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ABSTRACT

This article considers techniques for acceleratngjght
field reconstruction algorithm operating in sheademain.
In the proposed approach, an independent recotistuaf
epipolar images (EPIs) is replaced with a conseeutiee-
structured reconstruction. It aims at decreasirgrthmber
of iterations necessary for an EPI reconstructignubing
already processed EPIs as initial values in thenstcuction
stage. Two algorithms for structuring such processiees
are presented. The reconstruction performance ef
proposed algorithms is illustrated on a real dataske
underlying differences between the algorithms @seussed
and numerical results of computation speeds asepted.

Index Terms— Light field, sparse reconstruction,

shearlet, image based rendering
1. INTRODUCTION

One of the fundamental problems related to visatbn of
3D content on a 3D display is the rendering of teaby
views out of a given, typically small, set of imag@iews)
that are acquired by a sparse set of camerasisThegerred
to as image based rendering (IBR) and is used fious
applications such as refocused image generatigndfgljth
estimation [2], [3], novel view generation [4], bgraphic
stereogram [5], to name a few. The existing IBR huods
are based on two, fundamentally different, appreackirst
approach is based on getting an explicit infornmattout
the scene geometry in the form of depth map(sjneséd
from a set of given images [6], [7], [8]. The desirviews
are then synthesized by reprojecting the availamblages

between nearby views is always less than one pixel.
Hereafter we will call such samplingensely sampledF.
Capturing a densely sampled LF would require an
impractical amount of cameras, with number of cawer
being related to the camera resolution and sceptn &4].
A more practical way is to find a generic domaim fd-
representation, which allows reconstructing the sdgn
sampled LF out of LF samples taken by several casner
only (i.e. a coarse set of cameras).

Recently, we proposed a method for reconstructioa o

thdensely sampled LF that utilizes the sparse reptatien of

EPIs in shearlet domain [16]. In that method, thailable
data (captured views) are interpreted as known riovike
EPI's. By applying an iterative inpainting technéjwn
every EPI, we were able to reconstruct all unknown
samples. Each EPI has been processed separately and
independently. Since the number of EPIs is equathto
number of rows in the image, the overall method is
computationally demanding.

In this paper we address the computational optitioiza
of the above approach and show that by proper roigical
ordering of EPIs for their further parallelized pessing,
one can achieve considerable computational saangsat
the same time improve the reconstruction quality.

2. EPI RECONSTRUCTION IN SHEARLET DOMAIN

Consider a camera moving with a dense sampling istep
horizontal direction, thus creating a set of pectipe
images. Stacking all images and taking a slice caliew
dimension creates an EPI - a regular structurériples with
different thickness and slope [15]. Fig. 1(a) shakes stack
of perspective images. A slice of it (e.g. the gellline)

using the estimated scene geometry [9], [10]. Seiconresults in an EPI Fig. 1(b)). where each line cpomds to a

approach is based on the light field (LF) concdgdf][[12]

in which each pixel of the available views is caolesed as a
sample in a multidimensional LF function. In thiase the
problem of novel view synthesis can be consideredha
problem of reconstructing the continuous multidisienal

LF function from discrete samples.
generation of novel view is prone to ghosting type
distortions and their handling requires a large bemof
images [13]. It has been shown in [14] that novelws of a
sufficient quality can be synthesized by a simptesdr
interpolation if the LF is sampled such that thepdrity

scene point with the line slope being inverselypertional
to the distance of the point to the camera plassufaing
only Lambertian reflectance in the 3D scene). lngpectral
domain, a line at constant depth is mapped toeagassing
through the origin. Consequently, the spectrum rofE®|

In general, thehas a bow-tie type shape and in the case of a lgense

sampled LF is always contained in a region sintitathe
one highlighted in Fig. 1(c) [16]. In Fig. 1(b) thense EPI
is superimposed with green lines showing the abkila
measured lines corresponding to input camera vidls.
goal is to reconstruct the dense LF in EPI domaitnod the
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Figure 1. (a) Example of scene image.(b) Exampldenfsely sampled light field EPI correspondingdw highlighted in yellow in
(a). (c) Frequency domain characteristics of ERhwesirable frequency domain truncation, preseint@dscales and central low pass
filter with disparity values of corresponding sheaid) Example of several constructed shearlet sitionspatial and (e) frequency
domains.

given measured lines. Based on the spatial andtrapec min2||Sf||O, subjecttog = Hf (1)
properties of EPIs the reconstruction is done ipaslet FerN

domain. The shearlet analysis and synthesis fraares The problem (1) is solved through the followingratiéve
formed by elements being translation-invariant fioxs  thresholding algorithm [20]:

indexed by scale and shear (direction) indexes.irThe

frequency support allows tiling the EPI spectrum $ome far1=S" (Hlln(s(fn +a(g— an)))) 2)
finite number of scales and directions as showhign 1(c). X |x| = 2
We favor the use of compactly supported shearl#®, [ whereH,(x) = {O’le 2 2
which have compact support in spatial domain astilated anda is a choser'1 relaxation parameter. The initial @gju

in Fig. 1(d, €) and reduce the ringing artifactsriny is set to0 everywhere and the thresholding paraméfeis

;icorz)srireudcicr)wgar\ll:?s"e di(f:fcé?(segtugtilrr;%tiinfarﬁfrir;tirggi:fg?;?\? set to decrease with the iteration number, in asedurther
chIpes have been, used for imoroving the directionajn we assume will assume ttigt linearly decreasing from
P 9 max 10 Anin OVerL iterationsp = 0, ..., L.

properties at lower scales [16], [17], [18].

Denote byf € RV*¥ the unknown complete EPI matrix,
where each row represents a corresponding imageanawv
denote byg € RV*¥ the decimated EPI where rows from
available camera views form the input and the umkno
rows are set t@.' The two twotdlmzensmnal matricgsand The performance of the algorithm presented in Secd
g are column-wise reshaped ifR" vectors and the same gepends on the selection of some parameters, keg. t
notationsf and g are kept for those. The binary matrix thresholding parameters, and the number of iterations
H € RV**V* whereH (i, i) = 1 if g(i) # 0 and0 otherwise, L.In [16], it was assumed that each EPI is reconttdic

determines the available measurements. The anadysls independently from others, using optimal parameters
synthesis matrices of the shearlet frame are denbte (Lopt’AOpt onf)_ Under this assumption, the algorithm is

max’ [
S € RMV* ands* € RV*, respectively, wherdf = nN?  highly parallrenlligable provided a large number of UBPis
andn is the number of all shears in all scales of tieaslet. available. For independent processing, good regoitsll
The reconstruction of unknown rows gf is formulated EPIs are obtained without providing any specifitiah EPI
under the prior condition for having sparse solutio the estimate. The thresholding parameters have beemuted!

shearlet domain, i.e. based on exhaustive searCtr.,, A2°Y) and in general, a

min

is a hard thresholding operator

3. ORGANIZING EPI PLANESIN TREES

3.1. Choice of optimal parameters
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Figure 2. Example of EPI reconstruction convergerice
different values of parametet

4D

PSNR(db)

Figure 3. Example of EPI reconstruction convergerice
different number of iterations and initial estimatdifferent
colors represent different nearby EPIs used aslimitimate.

higher number of iterations always give a bettsulte Still,
some optimal valué°?? has to be chosen depending on the
available computing resources, the targeted reagoigin
quality. Fig. 2 shows the reconstruction qualityridg
iterative reconstruction for different parameterof the
algorithm for an EPI from the Teddy dataset [19]dated
over the even indexed views and taking odd indeseds
as input for the algorithm. One can see that bygs
proper selection of parameters the algorithm peréorce
converges faster, however algorithm convergendebilgy
should be considered for big valueaof

3.2. Accelerated reconstruction

In order to accelerate the EPI reconstruction, cae
attempt starting the reconstruction with a goodiahiEPI
estimate, which would decrease the number of itarat
along with the initial threshold,,,,.. Applying a very high
Amax Would decrease the influence of the initial estaman
the reconstruction result. We assume that the alniti
(maximum) thresholding parameter is selected asatig
dependent on the number of iterations

Lo 3)

— opt
max — Lopt
Fig. 3 quantifies the quality of an EPI reconstiarctfrom

opt Aopt
min

max min

L < LoPt, A

)+ 2

Algorithm |

Algorithm [l

Figure 4. lllustration of clustering and processinges. (a, b)
Graph construction using Algorithm | and correspogd
processing tree. (¢, d) Graph construction usingoAthm I
and corresponding processing tree.

demonstrated in Fig. 3 motivates us to attempt LF
reconstruction in a consecutive manner such thaady
reconstructed EPIs are used as initial estimates fo
reconstructing the remaining ones. Such consecutive
processing can be performed over a properly coctstiu
tree where each node represents an EPI to be tascctesl
with its initial estimate determined by the EPltla parent
node. The necessary number of iterations was chmsbe
linearly depends on the distance between Efks D,
where D is an upper bound beyond which a parent EPI
cannot be used as an initial estimate for its aiffgp thus

N = N°tmin(d,D) /D. Following the above discussion,
we propose twdree-structurechlgorithms.

3.3. Algorithm |

In this algorithm we attempt to minimize the distan
between already processed and unprocessed EPlsmAss
that an EPI is a node of a set and we have foumdigtance
between every pair of nodes. A graph is construd¢ted
define the optimal processing order of the EPI sodée
closest node to every node is found first and thame
connected. As a result the whole set is clustenedmall

the Teddy dataset using reconstruction results of threegroups. Fig. 4 (a, b) illustrates the constructidnsuch a

neighbor EPIs as initial estimates. The distancatsvden
EPIs are calculated usiny norm and are given in the
bottom right corner of the figure. Reconstructidos three
different number of iterationd. = 10,20,30 are shown,
with L°P* = 100. Taking reconstruction result of closer EPI
as an initial estimate proves to be beneficial. Tdrelency

graph and its corresponding processing tree. In &ig) an
example of small grouping is given by the nodesxedl as
(12, 15, 3) and (1, 11, 8). Subsequently, we contiee
closest pair for each small group with the nodetsabduhat
group. By iterating the process we eventually get a
connected graph. Two processing trees’ roots derted
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Figure 5. Toprow is an example of reconstruction for three défg algorithms. Bottom row presents the PSNR betw@&T an
reconstructed images along with corresponding gedgdifference image (brighter means higher error)

by the graph elements, which were connected lasFi§.  dataset we choose an upper bound of distance hetalRks
4(a) those are nodes 4 and 13). The trees arergotest by D = 1500. Table | summarizes the speed up for different
simply following over the graph starting from theot color channels assuming that the processing ofERlls
nodes. As a result, one gets a processing ordéasitm the  independently takes a unit time.

one in Fig. 4(b).

Table |
3.4. Algorithm I1 R channel G channel B channel
Algorithm | 0.622 0.652 0.652
The algorithm presented above is clearly contepeddent Algorithm Il 0.758 0.782 0.774

and a parallel processing with an arbitrary numbieiM
computing units might not be directly implementable Among the considered three approaches, algorithia |
Therefore, we propose another algorithm, which naifu  fastest yet difficult to parallelize, because thmnstructed
distributes the processing effort among the desiedbers processing order dependents on the given dataset.
of parallel branches. Let us consider the casewaf t Algorithm Il allows a high flexibility in parallefiation for a
processing units. At the first step we split theolehset of  |ower speed compared to Algorithm I. Results oéwi
EPIs into two groups using a K-means clusterin@@llgm  reconstruction are presented in Fig. 5. As onesesnin the
[21]. In each group, we find the node, which is tlesest to  figures, the difference between reconstruction itjgal for

the group center and mark it as root for all notteshe  different reconstruction approaches is negligible.
group. Referring to the example in Fig. 4 (c, ddes 6 and

19 are selected as roots. The same dichotqmyilsglii$ 5. CONCL USION

applied on each so-constructed group, removinghteady

selected parent nodes. Following this simple subidin,

after some number of separations, one construetss tr In this article, we presented two algorithms focederating
similar to the ones in Fig. 4(d). The method carebsily the LF reconstruction method introduced in [16]. the
generalized foM divisions at each step. Fig. 4(e) presentPresented algorithms, the EPIs are ordered inte tre
the tree structure for a set of EPIs from the Tedaaset, structures. Each EPI, instead of being processed

which determines the order of reconstruction. independently, uses information from already preeds
EPIs as initial value for the reconstruction thgredducing
4. EVALUATION the computational complexity required to recongtrtie

EPI. Beside increasing the speed of LF reconstmgtit
The performance of the proposed algorithms is dfieeiby ~ turned out that the reconstruction quality alsoréased.
calculating the number of iterations required toorestruct  Although that increase is not remarkably highijit$that it
the densely sampled LF taking into account that thés possible to further improve the reconstructiarligy by
necessary number of iterations is decreased dempri  Utilizing the interaction between individual EPThis is a
the distance between subsequently processed Efigh& topic to be considered in future work.
illustrative example of the view reconstruction Déddy
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