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ABSTRACT 

 

In this paper we propose a method for reconstructing a densely 

sampled light field from a given sparse set of perspective views 

from rectified cameras without an explicit estimation of the scene 

depth. The desired intermediate views are synthesized by 

inpainting of epipolar-plane images, utilizing their sparsity in the 

shearlet domain. For the purpose of shearlet-domain 

representation, compactly supported shearlets have been 

constructed using different directional filters for different scales in 

an attempt to provide better directional selectivity at lower scales. 

The reconstruction procedure with shearlet-domain sparsity 

condition is implemented through an iterative thresholding 

algorithm. The performance of the method is quantified by tests on 

synthetic and real visual data and compared favorably against 

depth-image based rendering. 

 

Index Terms— Light field, sparse reconstruction, shearlet, 

image based rendering 

 

1. INTRODUCTION 

 

Modern image based rendering (IBR) methods are based on two, 

fundamentally different, approaches. First approach is based on 

estimating the scene geometry, e.g. in the form of depth map(s), 

from a given set of images (views) [1], [2], [3] and synthesizing 

the desired views using the estimated depth maps and the given 

images [4], [5]. Second approach is based on the light field (LF) 

concept as introduced by Levoy and Hanrahan [6]. This concept 

considers each pixel of the given views as a sample of a 

multidimensional LF function, therefore the view synthesis 

problem transforms to the problem of continuous LF 

reconstruction and subsequent interpolation at the desired points, 

performed with no use of explicit depth estimation. In [7], different 

kernels for interpolation with the usage of available geometrical 

information are considered. However, this interpolation technique 

requires a substantial number of samples (images), as discussed in 

[8] where Lin and Shum derive precise bounds of the LF sampling. 

In order to synthesize novel views without ghosting artefacts 

based only on linear interpolation one needs to sample the LF such 

that the disparity between nearby views is less than one pixel. 

Hereafter, we refer to this kind of sampled LF as densely sampled. 

Densely sampled LF provides sufficient information about scene’s 

visual content for all practical image-based applications such as 

refocused image generation [9], depth estimation [10], [11], novel 

view generation for free viewpoint television [12] and holographic 

stereogram [13].  

In order to capture a densely sampled LF, the required distance 

between nearby camera positions can be estimated based on the 

lower bound of the depth of the scene and the camera resolution. 

Furthermore, camera resolution should provide enough samples to 

properly capture highest spatial texture frequency in a scene [14].  

In [15], it has been shown that seismic data from limited 

number of measurements can be efficiently reconstructed by using 

an inpainting technique based on shearlet-domain representation. 

We employ this idea and present a method for reconstruction of a 

densely sampled LF from a given sparse set of views, which 

requires no explicit depth information. The proposed method is 

based on a sparse representation in shearlet domain of every 

decimated epipolar-plane image (EPI) slice of the densely sampled 

LF. Available data (captured views) can be interpreted as known 

rows in the EPI’s. By applying inpainting technique on every EPI, 

we can reconstruct all unknown samples of the densely sampled 

LF. The proposed method enables one to capture the scene with a 

smaller number of cameras and still be able to reconstruct the 

densely sampled LF.  

 

2. EPIPOLAR-PLANE IMAGES 

 

Epipolar-plane image was first introduced by Bolles et al. in [16]. 

In comparison with regular photo images, an EPI has a specific and 

distinct structure, see Fig. 1(b). Any captured point of the scene is 

revealed in one of the EPIs as a line whose slope relates to 

disparity and directly depends on the distance of the point from the 

capturing plane (depth). The intensity over the line is related with 

the intensity of emanated light from that scene point. Within the 

pinhole camera model assumption, the disparity is defined as 

Δ𝑑 =
𝑓

𝑧
Δ𝑡, where 𝑓 is the focal distance in pixel size, 𝑧 is the depth 

of the point, and Δ𝑡 is the distance between nearby camera 

positions (see [14] for more details). The corresponding line slope 

in the EPI is 𝑓/𝑧.  

The Lambertian reflectance model (any point in the scene 

emanates light in every direction with the same intensity) drives 

the distinct structure of EPI formed by lines with constant intensity 

distribution. Chai et al. presented a spectral analysis of the EPI 

slices of a LF depending on the scene depth and LF sampling rates 

in different dimensions [14]. It is interesting to point out that the 

spectrum of the EPI has a bow-tie type shape. Densely sampled LF 

guaranties that the spectrum of each EPI is always contained in a 

region similar to the one highlighted in Fig. 1(d). As shown in [14], 

the visual information of each depth slice is contained in a line 

passing through DC component in the frequency domain 

representation of the EPI. In order to obtain space of functions 

where EPI data will be presented sparsely, we need to provide an 

analysis tool for identification and separation of the lines in the 

frequency domain corresponding to different depth slices. While in 

spatial domain analysis atoms should be similar to lines with 

different slopes, their spectrum should have bow-tie type shape, as 

shown with different colors in Fig. 1(d). 

 



3. SPARSE REPRESENTATION IN SHEARLET DOMAIN 

 

Shearlet frames, as developed in [17], [18], [19], are a perfect 

tool for the aforementioned sparse representation of the EPI. The 

elements of shearlet frames are translation-invariant functions 

whose spectrum covers a region similar to the one presented in Fig 

1(f). Shearlet frame is described by number of scales and number 

of shears (directions) in each scale. An example is the Fast Finite 

Shearlet Transform (FFST) presented in [17]. FFST consists of a 

set of atoms that build a tight frame. Those atoms give almost 

perfect behavior in the frequency domain. However, in the spatial 

domain non-compact support of the atoms leads to ringing type 

artifacts. As a result, the approximation quality around the edges, 

where EPI does not comply with the band limited function 

condition, is drastically reduced. Another example of basis 

elements are the so-called compactly supported shearlets, as 

presented in [18]. Compactly supported shearlets are constructed in 

spatial domain using scaling and shearing operators. The compact 

support of the atoms was achieved by slightly changing the 

behavior in the frequency domain in comparison to atoms of the 

FFST. 

In order to provide good directional properties at lower scales in 

frequency domain we propose to use different directional filters for 

different scales in the process of constructing a frame of compactly 

supported shearlet. Our construction follows the method proposed 

in [18], [19]. Fig. 1(e, f) presents examples of several constructed 

frame elements for different scales and shears.  

 

4. RECONSTRUCTION ALGORITHM 

 

We can interpret the set of captured views as given 

measurements of the unknown densely sampled EPI, as illustrated 

in Fig. 2(a). The problem tackled in this paper is to find 

(reconstruct) all missing data in the EPI. In order to simplify the 

notations, in this paper we assume rectangular size of EPI (in most 

case the horizontal resolution of the camera is higher than number 

of cameras, however, the corresponding EPI can be partially 

processed using overlapping rectangle windows with the size of the 

number of cameras). 

Let 𝑓 ∈ ℝ𝑁×𝑁 be the unknown complete EPI matrix, where 

each row represents corresponding image row and 𝑔 ∈ ℝ𝑁×𝑁 be 

incomplete EPI where only rows with available views are 

presented, while everywhere else is 0. Further, 𝑓 and 𝑔 are used in 

their column-wise reshaped ℝ𝑁2
 vector version with keeping same 

notations for 𝑓 and 𝑔. Let the mask matrix (measuring matrix) 

𝐻 ∈ ℝ𝑁2×𝑁2
 be 𝐻(𝑖, 𝑖) = 1 if 𝑔(𝑖) ≠ 0 and 0 otherwise. Analysis 

and synthesis matrix of the shearlet frame will be denoted as 

𝑆 ∈ ℝ𝑀×𝑁2
 and 𝑆∗ ∈ ℝ𝑁2×𝑀, respectively, where 𝑀 = 𝜂𝑁2 and 𝜂 

is the number of all shears in all scales of the shearlet. 

   
(a) (b) (c) 
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Figure 1. (a) Example of scene image.(b) Example of densly sampled light field EPI corresponding to row highlighted in yellow in (a). (c) 

EPI of disparity map. (d) Frequnecy domain characteristics of EPI with desirable frequency domain truncation, presented in 3 scales and 

central low pass filter with disparity values of corresponding shears. (e, f) Example of several constructed sheralet atoms in spatial and 

frequency domains. 

 



Reconstruction of missing rows of 𝑔 can be formulated as an 

inpainting problem, with prior condition to have sparse solution in 

the shearlet domain, i.e. 

 

 min
𝑓∈ℝ𝑁2

‖𝑆𝑓‖0 ,  subject to   𝑔 = 𝐻𝑓 (1) 

 

It was shown in [20] that the problem (1) can be efficiently 

solved through the following iterative thresholding algorithm  

 

 𝑓𝑛+1 = 𝑆∗ (𝐻𝜆𝑛
(𝑆(𝑓𝑛 + 𝛼(𝑔 − 𝐻𝑓𝑛)))) (2) 

 

where 𝐻𝜆(𝑥) = {
𝑥, |𝑥| ≥ 𝜆
0, |𝑥| < 𝜆

, is a hard thresholding operator and 𝛼 

is a chosen relaxation parameter. The thresholding parameter 𝜆𝑛 

decreases with the iteration number. Initial value of 𝑓0 can be 

chosen as 0 everywhere. After sufficient iterations, 𝑓𝑛 reaches a 

satisfying solution for the problem (1). More details can be found 

in [20], [21], [22], [23]. 

 

5. EXPERIMENTAL RESULTS 

 

We will illustrate the proposed method on synthetic data as well as 

on a real-world dataset captured by cameras. 

 

5.1. Synthetic Data 

 

To construct synthetic data we used Blender (open source 

shareware, www.blender.org). It enables simulating a desired 

parallel positioned camera capturing system. Our generated 

synthetic data consists of 511 images with 511 × 511 resolution. 

Captured views provide horizontal parallax with disparity values in 

the range of [0, 1] pixels between views. One of the EPIs generated 

from the rendered images is shown in Fig. 1(b) with the 

corresponding frequency domain characteristic in Fig 1(d) and the 

corresponding ground truth disparity map in Fig 1(c). As an input 

data for the reconstruction algorithm we use every 32nd view, thus 

17 views. An example of the input data for the proposed algorithm 

is shown in Fig 2(a). In that case the input dataset consist of 

images with disparity values in the range [0, 32] pixels between 

two consecutive images. Shearlet frame is constructed using 6 

scales and a central low pass filter. In each scale from low to high 

we have [2, 3, 5, 9, 17, 33] shears respectively. Each set of shears 

for fixed scale uniformly covers the [0,1] range of disparities. 

Example of a similar separation (fewer scales) is illustrated in Fig 

1(d). Shearlet is a translation-invariant frame thus its synthesis and 

analysis transforms are easy to implement using convolution 

operator. Convolution implemented through Fourier transform 

implicitly assumes circular replication of the signal. This increases 

the undesirable border effects and decreases the algorithm 

performance around image borders. In this paper, a Kaiser window 

is used to reduce these border effects. In Fig. 2(a) example of 

sparse EPI (input data) is presented, Fig. 2(b) shows the 

corresponding reconstructed result and Fig. 2(c) shows the residual 

calculated only over the region within the yellow rectangle. In the 

presented case, the mean-square-error (MSE) is 8 and the mean-

absolute-error (MAE) is 25. Both are calculated with respect to the 

ground truth data. This example shows that by using the proposed 

method, a densely sampled LF can be reconstructed by using only 

a small number of captured views. 

 

5.2. Real Data 

 

As a real captured dataset we use the “Couch” dataset used in [3]. 

It consists of 101 images with 2679x4020 resolution as well as 51 

estimated disparity maps for the central views obtained by the 

algorithm proposed in [3] using the whole set of images. Given 

disparity estimation shows that maximal disparity between 

consecutive images is about 11px. We applied the presented 

algorithm to the grayscale images. 15 views were reconstructed 

using the odd number indexed views from the dataset. An example 

of a reconstructed EPI is presented in Fig. 3(a), where input 

(selected) rows for the reconstruction algorithm are highlighted in 

yellow and rows in green represent views used for assessing the 

algorithm performance. Same input data is used for depth image 

based rendering algorithm based on 3D warping and blending 

implemented as described in [5]. The reconstruction quality of the 

two algorithms is presented in Fig. 3(b, c). As seen in the figure, 

both approaches result in reconstructed images with good PSNR 

with respect to reference captured images whereas the proposed 

algorithm has in average a lower maximum absolute error.  

 

   
(a) (b) (c) 

Figure 2. (a) Example of the input data for the proposed algorithm, where the original data was decimated by factor 32. (b) Reconstructed 

EPI, yellow square representing the region which was used for reconstruction quality estimation. (c) Absolute difference between the ground 

truth and reconstructed EPI. 

 

http://www.blender.org/


6. CONCLUSION 

 

In this paper we presented a method for reconstructing densely 

sampled LF from a given sparse set of views by processing the 

corresponding EPI images in shearlet domain. We have shown, by 

using synthetic and real data examples, that the proposed method is 

very effective in reconstructing densely sampled LFs out of small 

number of given views. The strength of the proposed method lies 

in its ability to reconstruct the complete dataset (whole LF) at ones 

in comparison with classical IBR techniques where each view has 

to be reconstructed individually. The proposed method establishes 

a new approach for LF interpolation. 

 

 

 
(a) (b) 

 
 

(c) 

Figure 3. (a) Reconstructed EPI for the real dataset. Rows which are highlighted with yellow color represent odd indexed views from 

original data set which were used as an input data for the algorithm and green color represents even indexed views from original dataset 

which are used for algorithm quality estimation. (b) Evaluation of intermediate views reconstruction in PSNR(top) and MAE (bottom) for 

regular depth image based rendering (DIBR) algorithm and prosposed algorithm. (c) Ground truth image from dataset(left), reconstruction 

results for highlighted part of the image and absolute differences between the ground truth and reconstructed images for DIBR (bottom) and 

proposed algorithm (top). 
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