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ABSTRACT 
 
This article considers techniques for accelerating a light 
field reconstruction algorithm operating in shearlet domain. 
In the proposed approach, an independent reconstruction of 
epipolar images (EPIs) is replaced with a consecutive tree-
structured reconstruction. It aims at decreasing the number 
of iterations necessary for an EPI reconstruction by using 
already processed EPIs as initial values in the reconstruction 
stage. Two algorithms for structuring such processing trees 
are presented. The reconstruction performance of the 
proposed algorithms is illustrated on a real dataset. The 
underlying differences between the algorithms are discussed 
and numerical results of computation speeds are presented. 
 

Index Terms— Light field, sparse reconstruction, 
shearlet, image based rendering 
 

1. INTRODUCTION 
 
One of the fundamental problems related to visualization of 
3D content on a 3D display is the rendering of arbitrary 
views out of a given, typically small, set of images (views) 
that are acquired by a sparse set of cameras. This is referred 
to as image based rendering (IBR) and is used in various 
applications such as refocused image generation [1], depth 
estimation [2], [3], novel view generation [4], holographic 
stereogram [5], to name a few. The existing IBR methods 
are based on two, fundamentally different, approaches. First 
approach is based on getting an explicit information about 
the scene geometry in the form of depth map(s) estimated 
from a set of given images [6], [7], [8]. The desired views 
are then synthesized by reprojecting the available images 
using the estimated scene geometry [9], [10]. Second 
approach is based on the light field (LF) concept [11], [12] 
in which each pixel of the available views is considered as a 
sample in a multidimensional LF function. In this case the 
problem of novel view synthesis can be considered as a 
problem of reconstructing the continuous multidimensional 
LF function from discrete samples. In general, the 
generation of novel view is prone to ghosting type of 
distortions and their handling requires a large number of 
images [13]. It has been shown in [14] that novel views of a 
sufficient quality can be synthesized by a simple linear 
interpolation if the LF is sampled such that the disparity 

between nearby views is always less than one pixel. 
Hereafter we will call such sampling, densely sampled LF. 
Capturing a densely sampled LF would require an 
impractical amount of cameras, with number of cameras 
being related to the camera resolution and scene depth [14]. 
A more practical way is to find a generic domain for LF 
representation, which allows reconstructing the densely 
sampled LF out of LF samples taken by several cameras 
only (i.e. a coarse set of cameras). 

Recently, we proposed a method for reconstruction of a 
densely sampled LF that utilizes the sparse representation of 
EPIs in shearlet domain [16]. In that method, the available 
data (captured views) are interpreted as known rows in the 
EPI’s. By applying an iterative inpainting technique on 
every EPI, we were able to reconstruct all unknown 
samples. Each EPI has been processed separately and 
independently. Since the number of EPIs is equal to the 
number of rows in the image, the overall method is 
computationally demanding.  

In this paper we address the computational optimization 
of the above approach and show that by proper hierarchical 
ordering of EPIs for their further parallelized processing, 
one can achieve considerable computational savings and at 
the same time improve the reconstruction quality. 
 
2. EPI RECONSTRUCTION IN SHEARLET DOMAIN 
 
Consider a camera moving with a dense sampling step in 
horizontal direction, thus creating a set of perspective 
images. Stacking all images and taking a slice along view 
dimension creates an EPI - a regular structure of stripes with 
different thickness and slope [15]. Fig. 1(a) shows the stack 
of perspective images. A slice of it (e.g. the yellow line) 
results in an EPI Fig. 1(b)). where each line corresponds to a 
scene point with the line slope being inversely proportional 
to the distance of the point to the camera plane (assuming 
only Lambertian reflectance in the 3D scene). In the spectral 
domain, a line at constant depth is mapped to a line passing 
through the origin. Consequently, the spectrum of an EPI 
has a bow-tie type shape and in the case of a densely 
sampled LF is always contained in a region similar to the 
one highlighted in Fig. 1(c) [16]. In Fig. 1(b) the dense EPI 
is superimposed with green lines showing the available 
measured lines corresponding to input camera views. The 
goal is to reconstruct the dense LF in EPI domain out of the 
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given measured lines. Based on the spatial and spectral 
properties of EPIs the reconstruction is done in shearlet 
domain. The shearlet analysis and synthesis frames are 
formed by elements being translation-invariant functions 
indexed by scale and shear (direction) indexes. Their 
frequency support allows tiling the EPI spectrum for some 
finite number of scales and directions as shown in Fig. 1(c). 
We favor the use of compactly supported shearlets [17], 
which have compact support in spatial domain as illustrated 
in Fig. 1(d, e) and reduce the ringing artifacts during 
reconstruction. While constructing a frame of compactly 
supported shearlets, different directional filters for different 
scales have been used for improving the directional 
properties at lower scales [16], [17], [18]. 

Denote by � ∈ ℝ�×� the unknown complete EPI matrix, 
where each row represents a corresponding image row and 
denote by � ∈ ℝ�×� the decimated EPI where rows from 
available camera views form the input and the unknown 
rows are set to 0. The two two-dimensional matrices � and � are column-wise reshaped into ℝ��

 vectors and the same 
notations � and � are kept for those. The binary matrix � ∈ ℝ��×��

 where ���, �� = 1 if ���� ≠ 0 and 0 otherwise, 
determines the available measurements. The analysis and 
synthesis matrices of the shearlet frame are denoted by � ∈ ℝ�×��

 and �∗ ∈ ℝ��×�, respectively, where � = 	
� 
and 	 is the number of all shears in all scales of the shearlet. 
The reconstruction of unknown rows of � is formulated 
under the prior condition for having sparse solution in the 
shearlet domain, i.e. 
 

 min
�∈ℝ��

‖��‖� ,		subject to			� = �� (1) 
 

The problem (1) is solved through the following iterative 
thresholding algorithm [20]: 
 

 ���� = �∗ 
�	������ + �(� − ���)��� (2) 
 

where �	��� = ��, |�| ≥ �
0, |�| < �, is a hard thresholding operator 

and � is a chosen relaxation parameter. The initial value �� 
is set to 0 everywhere and the thresholding parameter �� is 
set to decrease with the iteration number, in our case further 
on we assume will assume that �� linearly decreasing from �
�� to �

� over � iterations, � = 0,… , �.  
 

3. ORGANIZING EPI PLANES IN TREES 
 
3.1. Choice of optimal parameters 
 
The performance of the algorithm presented in Section 2 
depends on the selection of some parameters, e.g. the 
thresholding parameters �� and the number of iterations �.	In [16], it was assumed that each EPI is reconstructed 
independently from others, using optimal parameters ����� , �
��

��� , �

�
��� �. Under this assumption, the algorithm is 

highly parallelizable provided a large number of GPUs is 
available. For independent processing, good results for all 
EPIs are obtained without providing any specific initial EPI 
estimate. The thresholding parameters have been selected 
based on exhaustive search ��
��

��� , �

�
��� � and in general, a 

   
(a) (b) (c) 

   

 

   
(d)  (e) 

Figure 1. (a) Example of scene image.(b) Example of densely sampled light field EPI corresponding to row highlighted in yellow in 
(a). (c) Frequency domain characteristics of EPI with desirable frequency domain truncation, presented in 3 scales and central low pass 
filter with disparity values of corresponding shears. (d) Example of several constructed shearlet atoms in spatial and (e) frequency 
domains. 
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higher number of iterations always give a better result. Still, 
some optimal value ���� has to be chosen depending on the 
available computing resources, the targeted reconstruction 
quality. Fig. 2 shows the reconstruction quality during 
iterative reconstruction for different parameter � of the 
algorithm for an EPI from the Teddy dataset [19] validated 
over the even indexed views and taking odd indexed views 
as input for the algorithm. One can see that by using a 
proper selection of parameters the algorithm performance 
converges faster, however algorithm convergence instability 
should be considered for big value of �. 
 
3.2. Accelerated reconstruction 
 
In order to accelerate the EPI reconstruction, one can 
attempt starting the reconstruction with a good initial EPI 
estimate, which would decrease the number of iterations 
along with the initial threshold �
�� . Applying a very high �
�� would decrease the influence of the initial estimate on 
the reconstruction result. We assume that the initial 
(maximum) thresholding parameter is selected as linearly 
dependent on the number of iterations 
 

 � < ����, �
�� = ����� ��
��
��� − �

�

��� � + �

�
���  (3) 

 

Fig. 3 quantifies the quality of an EPI reconstruction from 
the Teddy dataset using reconstruction results of three 
neighbor EPIs as initial estimates. The distances between 
EPIs are calculated using �� norm and are given in the 
bottom right corner of the figure. Reconstructions for three 
different number of iterations � = 10, 20, 30 are shown, 
with ���� = 100. Taking reconstruction result of closer EPI 
as an initial estimate proves to be beneficial. The tendency 

demonstrated in Fig. 3 motivates us to attempt LF 
reconstruction in a consecutive manner such that already 
reconstructed EPIs are used as initial estimates for 
reconstructing the remaining ones. Such consecutive 
processing can be performed over a properly constructed 
tree where each node represents an EPI to be reconstructed 
with its initial estimate determined by the EPI at the parent 
node. The necessary number of iterations was chosen to be 
linearly depends on the distance between EPIs � < �, 
where � is an upper bound beyond which a parent EPI 
cannot be used as an initial estimate for its offspring, thus  
 = 
��� min��,�� /�. Following the above discussion, 
we propose two tree-structured algorithms. 
 
3.3. Algorithm I 
 
In this algorithm we attempt to minimize the distance 
between already processed and unprocessed EPIs. Assume 
that an EPI is a node of a set and we have found the distance 
between every pair of nodes. A graph is constructed to 
define the optimal processing order of the EPI nodes. The 
closest node to every node is found first and those are 
connected. As a result the whole set is clustered in small 
groups. Fig. 4 (a, b) illustrates the construction of such a 
graph and its corresponding processing tree. In Fig. 4(a) an 
example of small grouping is given by the nodes indexed as 
(12, 15, 3) and (1, 11, 8). Subsequently, we connect the 
closest pair for each small group with the nodes out of that 
group. By iterating the process we eventually get a 
connected graph. Two processing trees’ roots are selected 

 
Figure 2. Example of EPI reconstruction convergence for 
different values of parameter �. 

 
Figure 3. Example of EPI reconstruction convergence for 
different number of iterations and initial estimates. Different 
colors represent different nearby EPIs used as initial estimate. 

 

Algorithm I 

  
(a) (b) 

Algorithm II 

  
(c) (d) 

Figure 4. Illustration of clustering and processing trees. (a, b) 
Graph construction using Algorithm I and corresponding 
processing tree. (c, d) Graph construction using Algorithm II 
and corresponding processing tree. 
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by the graph elements, which were connected last (in Fig. 
4(a) those are nodes 4 and 13). The trees are constructed by 
simply following over the graph starting from the root 
nodes. As a result, one gets a processing order similar to the 
one in Fig. 4(b). 
 
3.4. Algorithm II 
 
The algorithm presented above is clearly content-dependent 
and a parallel processing with an arbitrary number of � 
computing units might not be directly implementable. 
Therefore, we propose another algorithm, which naturally 
distributes the processing effort among the desired numbers 
of parallel branches. Let us consider the case of two 
processing units. At the first step we split the whole set of 
EPIs into two groups using a K-means clustering algorithm 
[21]. In each group, we find the node, which is the closest to 
the group center and mark it as root for all nodes in the 
group. Referring to the example in Fig. 4 (c, d), nodes 6 and 
19 are selected as roots. The same dichotomy splitting is 
applied on each so-constructed group, removing the already 
selected parent nodes. Following this simple subdivision, 
after some number of separations, one constructs trees 
similar to the ones in Fig. 4(d). The method can be easily 
generalized for � divisions at each step. Fig. 4(e) presents 
the tree structure for a set of EPIs from the Teddy dataset, 
which determines the order of reconstruction. 
 

4. EVALUATION 
 
The performance of the proposed algorithms is quantified by 
calculating the number of iterations required to reconstruct 
the densely sampled LF taking into account that the 
necessary number of iterations is decreased depending on 
the distance between subsequently processed EPIs. For the 
illustrative example of the view reconstruction of Teddy 

dataset we choose an upper bound of distance between EPIs 
� � 1500. Table I summarizes the speed up for different 
color channels assuming that the processing of all EPIs 
independently takes a unit time. 

Table I 

 R channel G channel B channel 
Algorithm I 0.622 0.652 0.652 
Algorithm II 0.758 0.782 0.774 

 
Among the considered three approaches, algorithm I is 
fastest yet difficult to parallelize, because the constructed 
processing order dependents on the given dataset.  
Algorithm II allows a high flexibility in parallelization for a 
lower speed compared to Algorithm I.  Results of view 
reconstruction are presented in Fig. 5. As one can see in the 
figures, the difference between reconstruction qualities for 
different reconstruction approaches is negligible. 
 

5. CONCLUSION 
 

In this article, we presented two algorithms for accelerating 
the LF reconstruction method introduced in [16]. In the 
presented algorithms, the EPIs are ordered into tree 
structures. Each EPI, instead of being processed 
independently, uses information from already processed 
EPIs as initial value for the reconstruction thereby reducing 
the computational complexity required to reconstruct the 
EPI. Beside increasing the speed of LF reconstruction, it 
turned out that the reconstruction quality also increased. 
Although that increase is not remarkably high, it hints that it 
is possible to further improve the reconstruction quality by 
utilizing the interaction between individual EPIs. This is a 
topic to be considered in future work. 
 

Ground truth Independent reconstruction Algorithm I Algorithm II 

    

    
Figure 5. Top row is an example of reconstruction for three different algorithms. Bottom row presents the PSNR between GT and 
reconstructed images along with corresponding grayscale difference image (brighter means higher error). 
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