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Abstract—This article presents a probabilistic motion model
that is based on an economical graph-based indoor map rep-
resentation, such that the motion of the user is constrained
according to the floor plan of a building. The floor plan is
modeled as a combination of links and open space polygons that
are connected by nodes. In the authors’ earlier work the link
transition probabilities in this graph are proportional to the total
link lengths that are the total lengths of the subgraphs accessible
by choosing the considered link option, and this article extends
this model to include open space polygons as well. A particle
filter using the extended motion model in which all particles are
constrained according to the map structure is presented. Fur-
thermore, wireless local area network and Bluetooth Low Energy
positioning tests show that the proposed algorithm outperforms
comparison methods especially if the measurement rate is low.

Keywords—indoor positioning; particle filter; motion model;
map matching; graph

I. INTRODUCTION

Wireless local area network (WLAN) and Bluetooth Low
Energy (BLE) systems are commonly used for indoor po-
sitioning, and their accuracy can be improved by filtering
measurements over time using statistical models of the user’s
motion. When inertial navigation is not available, the user’s
position or velocity is typically modeled as a random walk.
However, these motion models neglect the motion constraints
imposed by the walls in the building. Using the floor plan
information in the motion model enables more efficient particle
filtering than the conventional particle filter [1] that uses the
random-walk motion model and treats wall constraints as
measurements [2].

The floor plan information can be included in the motion
model using a graph-based floor plan representation [3], [4],
[5], [6], [2]. In the graph-based floor plan, the expected user
paths are represented by links (edges). The links are undirected
line segments that are connected by nodes (vertices) according
to their real-world connectivity. It is assumed that the user
can be anywhere on the links. A graph-based motion model
is potentially more realistic than random-walk-based models
because typical pedestrian movement is oriented towards a des-
tination in a more determined way than random-walk models
predict. A well-tuned graph-based motion model assumes more
continuity for the user’s direction than random-walk models,
while allowing sharp turns at corridor junctions [2].

Graphs usually represent well corridors and small rooms.
However, large open spaces, wide corridors, and outdoor
spaces are in a more economical and natural way represented
by two-dimensional polygons. Inside these polygons moving
is free in two dimensions, so the positioning accuracy is not

limited by the map representation. Thus, the map used in this
article contains two types of map objects (MO): links and open
space polygons (OS). Such a combined map representation has
been proposed by Ferris et al. [5], but they do not give an
automatic method for assigning the MO transition rules.

This paper extends the authors’ earlier work [2], where a
particle filter using a graph-based motion model for WLAN
positioning is proposed. The novelty of this paper is extending
the link transition rule proposed in [2] to the combined
map representation that includes the OSs. In the proposed
algorithm, the MO transition probability is proportional to the
total link length (TLL) that describes the total size of the area
accessible by choosing the considered MO option.

This paper also presents real-data tests in open spaces and
at indoor–outdoor transitions. The tests are done in a campus
building using the existing WLAN infrastructure and a BLE
network built for positioning research. The proposed method
is found to outperform the comparison methods especially if
measurement rate is low.

II. GRAPH WITH OPEN AREAS

A. Description and definition
In this paper, the map structure similar to [5] is expressed

as a combination of MOs and nodes such that G = (Λ,N).
The set Λ contains the arbitrarily indexed MOs denoted by
λk, which can be either links that represent small rooms and
corridors, or OSs that represent larger open spaces. The other
set N contains the arbitrarily indexed nodes νn that connect
MOs and have a three-dimensional position.

Large OSs are defined as polygons inside which it is
possible to place a circle with a 4-meter radius so that the
circle does not cross any walls of a floor plan map. An OS
λk contains information about the boundaries of the polygon
and also accessor nodes (AN). These ANs are the only points
where the user can enter the OS polygon λk from the graph
or vice versa.

The rest of the map structure is represented as links such
that each link λk has two end nodes. Different floors of a
building are connected with vertical links in places where floor
transitions are possible, such as in elevators and stair cases.
The map structure for one floor is shown in Fig. 1.

B. Map object transition rule
Transitions between MOs can be modeled using different

types of transition probabilities [3], [4]. To extend the TLL-
based link transition rule of [2], corresponding MO lengths
need to be defined for OSs.
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Fig. 1: Graph with OSs in the test building. Links and nodes as well as ANs
are shown with black. OSs are modeled as polygons which are shown with
light blue. The outdoor area is also considered as an OS.

The user can move to another destination through an
OS, which affects the computation of the TLLs. Therefore,
temporary links λk,1, . . . , λk,n are created between the ANs of
an OS λk to represent the shortest possible distances between
different ANs. Such temporary links can be created in an
off-line phase using Dijkstra’s algorithm [7, Ch. 4.8], for
instance, and they need not be stored in the permanent map
data structure; the temporary links are used only to determine
the TLLs in the off-line phase.

For adapting to the definition of TLL in [2], the parts of
the OSs that are not covered by the temporary links are also
given a size measure that is here referred to as MO length.
The MO length should depend on the area of the OS, and the
lengths of the temporary links which are parts of the shortest
paths along the map structure ares subtracted from the OSs’
MO length. The MO length of an OS λk is thus defined as

LENGTH(λk) =
AREA(λk)

CORRIDOR WIDTH
−
∑
i∈A

LENGTH(λk,i),

(1)

where AREA(λk) is the area of the polygon, CORRI-
DOR WIDTH is a configuration parameter that describes a
typical corridor width, for example 3 m, and

A = {j | shortest path from initial node νm to or through λk
is shorter than `MAX and contains λk,j}.

The MO transition probabilities P(λki |λk) are determined
by extending the principles in the authors’ earlier work [2]
with an assumption that considers temporary links also as
parts of the shortest paths. This assumption together with the
principles in [2] imply that the user uses the shortest possible
path to reach the destination. Thus, the old MO is not one of
the possible destinations and U-turns are only allowed by an
additional motion model as explained in section III-A. Using
these assumptions the MO transition probability of arriving
to node νm from link λk can be expressed by extending the
transition rule as follows

P(λki |λk) =

∑
j∈Ik,i LENGTH(λj) +

∑
j∈Kk,i LENGTH(λp,j)∑

j∈Ik LENGTH(λj) +
∑

j∈Kk LENGTH(λp,j)
,

(2)

where
Ik = {j | shortest path from νm to λj is shorter than `MAX

and does not use λk},

Ik,i = {j | shortest path from νm to λj is shorter than `MAX

and uses λki but does not use λk},

Kk = {j | shortest path from νm to temporary link λp,j is
shorter than `MAX and does not use λk},

Kk,i = {j | shortest path from νm to temporary link λp,j is
shorter than `MAX and uses λki but does not use λk}.

The transition probabilities defined in (2) can be computed
efficiently by using Algorithm 1 of [2] and considering tem-
porary links as ordinary links and open spaces as destinations
with lengths determined in Eq. (1).

At MO transitions, this model gives most weight to corri-
dors and major open areas, and a high TLL can be considered
as an indication of a link being such a major pathway [2]. The
assumptions limit the probability of the main routes with the
variable `MAX such that options with shorter lengths get large
enough probabilities. Although the variable `MAX ensures that
less probable options get small probabilities, some lower limit
for the probabilities can be also set. In the real-data tests, the
limiting variable `MAX is set to 40 m and the lower limit for
the transition probabilities is set to 5 %.

The proposed TLL algorithm does not use any information
about the functions of different building parts; the TLLs are
computed off-line using only the map structure G as input.
However, if real data of people’s behavior are available, the
MO transition probabilities can be updated using the TLLs as
a prior. This learning process is similar to the one described
in [2].

III. POSITIONING ALGORITHM

A. Motion model

Instead of being a random-walk, the motion of a user
usually contains sharp turns and it tends to be oriented towards
some destination. The graph-based motion models take these
sharp turns into account at junction points as well as tendencies
in velocity when the direction of the user is known.

In this paper, a two-mode motion model is used to model the
constrained motion of the user as in [3], [5] and [2]. The mode
mk is either a combination of the MO transition probabilities
and random-walk speed (mk = ’motion’) or is static (mk =
’static’) in both OSs and links.

The state vector xk at time instant tk depends on the MOs
such that

xk =

{
[Ik, pk, dk, vk,mk]

T
xk is on a link

[Ik, xk, yk, dk, vk,mk]
T

xk is in an OS,
(3)

where Ik is the MO index, pk ∈ [0, 1] is the one-dimensional
location on the link and [xk, yk]

T is the two-dimensional
location in the OS. Furthermore, dk ∈ {−1, 0, 1} indicates
the direction of the user on the link, dk ∈ [0, 2π] denotes the
heading in the OS, and vk the speed (magnitude of velocity).

The motion model of the user contains four parts: motion
in links and in OSs, and transitions between links and OSs.
The motion model used in links is presented in [2]. Because



the user can go through OSs, straight motion is preferred
in the motion model inside OSs as in [5]. Thus, using the
probabilistic notation and assuming that the heading of the
user is random-walk in OSs, the motion model in an OS is

p(sk, vk, dk|vk−1, dk−1,mk)

=


N

skvk
dk

 |
(∆t)kvk−1

vk−1
dk−1

 ,Pk

 , if mk = ’motion’

DIRAC(sk, vk, dk), if mk = ’static’

,

(4)

where sk is the distance travelled by the user within the time
interval [tk−1, tk] and DIRAC denotes the multi-dimensional
Dirac delta function. Furthermore, (∆t)k = tk − tk−1 is the
length of the discretisation interval and the covariance matrix
of the process noise is now

Pk =

[
Qk 0
0 σ2

d

]
(5)

where the matrix Qk is similar to one in [2] and σd is another
configuration parameter.

The transition from a link to an OS occurs when the user is
in an accessor node coming from a graph. If the user chooses
to enter the OS, the heading of the user is the heading of
the latest link with some uncertainty. The transition from an
OS to a graph occurs if the user is inside the OS and crosses
a boundary of the OS close to an accessor node. Then the
probability mass is set to the accessor node and the motion
continues along the graph.

B. WLAN positioning

In this paper, most of the tests are based on WLAN
positioning. Fingerprints that are collected beforehand from
each floor of the test building are used in the experimental tests
presented in section IV. The same measurement model based
on the standard logarithmic path loss model with Gaussian
shadowing noise is used as in [2]. A Gauss–Newton method
is used to obtain a Gaussian approximation of the actual
likelihood taking the parameter uncertainties into account as in
[8]. Thus, the measurement model for the particle weighting
is

p(yk|xk) ∝ N(rk(xk)|µk(yk),Σk(yk)), (6)

where yk is the vector of received signal strengths (RSS), and
rk is the position of the user in Cartesian coordinates. µk

and Σk are the mean and covariance matrix of the likelihood
approximation, respectively.

In this paper, the current floor of the user is estimated by
choosing the most probable floor in the building based on the
measurement likelihood.

C. Bluetooth Low Energy positioning

Fig. 2: A BLE beacon

The proposed method with the
current map structure was also
tested using measurements from
StickNFind BLE beacons (Fig.
2). The beacons were placed in-
side the building such that the
average number of heard beacons
in one fingerprint location around
the test track was 11, which is more than the threshold
proposed in [9]. Since received measurements are RSS-values
as in WLAN positioning, the BLE measurement model is
similar to the measurement model (6).

D. Particle filter

A particle filter is a Monte Carlo algorithm that approxi-
mates the posterior distribution of the state given the measure-
ment history, when the measurement and the state transition
models as well as prior information of the state is known, and
certain Markovian assumptions hold. Although the continuity
of the distributions is usually assumed, it is not necessary be-
cause the existence of the corresponding probability measures
is a sufficient condition for convergence of a particle filter [10].

A particle filter approximates the posterior distribution
p(xk|y1:k) with a set of weighted particles {(xi

k, w
i
k) | i ∈

{1, . . . , N}}. Initially, particles are generated according to
prior distribution p(x0). In the prediction phase, the par-
ticles are generated according to the proposal distribution
q(xi

k|xi
k−1,y1:k), and in the update phase importance weights

wi
k are updated using the measurement likelihood p(yk|xi

k).
Finally, resampling ensures that the weight does not concen-
trate to one particle. [11]

In this paper, the state transition distribution p(xk|xk−1)
is used as a proposal distribution, and the effective sample
size is used to determine when resampling is needed. The
particle filter is presented in detail in Algorithm 1, where the
re-initialization method presented in [1] is also used.

The algorithm for moving a particle from an OS to a link
is presented in detail in Algorithm 2. When a particle is inside
an OS, it might reach the walls far away from any AN. Instead
of bouncing the particle back by changing the heading as in
[5], the weight of the colliding particle is set to zero. When
the particle exits the OS close to an AN, the particle’s weight
is reduced by a coefficient that depends on the distance to the
closest AN.

A natural choice for the point estimate would be the
weighted mean of the particles. However, the estimate might be
in a region that is inaccessible via the MOs even when all the
particles are in the feasible region. Choosing the best particle
[5] or using the MAP (maximum a posteriori) estimate [12] are
possible options to constrain the estimate according to the map
structure, but the estimate trajectories might display jumpiness
due to the multimodality of the posterior distribution.

The continuous Constrained Mean algorithm [13] enforces
the estimate to the map structure by minimizing the weighted
sum of squares over all possible MOs. The Constrained Mean
estimator for the graph-based model is equivalent to choosing



the MO point that is closest to the weighted mean. The detailed
description of this point estimator can be found in [2].

It is still possible that the solution of the Constrained
Mean algorithm is inside a MO that does not contain any
particles. Such estimates can be avoided by constraining the
set of possible MOs at each time step to include only specific
accessible areas.

IV. TESTS

A. Test setup

The tests are carried out in Tietotalo building of Tampere
University of Technology campus using Samsung Galaxy S5
phone. Three tests are done using only WLAN measurements
from existing WLAN infrastructure and one test is done using
only BLE measurements from a set of installed beacons. Actual
positioning algorithms are computed offline using MATLAB
software.

The test tracks are shown in Fig. 3. Track 1 (Fig. 3a) starts
from a corridor, enters a lecture hall and stays inside for a
while before leaving the lecture hall back to the corridor. Track
2 (Fig. 3b) starts from a narrow corridor and goes through an
irregularly shaped open area ending up to the main corridor.
Third WLAN track 3 (Fig. 3c) illustrates a movement from
indoors to outdoors. Track 4 (Fig. 3d) is a BLE track that
starts from an open area and goes to the main corridor by
crossing an open area on its way.

Results from the experimental tests are compared with the
Kalman filter (KF) and the similar particle filter with uniform
MO transition probabilities. Since it is more convenient to
model open areas such as outdoors with polygons instead of
links, the proposed method is not compared with the authors’
earlier method [2]. The KF uses a random-walk motion model.

B. Results and discussion

In the experimental tests, 400 particles are used for both
particle filters. Each filter is run 100 times for all four test
tracks and the measurement scanning intervals are set to 5 and
10 seconds. RMS-error (root mean square error) statistics from
the tests are shown in Fig. 4.

The proposed TLL-based particle filter performs slightly
better than the KF in many cases and better than the particle
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END
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(a) Track 1 (WLAN)

STARTEND
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(b) Track 2 (WLAN)
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END

10 m

(d) Track 4 (Bluetooth)

Fig. 3: The real-data test tracks with walls, links, nodes, and the ground truth
of test tracks. Starting and ending points are labelled, and accessor nodes are
shown as larger black points.

Algorithm 1 Particle filter for 2D indoor positioning

1) For each i ∈ {1, . . . , N} set wi
0 := 1

N , and generate
xi
0 ← p(x0). Set the time index k := 1.

2) Generate motion states mi
k based on the previous motion

states mi
k−1 and the transition probabilities. For the

particles i ∈ {i|mi
k−1 = ’static’ and mi

k = ’motion’}
generate vik−1 ← p(vo) and dik−1 ← cat(0.5, 0.5). For
each i ∈ {i|mi

k = ’motion’} generate[
sik
vik

]
← N

([
(∆t)kv

i
k−1

vik−1

]
,Qk−1

)
,

set vik := min(max(vik, vmin), vmax) and set dik := dik−1.
The matrix Qk−1 is the one in [2]. For each i ∈ {i|mi

k =
’static’} set sik := 0 and vik := 0.

3) for i ∈ {1, . . . , N} do
Set w̃i

k := wi
k−1 and s̃ := sik.

if λIik−1
is a link then

Move the ith particle to direction dik at most
to the end of λIik−1

to distance s′ ≤ sik.
Set s̃ := s̃− s′.

end if
Set Iik := Iik−1.
while s̃ > 0 do

Generate new MO index Iik from categorical
distribution cat(P(λk1

|λIik), . . . ,P(λknλ |λIik))
if λIik is a link then

Update the direction dik.
Move particle i to the direction dik at most
to the end of λIik to distance s′ ≤ s̃.

else
Generate direction dik using Eq. (4) and
move particle i to distance s′ ≤ s̃ not
farther than the OS boundary.
Run the algorithm OS_to_link.

end if
Set s̃ := s̃− s′

end while
Find the particle’s position rik in Cartesian coord.

end for
4) If a measurement is obtained at time index k, run Gauss–

Newton to obtain mean µk and covariance Σk [8]. Set

w̃i
k := N

(
rik|µk,Σk

)
· w̃i

k.

5) Normalize the weights by wi
k := w̃i

k/
∑N

j=1 w̃
j
k.

6) Perform divergence monitoring as in [2].
7) Compute the estimate µ̂k using the Constr. Mean [13].
8) If 1/

∑N
i=1(wi

k)2 < Neff,lim, perform resampling and
equalize the weights. Set k := k+ 1, and go to phase 2.

filter with uniform transition probabilities in every test case.
In track 1, which goes through a lecture hall, the TLL-based
method is giving less probability to the lecture hall according
to the TLLs. However, the proposed method performs well
with both scan rates because less probable options have enough



Algorithm 2 OS to link

if The particle is on an OS boundary then
distAN := distance to the closest AN
if 0 ≤ distAN ≤ 0.5 · widthdoor then

Move the particle to the AN.
else if 0.5 · widthdoor < distAN ≤ 5 m then

Move the particle to the AN and update the weight:
wi

k−1 := 2−4(distAN−0.5·widthdoor)
2 · wi

k−1.
else

Set s′ := s̃ and wi
k−1 := 0.

end if
end if
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Fig. 4: Error statistics from the real-data tests for each method and track when
the measurement scanning rates are 5 and 10 seconds. Black line segments
are the KF results

probability to attract particles. The KF is almost as good
as the TLL-method with the scanning interval of 5 seconds,
but when the scans are made less frequently, the TLL-based
method outperforms both comparison methods clearly. Despite
the fact that track 2 has one sharp turn in the large OS, the
proposed particle filter performs well because the variance of
the random-walk direction is large enough. It also outperforms
the comparison methods significantly.

The KF as well as the particle filter with uniform transition
probabilities are less accurate than TLL-method also in track
3 which contains an indoor–outdoor transition. In track 4 both
particle filters outperform the KF with the 5-second scanning
interval. The difference between the particle filters is smaller
than with the other tracks, which is probably because most of
the track is in an open area.

V. CONCLUSIONS

A novel statistical motion model for indoor positioning with
the map structure that contains a graph with open area regions
was proposed. The proposed model constrains the motion of
the user based on the map structure such that larger and
more branched areas in the map have more probability at map
object transitions. A particle filter algorithm using the proposed
model and WLAN or BLE measurements was presented and
compared with two other methods.

The user’s motion typically takes place in corridors and ma-
jor open spaces (OS) and is oriented towards some destination
instead of being random-walk. The proposed motion model
prefers motion in OSs and corridors but is also able to handle
less probable areas such as small rooms. The motion model
also prefers straight motion inside OSs where the motion of
the particles is constrained by the OS boundaries.

The presented experimental tests indicate that the proposed
motion model is advantageous especially if the measurement
scanning rate is low. In addition to the good performance in the
corridors, the particle filter with the proposed motion model
performs well also in OSs and outdoor spaces, and outperforms
the comparison methods in most of the cases.
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