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Abstract—The radix-2" fast Fourier transform (FFT) algo-
rithm is used to achieve at the same time both a radix-2
butterfly and a reduced number of twiddle factor multipli-
cation. In this paper we present a new identical radix-2* FFT
algorithms, which has same number of butterfly and twiddle
factor multiplication. The difference is only in twiddle factor
stage location in signal flow graph (SFG). Further, analyze these
algorithms and is shown that the round-off noise of identical
radix-22, radix-23, and radix-2* FFT algorithms at output is
reduced 27%, 8%, 3% respectively.

Keywords-Fast Fourier Transform (FFT), Round-off noise,
Radix-2".

I. INTRODUCTION

The discrete Fourier transform (DFT) is an essential digi-
tal signal processing algorithm to convert the signal between
time and frequency domain. The DFT is part of numerous
system in a large variety of applications, such as bio-
medical processing, image processing, telecommunication,
and wireless communication systems.

In order to calculate DFT efficiently, Cooley and Tukey
rediscovered the algorithm called FFT. The FFT reduces
a complexity from O(N?) to O(N log N) by using of
symmetry and periodicity properties of the twiddle fac-
tors [1]. Since last decade, numerous FFT algorithms have
been proposed, such as radix-2, radix-4, radix-8, mixed
radix, and split radix [2]-[5]. Among them radix-2 FFT
algorithm is one of most popular solution because it requires
simple butterfly operation, but higher number of twiddle
factor multiplications. Nevertheless higher radix requires
less number of twiddle factor multiplication as compared
to radix-2 at cost of complex architecture of radix. [6], the
first radix-2?FFT algorithm was proposed, which has same
complexity as radix-4. In addition, radix-22, radix-24, and
radix-2* FFT algorithms were proposed in [7]-[9] to get
the advantage of higher radix by using radix-2. Similarly, the
number of possible radix-2 FFT algorithms using binary tree
have been proposed in [10], which included all the previous
FFT algorithms as well.

These FFT algorithms are getting much attention, when
implemented on pipelined architecture. There are two basic
type of pipelined architectures: Single delay feedback (SDF)
and single delay commutator (SDC). However, SDF FFT
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pipelined architecture is most popular among them because
it has moderate complexity with simple control [6]-[9].
The accuracy of architecture is an important metric for
system performance [11]. Usually, FFT algorithms are also
implemented on hardware with finite word length [12].
Because it is not possible to keep infinite word length of
operations and coefficients. As a result, coefficients and
internal signals are quantized with certain bits in binary
format. The number of bits are depending upon on the
requirement of accuracy which is directly proportional to
the hardware complexity. In fixed point arithmetic, generally
a multiplication may produce an error due to rounding or
truncation, which are often called rounding errors even if
truncation is used [12]. The rounding or truncation error
happens when the twiddle factors have different value then
{#£1, %5}, so called non-trivial multiplication. Which leads
to an increased intermediate word length after multiplication,
then it must be reduced for next stage. A number of papers
have been published to analyze the fixed point arithmetic
effects of FFT algorithms [13]-[15].

In this work, identical radix-2* FFT algorithms are pre-
sented. These algorithms have similar butterfly structure
and data input/output sequence as radix-2*. The difference
is twiddle factor stage location in a signal flow graph
except one case, where the complexity of twiddle factor
multiplication is also reduced. This variation of the FFT
algorithm is affect on the overall round-off error at output.
Following the method used in [15], we calculate the number
of non-trivial multiplications and round-off noise for analysis
of identical radix-2* FFT algorithms. The proposed method
applies on radix-22, radix-23, and radix-2* FFT algorithms
as a case studies.

The paper is organized as follows. Section II briefly
describes the background. Section III presents the related
research in the field. Section IV generates the identical
radix-2* FFT algorithms. Section V provides a mechanism
to generate the exponent of the twiddle factor. Section VI
explains the model of round-off noise. Section VII shows
quantitative results for analysis of identical radix-2* FFT.
Finally, Section VIII summarizes the main conclusions of

paper.
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Decomposition scheme and binary tree of Cooley-Tukey FFT

II. BACKGROUND
An N-point DFT can be expressed as

X0= Lot

where n is the time index, k is the frequency index and W =
e is the twiddle factor and defined as

Wff, = cos (%) — jsin <$> . 2)

The Cooley-Tukey FFT algorithms are based on unified ap-
proach, which is called divide and conquer. It can be expressed
as

nWg, k=0,1,...,N — 1, (1)

X [Qk1 + k2]
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where the two summations are indexed by n; and n2, which are
referred to as inner and outer DFTs. As a result, an N-point DFT
is broken down into P-point and -point DFTs. The output of the
inner DFT is multiplied by W, which is called twiddle factor
multiplication. The scheme of decomposition is shown in Fig. 1,
where the left and right sides represent the P-point inner DFT and
Q-point outer DFT, respectively. Between those DFTs, a twiddle
factor multiplication indicates a rotation by W‘i> = e IR,

A. Binary Tree

A binary tree representation of the FFT algorithm was first
proposed in [16]. Furthermore, this representation has been used
to generate the number of possible FFT algorithms [10]. In binary
tree representation, a node with a value n represents a 2™-point
DFT. Each node has at most two leaves which represent the
inner and outer DFTs. An example of a binary tree is shown
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Figure 2. First decomposition of 8-point FFT.

Figure 3.

Second decomposition of 8-point FFT.

in Fig. 1 corresponding to the scheme of DFT. The left leaf
corresponds to number of 29 DFTs of 2P-point whereas the right
leaf represents set of 2 DFTs of 2?-point. This decomposition
applies recursively until the leaf node matches the radix. When the
binary tree is finalized, all leaf nodes correspond to the radix and
internal nodes correspond to twiddle factor multiplication stages
(s), which connect the two decomposed DFTs.
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Figure 4. Binary tree representation of radix-2¥ FFT algorithms for k=2, 3, 4.

B. Binary Tree Relation with Signal Flow Graph

A signal flow graph (SFG) is a one of the most popular graphical
representations of FFT algorithms. The flow graph consists of a
series of stages, where each stage includes additions, subtractions
and complex multiplications. An example of 8-point FFT decompo-
sition is shown in two steps. At first, it decomposes into 2-point and
4-point, this ends up with a four times 2-point computation, twiddle
factor multiplication, and two times 4-point in next stage. All these
information is mapped on the binary tree and SFG are shown in
Fig. 2, where four different of butteries shows the four times 2-
point FFT. At second stage, 4-point FFT is further decomposed in
2-point and 2-point. However, there are two 4-point blocks so it
applies on both blocks as shown in Fig. 3.

III. RELATED WORK

Generally, a selection of radix has a large impact on the
complexity of FFT algorithm. Higher radices help in reducing
the number of stages. However, complexity of the butterflies
increases [17]. The radix-2? FFT algorithm is one of most popular
FFT algorithm, where the number of non trivial multiplications is
exactly the same as the radix-4 [6]. The binary tree diagram of
radix-2% is depicted in Fig. 4(a), which shows that the alternate
twiddle factor multiplication stages have the W, twiddle factor
multiplication. The W, twiddle factor multiplication involves only
trivial multiplications.

Furthermore, radix-2% and radix-2* can be used to implement the
radix-8 and radix-16 butterflies by radix-2 [7] as shown in Fig. 4(b)
and (c) respectively. The radix-2® and radix-2* FFT algorithms
have the same twiddle factor multiplication stages as the radix-
8 and radix-16 butterfly FFT algorithm respectively. Finally, the
more generalized FFT algorithms based on radix-2* was proposed
as shown in Fig. 4(d) [8].

These algorithms have same butterfly architecture regardless of
value of k. However, only the twiddle factor multiplication is varied
by a value of k. Table I shows the twiddle factor multiplication
stages of different & value, which includes radix-22, 23, 2* and
2°.

IV. NEW IDENTICAL RADIX-2* FFT ALGORITHMS

This section presents the identical radix-2° FFT algorithms,
which are generated by using binary tree representation. Now based
on the binary tree presentation of Cooley- Tukey FFT algorithm,
we generate the number of FFT algorithms which are identical to
radix-2F. These algorithms can be generated by splitting N-point
FFT into 2%-point and N — 2F-point. Apply this decomposition
recursively until all sizes will become 2*. This decomposition can
apply in different ways to get identical radix-2¥ FFT algorithms.
Then apply radix-2 decomposition on all 2*-point FFTs as shown
in Fig 4(d). With this explanation, the binary trees of the identical

Table I
TWIDDLE FACTOR MULTIPLICATION STAGES OF RADIX-2¥ FFT
ALGORITHMS.

Stage number

Radix | 1 2 3 4 5 6 s
22 Wi | WN| Wa | W | Wy | Wh Wy
23 Wy | Wsg | Wi Wi Ws Wﬁ Ws
24 | Wa | Ws | Wis | Wi | Wa Wz Wie

Wy

25 | Wa | Ws | Wig | Waz | Wy W32

radix-2% FFT algorithms for considering N = 256 are shown
in Fig. 5. These are four cases of FFT algorithms having the
same butterfly structure, where the only difference is in twiddle
factor multiplication stages which is tabulated in Table IL. It is
clearly shown in Table II that every second stage of twiddle factor
multiplication is Wy, which is similar to radix-22.

(d) Case-IV

(c) Case-III

Figure 5. Binary tree representation of identical radix-22 for N=256.
Similarly, identical radix-2® and radix-2* FFT algorithms are
generated for given transform length. Figures 6 and 7 illustrate
the binary tree of four different cases for each FFT algorithms
respectively. The figures show the decomposition iteration up to
length 2% FFT because rest of the decomposition is similar in all



Table II
TWIDDLE FACTOR MULTIPLICATIONS OF IDENTICAL RADIX-22 FOR
N=256.

Stage number

Case 1 2 3 4 5 6 7
I Wy | Wase | Wa | Wie | Wy | Wea | Wy
II Wy | Wie | Wa | Wase | Wy | Wig | Wy
1II Wi | Wea | Wa | Wi | Wy | Wase | Wy
v Wy | Wie | Wa | Wea | Wy | Wase | Wy

(a) Case-I (b) Case-II

(c) Case-III (d) Case-IV

Figure 6. Binary tree representation of identical radix-23 for N=4096.

cases.

V. TWIDDLE FACTOR EXPONENT GENERATION

When designing an FFT architecture, twiddle factor exponent
(¢) is a key parameter for twiddle factor generator. There are two
basic types: on the one hand, run time generator, which generates
the rotation at run-time. On the other hand, off-line generator
computes the angles and stores in memory called twiddle factor
coefficient memory. However both types requires the exponent of
twiddle factor even it is also used for reduction of twiddle factor
coefficient memory [12]. This normally ends up the importance of
exponent of twiddle factor. As discussed earlier, the n =p+ ¢
root node, which is decomposed into two child nodes, p and
q, then these leaves are further decomposed into child nodes.
The decomposition continues until the child node matches the
radix. The above observation leads to the following method to
determine the twiddle factor exponent (¢) based on a binary tree
representation.

Each row number is written as binary number of length n =
log2(N), which is equal to number of leaf node. Each leaf node
assigns to single bit of this binary number. The bit assigning starts
from the left leaf node of binary tree with the most significant bit
and moves towards right leaf node as shown in Fig. 9. Now, P
and @ bits are required for exponent calculation. These bits are
decided by the position of twiddle factor in binary tree. In order
to calculate exponent value, the () binary bits are multiplied with
the bit-reversed (BR) of P binary bits as shown in Fig. 8. The
BR means that swap the most significant bits (MSB) with least
significant bits (LSB).

Figure 7.

(a) Case-1

(b) Case-II

(c) Case-III

(d) Case-IV

Binary tree representation of identical radix-2* for N = 64K.
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Figure 8. Block diagram of twiddle factor exponent generation.

Figure 9. Binary tree and twiddle factor exponent generation.



Figure 10. Model for round-off noise.

To illustrate the design, Fig. 9 shows a binary tree of 256-
point FFT for calculating the exponent of W6 twiddle factor. This
presents the P and @ bits of Wig, however, these bits will be
changed according to the stage location of twiddle factor.

VI. ROUND-OFF NOISE

Error due to quantization, referred to as round-off errors are
introduced when the word length is finite. In fixed point arithmetic,
the multiplications must be quantized using rounding or truncation.
However, round-off noise at output is used for both rounding and
truncation. This is often modeled as a stochastic signal source,
producing a noise signal with certain statistical properties as shown
in Fig. 10 [12]. In FFTs, it is introduced due to non-trivial
multiplications as it is not possible to keep the increased word
length after each multiplication. The amount of introduced round-
off noise will be used to determine suitable data word lengths in
the FFT architecture.

Following [15], a round-off noise model based on uncorrelated
noise sources after each non-trivial rotation is adapted as shown
in Fig. 10. The round-off noise is then propagated to the outputs,
where it is possible to accumulate the number of noise sources
propagating to that output as shown in Fig 11. This figure shows
the propagation path from error generation to the output. The
propagation path passes through the arithmetic operation, which
increases the effect of error at output. It is further assumed that
the total noise power accumulated over all the outputs is a valid
measure. This can be argued, since some outputs may receive a
significantly larger contribution than others, although it simplifies
the analysis. In addition, the commonly used scaling by two after
each butterfly is not taken into consideration. This is, lacking more
advanced dynamic data scaling strategies such as [18], a straight
forward way to guarantee that overflows will not happen.

The resulting round-off noise measure for a generalized algo-
rithm as in Fig. 11 for an N-point FFT with N = 2" can be
obtained by observing that a round-off noise source in stage ¢ will
propagate to 2™ outputs. This leads to the total number of round-
off noise sources at the outputs being

n—1

ZQn_i_lFiUQ, (4)
1=0

where F; is the number of non-trivial multiplications in stage ¢ and

o2 is the round-off noise variance.

VII. RESULTS

To illustrate the advantage of the identical radix-2* FFT algo-
rithms, the number of non-trivial multiplication and the previously
discussed round-off noise are calculated for radix-22, radix-2% and
radix-2*,

From the results shown in Table III, we can observe that number
of non-trivial multiplication almost same in all cases of algorithm.
However, the effect of error varies because it depends upon on the
stage where the non-trivial multiplication is located.

Wio Wao
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Wi V.Vz,z. .

x(1) \ / X(4)
x(2) W Wiz LN W X(2)
x(3) Wis3 >@ * W3 X(6)
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Figure 11. Generalized radix-2 8-point FFT SFG with two error source.

Table III
NUMBER OF NON-TRIVIAL MULTIPLICATION AND ROUND-OFF NOISE OF
RADIX-22 AND IDENTICAL RADIX-22 FFT ALGORITHMS FOR N = 256.

Algorithms [ Non-Trivial Multiplication [ Round-off noise (02)

Radix-2? 276 15232
Case-1 276 14784
Case-1I 272 14064
Case-11I1 288 12288
Case-1V 276 11760

Regarding the variation in numbers, we can observe that up to
27% reduction gain at output without any additional hardware cost.

Similar behavior can be observed for radix-2® and radix-2* FFT
algorithms in the Tables IV and V respectively. In these cases,
savings are up to 8% and 3% respectively. From the above, we can
conclude that the overall saving decreases with value of k. This is
expected behavior because the non-trivial multiplication increases
at the initial stages of SFG with the value of k.

Table IV
NUMBER OF NON-TRIVIAL MULTIPLICATION AND ROUND-OFF NOISE OF
RADIX-23 AND IDENTICAL RADIX-23 FFT ALGORITHMS FOR
N = 4096.

Algorithms [ Non-Trivial Multiplication [ Round-off noise (02)

Radix-23 14408 3278848

Case-I 14408 3253760

Case-II 14216 3243760

Case-III 14464 3237824

Case-IV 14408 3024832
Table V

NUMBER OF NON-TRIVIAL MULTIPLICATION AND ROUND-OFF NOISE OF
RADIX-2% AND IDENTICAL RADIX-2% FFT ALGORITHMS FOR
N =64K.

Algorithms | Non-Trivial Multiplication | Round-off noise (c2)

Radix-2% 377104 769245184
Case-1 337104 768323584
Case-1I 337044 767344384

Case-111 377344 753516544

Case-IV 337104 752598784




VIII. CONCLUSION

The binary tree approach can be applied to generate FFT
algorithms quickly based on Cooley Tukey method. In this paper,
a new identical radix-2* FFT algorithms are proposed. However,
the hardware cost is similar to radix-2F FFT algorithm. We also
analyze those FFT algorithms based on the error sources and their
impact at the output of FFT. The quantitative results show that error
at the output is reduced 27%, 8%, and 3% in identical radix-22,
radix-23, and radix-2* FFT algorithms respectively.
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