the amount of code inversely correlates with
productivity, and thus HLS productivity would be twice the
RTL productivity with this kind of application. Furthermore,
design space exploration and making modifications is much
faster with HLS. For instance, pipelining was simply a matter
of a few mouse clicks in Catapult, whereas it would have
required a significant code revision with the VHDL version.

TABLE 1. COMPARISON BETWEEN THE VHDL AND CATAPULT
VERSIONS OF THE SYSTEM
VHDL Catapult Difference
Audio synth. area 233 349 50%
12C ctrl. area 110 281 (189)  155% (72%)
Total area 343 630 84%
Lines of Code 1400 700 -50%

VII. CONCLUSION

In this paper, we have shown how HLS can be used to
implement a clock-accurate system. As is common for HLS
with the contemporary tools, the design consumes more area
than an RTL implementation, but on the other hand there is a
considerable boost in productivity, and design space
exploration is much faster. Furthermore, it requires less
expertise to use HLS than RTL methodology, since learning a
hardware description language is more time consuming than
learning a HLS tool flow. We thus recommend considering
HLS as a viable alternative to RTL methodology even with
control oriented applications unless there are strict area
requirements.

In the future, we will create a more complex control-
oriented application using HLS. One such application would be
a multi-module system with registers between the sub-blocks.
The accurate timing of such a system should be studied block
by block. In the presented system, there are also no external
control signals that affect the I2C controller after reset has been
lifted. Examining the effect of such signals on design
considerations of clock-accurate systems is of great interest.
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