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Abstract— This paper studies gain-scheduled composite 

nonlinear feedback (CNF) control of a continuous stirred tank 

reactor (CSTR). Inside the reactor, an exothermic chemical 

reaction occurs, which is commanded from high to low residual 

concentration. During the transition, the reaction dynamics 

change through stable-unstable-stable chain while the residual 

concentration decreases. Therefore, appropriate cooling is 

necessary to stabilize the reaction, and to prevent a thermal 

runaway and overheating of the CSTR. A full-state gain-

scheduled CNF controller is designed for adjusting the coolant 

temperature of the CSTR. A traditional gain-scheduled cascade 

controller and a gain-scheduled model predictive controller 

(MPC) are also fabricated for comparison. The simulation 

results show that the closed-loop system using CNF controller is 

able to offer the best tracking performance as measured by the 

integral-of-absolute-error (IAE) criterion. In addition, the CNF 

controller needs fewer scheduled tuning parameters as opposed 

to the cascade structure.  

I. INTRODUCTION 

A composite nonlinear feedback (CNF) control has been 
developed to satisfy simultaneous requirements on command 
following and robustness using constrained control. 
Generally, a CNF controller consists of mutually 
collaborating linear and nonlinear parts, which are designed 
as follows. First, a linear feedback part is designed for 
sufficient transient speed, e.g., small closed-loop damping 
ratio. Then, a nonlinear feedback part is attached to the 
control law in order to provide control error dependent 
damping when the output reaches the desired reference. By 
such mechanism, the nonlinear part is able to smoothly 
change the locations of closed-loop poles without any 
switching elements in the control structure. Therefore, the 
CNF controller alters the closed-loop dynamics as desired, 
which effectively improves the tracking performance.  

The CNF originates from the work of Lin et al. in [1]. 
Since the initiation, research has been active in the field. For 
example, Turner et al. generalized CNF control for multivari-
able systems in [2]. Foundations for measurement feedback 
were laid by Chen et al. in [3], which was further generalized 
by He et al. in [4]. Lan et al. investigated the CNF for a class 
of nonlinear systems in [5]. Discrete time CNF was reported 
in [6], respectively. Lan et al. have also proposed a scaled 
nonlinear function to achieve robust transient performance as 
regards to variation of step amplitude in [7]. Cheng et al. 
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have generalized the CNF for tracking non-step references in 
[8]. In [9], Pyrhonen provided conditions for generalizing the 
CNF using arbitrary order set point filters. Recently, 
composite nonlinear feedback has been applied to unmanned 
aerial vehicles [10], industrial robotics [8], hard disk drives 
[11], DC-servo motors [12–13], gantry crane systems [14], 
voltage source inverters [15], and water level control of a 
nuclear U-tube steam generator [16], amongst others.  

The motivation of our study is two-fold. Firstly, we 
consider the suitability of CNF control within the well-known 
gain-scheduling framework. We would like to note that we 
are not aware of any previous studies which attempt to 
combine gain-scheduling and CNF. Secondly, we test a gain-
scheduled CNF for a nonlinear process; namely, a continuous 
stirred tank reactor (CSTR) found in an open literature.  

The CSTR process considered in this paper is an 
exothermic chemical reaction transitioning from low to high 
conversion rate, i.e. from high to low residual concentration. 
During such transition, the reaction liberates heat, and hence, 
appropriate cooling is necessary in order to stabilize the 
reaction and to prevent thermal runaway. Cooling is provided 
by adjusting the coolant temperature inside the reactor’s 
cooling jacket. The reaction dynamics are nonlinear with 
strong coupling between the reactor temperature and residual 
concentration. Furthermore, the reaction dynamics change 
from stable to unstable and back to stable while the 
conversion rate increases. Such characteristics require, e.g. 
gain-scheduling or model predictive control (MPC) in order 
to successfully control the reaction temperature. 

In this paper, we design a full-state linearization-based 
gain-scheduled CNF controller for adjusting the coolant 
temperature of the CSTR. We compare our design with a 
traditional gain-scheduled cascade controller using a PI-
controller as the primary loop controller, whereas the 
secondary loop is a phase-lead compensator. We also 
compare our design with a gain-scheduled MPC. It should be 
noted that the cascade controller and MPC can both be found 
in MathWorks MatLab documentation: [17–18].  

The tracking performances of all control systems are 
measured using the integral-of-absolute-error (IAE) criterion. 
It turns out that the closed-loop system using gain-scheduled 
CNF provides the best tracking performance.  

The material of this paper is organized as follows. In 
Section 2, the mathematical model of the CSTR is introduced 
along with the testing environment. In Section 3, gain-
scheduled cascade, MPC, and CNF controllers are presented 
for adjusting the coolant temperature of the CSTR. Finally, 
concluding remarks and suggestions for future research are 
presented in Section 4, respectively.  
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II. CONTINUOUS STIRRED TANK REACTOR MODEL 

In this paper, we consider a single-phase irreversible 
exothermic reaction, where chemical species A reacts to form 
species B. The rate of reaction is assumed to be of first order, 
and it obeys the Arrhenius relation. Please refer to [19] for 
more detailed discussion of the mathematical modelling of 
the CSTR. A schematic diagram of the CSTR is depicted in 
Fig. 1, respectively.  

We assume perfect mixing inside the reactor. Therefore, 
the residual concentration cA(t) of the reactant A and the 
reactor temperature T(t) are homogenously distributed inside 
the reactor and in the outflow piping. The flow rate F through 
the tank is kept constant, and hence, the liquid volume V 
remains constant. Following the procedures presented in [19], 
the CSTR can be modelled by the nonlinear differential 
equations 
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where U is the overall heat transfer coefficient, A is the heat 
transfer area, ρ is the density, Ti(t) is the temperature of the 
inflow, ∆HR is the heat of reaction per mole of A that is 
reacted, Tc(t) is the coolant temperature and cAi(t) is the molar 
concentration of the inflow. The reaction rate constant k is a 
function of temperature T(t) given by the Arrhenius relation 
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where k0 is the frequency factor, E is the activation energy, 
and R is the gas constant. There is a strong coupling between 
the reactor temperature and residual concentration introduced 
by the product of k(T(t)) and cA(t) in (1). It is assumed that 
cAi(t) and Ti(t) are constants in this experiment. It is further 
assumed that the residual concentration cA(t) and the reactor 
temperature T(t) are measured and available for feedback 
control.  

The numerical values of the constants, initial conditions 
and parameters are listed in Table I, respectively [17].  

 

Figure 1. Continuous stirred tank reactor. 

TABLE I.                                                                                                               

CONSTANTS, PARAMETERS AND INITIAL CONDITIONS OF CSTR 

Constants Values (units) Parameters Values (units) 

F/V 1 (1/min) E/R 5963.6 (K) 

cAi 10 (kmol/m3) k0 34930800 (1/min) 

Ti 298.2 (K) ∆H/(ρC) 11.92 (K∙m3/kmol) 

Initial conditions Values (units) UA/(ρVC) 0.3 (1/min) 

T(0) 311.26 (K)     

cA(0) 8.57 (kmol/m3)     

Tc(0) 297.97 (K)     

 
The reactor is initially in steady-state phase with feed-in 
concentration cAi = 10 kmol/m

3
, in-flow temperature Ti = 

298.2 K, and coolant temperature Tc(0) = 297.97 K, which is 
the manipulated variable. The initial reactor temperature T(0) 
= 311.26 K, and the initial residual concentration cA(0) = 8.57 
kmol/m

3
.  

Here, the intention is to transit the reaction linearly from 
the initial state 8.57 kmol/m

3 
down to 2 kmol/m

3
 in 26 

minutes [17–18], which ensure slow-varying scheduling 
signal. During the transition, the reaction dynamics change 
significantly. Therefore, we linearize the nonlinear CSTR 
model (1) at five equally spaced equilibrium points along the 
desired concentration reference as in [17]. The linearization 
points, the associated equilibrium values, as well as the poles 
and DC-gains of the linearized models are collected into 
Table II, respectively. We have used subscript e to denote 
equilibrium. 

Referring to Table II, the reaction is unstable at the points 
2, 3 and 4, respectively. In the unstable region, the reaction 
must be appropriately cooled to prevent thermal runaway and 
overheating of the CSTR. However, the maximum rate of 
change of the coolant temperature Tc is limited to ±10 K/min, 
which restrains the achievable performance.  

In the following section, we present three linearization-
based control structures for adjusting the coolant temperature 
of the CSTR; namely, gain-scheduled cascade control, gain-
scheduled model predictive control, and gain-scheduled 
composite nonlinear feedback control. 

TABLE II.                                                                                       

CHARACTERISITCS OF LINEARIZED CSTR MODELS AT EQUILIBRIA 

Linearization points, equilibrium values, poles and DC-gains 

Point 

number, 

(cA,e) 

(Tc,e, Te) Poles DC-gains 

1, (8.57) (297.98, 311.26) –0.5225, –0.8952 (–0.0565, 0.7485) 

2, (6.92) (305.24, 327.99) 0.1733, –0.8866 (0.3326, –2.8191) 

3, (5.28) (296.79, 341.11) 0.5114, –0.8229 (0.1723, –1.3490) 

4, (3.64) (290.54, 354.72) 0.0453, –0.4991 (3.9949, –36.3997) 

5, (2.00) (305.03, 373.13) –1.1077±j1.0901 (–0.0426, 0.6210) 

 



  

III. CONTROL SYSTEM DESIGN 

Here, the intention is to design feedback control laws, 
which stabilize the CSTR and satisfy certain control 
requirements. We begin the discussion with the gain-
scheduled cascade structure in Subsection A. In Subsection 
B, we shortly present the MPC, whereas the gain-scheduled 
CNF control is discussed in Subsection C. In what follows, 
we list the control requirements. 

All control systems are required to  

 follow the desired ramp reference from 8.57 kmol/m
3
 to 2 

kmol/m
3
 in 26 minutes 

 form physically realizable coolant temperature profile, 

which cannot vary more than ±10 K/min 

 adjust the coolant temperature using sampling time Ts = 

0.5 min. Hereafter, we use k to denote discrete time 

instant. 

In addition, the residual concentration must converge to the 
desired final value in steady-state. The tracking performances 
of all control systems are measured by the IAE-criterion 
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where e is the actuating error, cref is the desired residual 
concentration, and tf is the stop time of the simulation. 

A. Gain-Scheduled Cascade Control 

Consider the block diagram of Fig. 2, which represents 
the well-known cascade structure. In Fig. 2, the primary loop 
controller is a PI-controller and the secondary loop controller 
is a phase-lead compensator. The coolant temperature Tc(k) is 
adjusted using concentration and temperature measurements. 
However, the reaction displays significant dynamic change 
while the concentration is ramped down, and hence, a fixed 
tuning controller is unable to meet the control requirements. 
Therefore, the cascade controller is gain-scheduled in order to 
perform the control task.  

The five linearized CSTR models introduced in Section 2 
are used for pointwise tuning. All tuning parameter values of 
the cascade controller are determined using the scheduling 
variable dependent quadratic polynomials of the form 

2
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where P is a tuning parameter and cA(t) is the scheduling 
variable. All coefficients Pi, i = 0, 1, 2 are tunable, which are 
calculated based on the control requirements. To be more 
specific, the tuning parameters of the primary loop controller 
are the proportional gain Kp and the integration gain KI, 
whereas Kt, a and b are the tuning parameters of the 
secondary loop phase-lead compensator. The scheduling 
variable, as an external input to the controllers, has been 
marked with dashed arrows into the Fig. 2, respectively. 
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Figure 2. Gain-scheduled cascade structure. 

The tunable polynomials should generally be low order in 
order to keep the number of tunable coefficients small.  Small 
number of tunable coefficients keeps the calculation burden 
manageable. However, first-order linear polynomials are 
insufficient in this application because of significant 
nonlinearity introduced by the CSTR [17].  

We follow the procedure given in [17], which results in a 
profile of scheduled tuning parameters depicted in Fig. 3, 
respectively. The individual tuning parameter values are 
calculated at the five distinct linearization points, which 
results in a collection of 25 scheduled values. Note that linear 
interpolation is performed between the consecutive values of 
each tuning parameter, which ensures that all parameters 
change continuously as a function of the scheduling variable. 
Closed-loop stability is investigated between the linearization 
points through simulations. Finally, the performance of the 
nonlinear gain-scheduled cascade controller is simulated 
using the nonlinear CSTR model. 

The residual concentration, reactor temperature and 
coolant temperature obtained by the cascade controller are 
depicted in Fig. 4, respectively. Judging from the Fig. 4, the 
concentration tracking is satisfactory, and the coolant 
temperature changes between the given constraints. The IAE 
performance measure is 15.37. 

 
Figure 3. Tuning parameter values of the cascade controller. 

 
Figure 4. Residual concentration, reactor temperature and 
coolant temperature of the CSTR. 



  

B. Gain-Scheduled Model Predictive Control 

A single MPC controller designed at a specific operation 
point does not give satisfactory tracking performance for the 
entire operation range of the CSTR [18]. Therefore, multiple 
MPCs are designed at different operation conditions. To be 
more specific, three prediction models and three different 
MPCs are constructed in order to manipulate the coolant 
temperature through the transition. The MPC controllers and 
their prediction models are calculated offline at the 
preselected operation points. Also, a predefined scheduling 
strategy is necessary to sequence the MPCs and their 
prediction models while the residual concentration decreases 
towards the final value. Please refer to [18] for detailed 
discussion of the MPCs and their parameterizations. 

The prediction models and MPCs are formed at [18] 

A. the initial steady-state operation condition as 
described in Section 2 

B. an intermediate operation condition, where cA = 5.5 
kmol/m

3
 and T = 339 K 

C. the final operation condition, where cA = 2 kmol/m
3
 

and T = 373 K 

The temperature values of B and C are obtained from trim 
analysis. Furthermore, the MPCs and the prediction models 
are scheduled using the following switching rules [18] 

1. if 3( ) 8 kmol/mAc t  , use the prediction model and 

MPC obtained at A. 

2. if 33 ( ) 8 kmol/mAc t  , use the prediction model 

and MPC obtained at B. 

3. if 3( ) 3 kmol/mAc t  , use the prediction model and 

MPC obtained at C. 

When the residual concentration decreases, and a new 
rule is executed, the dynamic character of the coolant 
temperature changes according to the corresponding 
prediction model and the MPC. However, additional 
transients will be generated to the coolant temperature at the 
switching instants.  

In addition, a reference previewer has been implemented 
into the MPC structure, which is used to look ahead the set 
point changes in the future. Such previewer generally 
improves the set point tracking [18]. The block diagram of 
the gain-scheduled MPC structure is depicted in Fig. 5, 
respectively. The scheduler block of Fig. 5 is used to provide 
the switching signal for the multiple MPCs block in order to 
sequence suitable MPC and its prediction model according to 
the switching rules. 

CSTR
Multiple

MPCs

Feed-in concentration, cAi

In-flow temperature, Ti

Coolant temperature, Tc(k)

Residual concentration, cA(t)

Reactor temperature, T(t)

Desired concentration, Cref (k)

Scheduler

Future sample

extractor Temperature reference, Tref(k)

Switching signal

Figure 5. Gain-scheduled multiple MPC structure. 

The tracking performance of the closed-loop system is 
depicted in Fig. 6, respectively. The switching instants have 
been marked onto the coolant temperature profile. The 
residual concentration follows the desired reference relatively 
closely; although, some abrupt changes are observed in the 
coolant temperature during switching. The IAE performance 
measure is 6.9.  

C. Gain-Scheduled Full-State Composite Nonlinear 

Feedback Control 

In this subsection, we proceed to design a gain-scheduled 
full-state CNF controller for adjusting the coolant 
temperature of the CSTR. We carry out the CNF design 
procedure in three steps; namely, 1) the design of linear 
feedback part, 2) the design of nonlinear feedback part, and 
3) combine the linear and nonlinear feedback parts to form a 
complete CNF controller.  

A full-state CNF controller can be designed with respect 
to linearized process dynamics described by the equations  
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where x ∈ ℝn, u ∈ ℝ, y ∈ ℝ and m ∈ ℝn are the state, control 

input, controlled output and measured output, whereas x0 is 

an initial condition.  

The controlled output y is assumed to be part of m, i.e. y 
is also measured. It is further assumed that the pair (A, B) is 
stabilizable, and the triple (A, B, Cy) has no invariant zeros at 
the origin. An integral action can be included into the design 
procedure by augmenting an integrator into the given system 
model; see for example: [11; 20]. Therefore, we insert the 
following auxiliary state variable 

i yx r y C x r     ,           (6) 

into the system (5). The resulting augmented system can then 
be written by 

  

Figure 6. Tracking performance, coolant temperature, and 
switching instants of MPCs. 
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It can be shown that the pair ( ,  )A B is stabilizable. The 

full-state CNF controller with integration can be designed by 
the following three steps. 

Step 1. Design a linear feedback control law 

      
L su Kx R r   ,         (10) 

such that ( )A BK is asymptotically stable. The gain K can 

be partitioned as K = [Kx  Ki], where Kx is the state feedback 
gain and Ki is the gain of the integration action. The scalar Rs 
is a reference tracking gain given by  

1 1[ ( ) ]s y xR C A BK B    ,       (11) 

where the inner inverse exists under the given assumptions. 
The gain Rs ensures that the DC-gain from the reference r to 
the controlled output y is one, which guarantees accurate 
tracking of constants in steady-state assuming disturbance 
free control environment. It is case dependent, when such 
calibration is useful, if integration action is also implemented. 

Step 2. Given a positive-definite matrix W ∈ ℝ(n+1)x(n+1), 

solve the Lyapunov equation 

( ) ( ) 0TA BK P P A BK W          (12) 

for P > 0. Such solution can always be found since ( )A BK  

is asymptotically stable. The nonlinear feedback law is then 
given by 

( , ) T

Nu r y B Px ,         (13) 

where ρ(r, y) is any smooth nonpositive function, locally 
Lipschitz in y. Procedures for seeking an appropriate TB P is 
presented; for example, in [11]. In this paper, we choose the 
following commonly-used nonlinear function 

 ( ) exp( ) exp( 0 ) ,  e e y r e r y           , (14) 

where e is the actuating error, and α > 0 and β > 0 are tuning 
parameters. The parameters α and β are chosen to give 
satisfactory performance when e → 0. The function (14) 
starts from zero and converge to  

      0 1 exp (0)y r              (15) 

with appropriate speed and magnitude, while e → 0. The 
parameter α is selected to yield sufficient convergence speed, 

whereas β is selected to give a desired magnitude in steady-
state. It is usually relatively simple to find suitable values for 
α and β following few practical experiments or using 
simulations. However, several additional ways to tune the 
nonlinear function is discussed in [7], respectively. In this 
paper, we use fixed tunings for α and β. 

Step 3. Form the full CNF control law by combining the 
linear and nonlinear feedback laws from the previous steps: 

( , ) T

L N su u u Kx R r r y B Px      .      (16) 

The proof of the asymptotic stability of the closed-loop 
system under such control law can be found; for example, in 
[11]. 

We begin the CNF design from the step 1. First, we 
calculate a collection of state feedback gains Kx using the 
well-known LQR methodology at the points 1–5 of Table II. 
To be more specific, we tune the gains Kx by minimizing the 
infinite horizon LQR cost function 

0

( )T T

lqrJ x Qx u Ru dt


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where Q ∈ ℝ2x2 ≥ 0, R ∈ ℝ > 0 in this application. We 

choose the weighting matrix Q = I
2x2

, because the dynamic 

behavior of the reactor temperature and residual 

concentration are essentially the same. The weighting factor 

R = 0.1 was found experimentally to keep the gains at a 

reasonable magnitude, and hence, to ensure unviolated rate-

limit constraint. 

The resulting feedback gains are collected in Table III, 
respectively. Furthermore, we choose a fixed integration gain 
Ki = –6. Our initial simulation tryouts suggested that the 
gains at the first node should be retuned in order to accelerate 
the reaction at the beginning of the ramp, i.e. the initial LQR 
tuning was too conservative. We updated the gain of the first 
node by placing the poles at [–1.5±j0.4] in the complex 
plane. Such fine-tuning results in the gain Kx,1 = [–3.6319, 
5.2746], where the lower index 1 indicates the first design 
node, i.e. the first linearization point. 

Finally, we linearly interpolate between the gain values, 
and we use gain-scheduling to update the gains Kx using cA(t) 
as a slowly varying scheduling variable. As a result, the state 
feedback gains Kx(cA(t)) change continuously while the 
residual concentration decreases towards the desired value. 

Next, we solve the Lyapunov equation (12) with W = I
3x3

, 
which results in a well-conditioned P given by 

TABLE III.                                                                                                      

LINEARIZATION POINTS AND LQR GAINS 

Point number, (cA) Kx 

1, (8.57) (1.9668, 2.2535) 

2, (6.92) (9.5570, 4.6862) 

3, (5.28) (21.9479, 6.8175) 

4, (3.64) (33.7653, 6.9147) 

5, (2.00) (29.8291, 3.9893) 
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Therefore, we use fixed tuning for the gains TB P at the entire 
operation region. The resulting gains for the nonlinear part 
are 

[1.6673    0.2654   0.0833]TB P   .      (19) 

We choose the fixed parameters of the nonlinear function 
(14) as α = 3 and β = 1, which completes the CNF design. 
The resulting state-error CNF controller is 
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where Tref (t) is the desired reactor temperature. 

Finally, for simulation purpose, we discretize the control 
law (20) using the zero-order hold method. The block 
diagram of the gain-scheduled full-state CNF controller is 
depicted in Fig. 7, respectively. In Fig. 7, the scheduler block 
provides the LQR state feedback gains to the CNF controller.  

We have implemented the scheduler block using one 
dimensional MatLab lookup table, in which the breakpoints 
are the five linearization points of Table II. The total number 
of scheduled gain values are 10, which is less compared with 
the cascade structure in Subsection A. However, the CNF 
controller has additional fixed gains and tuning parameters; 
namely, TB P , Ki,  α and β. Therefore, the CNF has more 
tuning parameters compared with the cascade controller, and 
hence, more freedom available for controller tuning. 

The desired temperature of Fig. 7 is provided by the 
temperature generator block. We have calculated pointwise 
model-based temperature values at each design node using 
information from trim analysis. Then we linearly interpolate 
between the calculated values using one dimensional 
MatLab lookup table, which is driven by the reference cref(t). 
As a result, we obtain a continuous desired temperature 
profile to supplement the CNF controller.  

CSTR

CNF-controller

Feed-in concentration, cAi

In-flow temperature, Ti

Coolant temperature, Tc(k)

Residual concentration, cA(t)

Reactor temperature, T(t)

Desired concentration, Cref (t)

Temperature

Generator

Scheduler

Feedback gains, Kx(cA(t))

Desired temperature

Figure 7. Gain-scheduled full-state CNF structure with 

temperature generator.  

The closed-loop tracking performance obtained by the 
gain-scheduled CNF controller is depicted in Fig. 8. Judging 
from Fig. 8, the residual concentration follows the desired 
reference with marginal error only. We would like to 
emphasize that the nonlinear part of the CNF is fully 
activated when e becomes small. The role of the nonlinear 
part in such circumstances is to provide significant control 
contribution, which allow improved tracking performance 
and small error. The IAE index is 4.4. Finally, we collect the 
IAE performance measures of all control systems into Fig. 9, 
respectively. 

The gain-scheduled CNF yields the smallest IAE number 
compared with the other two candidates. We also tried 
scheduling strategy for the gains TB P  by designing a 
different P at each design node. However, we did not observe 
significant improvement of the responses. We believe that 
scheduling of the gains of the nonlinear part is unnecessary in 
this application, because the nonlinear function (14) is able to 
automatically change its value using information of the error 
only, and hence, it is able to provide necessary fine tuning.  

The gain-scheduled cascade controller resulted in worse 
tracking performance compared with the gain-scheduled 
CNF. The CNF and cascade controllers explicitly adjust the 
coolant temperature using information from the concentration 
error: cref – cA, and temperature error: Tref – T, respectively. 
However, the CNF has an additional tunable, error dependent 
nonlinear function, which is able to smoothly and 
automatically change the tuning of the nonlinear part as 
desired. Therefore, the CNF also has more structural freedom 
to generate feedback control compared with the traditional 
cascade structure. We believe that such structure-wise 
difference explains the superiority of the CNF. 

All systems simulated in this paper used concentration 
and temperature measurements to generate feedback control. 
However, it is relatively uncommon that the residual 
concentration is measured in an actual reactor. We feel that 
estimation of the residual concentration should not be too 
difficult by a state observer. Therefore, an observer-based 
control strategy should be possible to construct for this 
application.  

 
Figure 8. Performance of the closed-loop CSTR using CNF 

controller. 



  

 

Figure 9. IAE performance measures. 

IV. CONCLUDING REMARKS 

 Linearization-based gain-scheduled composite nonlinear 
feedback control was introduced in this paper. A nonlinear 
continuous stirred tank reactor transitioning from high to low 
residual concentration was used as a benchmark process to 
illustrate controller performance. The tracking performance 
of the gain-scheduled CNF was compared with a 
linearization-based gain-scheduled cascade controller, as well 
as with a linearization-based gain-scheduled model predictive 
controller using the well-known IAE criterion.  

It was shown by simulation that the closed-loop system 
using the gain-scheduled CNF controller provided the best 
tracking performance. However, analytical approaches to 
investigate stability and performance properties of gain-
scheduled CNF should be addressed to supplement extensive 
numerical simulations. Also, linear parameter-varying (LPV) 
and linear fractional transformation (LFT) based gain-
scheduling approaches exist, which could be suitable for the 
CNF methodology. We feel that those could be interesting 
research topics in the future. 
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