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Abstract—A system is always may-terminating, if and only if
from every reachable state, a terminal state is reachable. fis
publication argues that it is beneficial for both catching nm-
progress errors and stubborn, ample, and persistent set sta
space reduction to try to make verification models always may
terminating. An incorrect mutual exclusion algorithm is used

and helps in developing new ideas. This more abstract view
was developed gradually in several publications. It was pre
sented in a fairly mature form in [14]. Since thestatic
stubborn setfiave referred to definitions at the level on which
the sets are actually computed, whidgnamic stubborn sets

as an example. The error does not manifest itself, unless the have referred to the more abstract level.

first action of the customers is modelled differently from oher
actions. An appropriate method is to add an alternative first
action that models the customer stopping for good. This metbd
typically makes the model always may-terminating. If the malel
is always may-terminating, then the basic strong stubborn et
method preserves safety and some progress properties withb
any additional condition for solving the ignoring problem. Fur-
thermore, whether the model is always may-terminating can b
checked efficiently from the reduced state space.

Index Terms—model checking; stubborn set / partial order
methods; safety; progress

I. INTRODUCTION

Reduced state space construction usamgple [2], persis-

When proving that a method preserves a certain class of
properties, the corresponding dynamic definition is used as
a starting point. When applying the method to a certain
formalism for modelling systems, a static definition is pa®d
and a theorem is proven saying that if the static definition
holds, then also the dynamic definition holds. The algorithm
for computing the sets is designed to yield sets that sattiefy
static definition.

This publication works on this more abstract level. There-
fore, the motivation and results of this publication apply t
ample, persistent, and stubborn sets alike.

The most important example of a dynamic definition of
stubborn sets consists of the conditions DO, D1, and D2 in

tent [6], or stubborn[14] sets works by, in each constructedsection IV. They constitute théasic strong stubborn set
state, computing a subset of transitions and only firing theethod It guarantees that the full and reduced state spaces
enabled transitions in it instead of all enabled trans#ionhave precisely the same terminal states and that the reduced
The subset is computed in a way that guarantees that corrstglie space has an infinite execution if and only if also tie fu
answers to certain verification problems are obtained. Tkeate space has.

computation analyses the current state, static (thatdgrpm-
code-level) relations between the transitions, and peslagn

The basic strong stubborn set method does not guarantee
the preservation of safety properties such as mutual ecius

other available information. As a rule of thumb, the bigdez t or liveness properties such as eventual access. This isibeca

class of verification problems is, the fewer enabled trams#t of the so-calledgnoring problem That is, the method may
can be left out, and the bigger the resulting reduced statrestigate a part of the state space that is unimportant for
spaces are. Therefore, it often makes sense to design adnethe safety or liveness property, find an infinite executiceréh

for a class of verification problems, even if it is a subclaks @onclude that the rest of the state space cannot contaiimiarm
another class for which a method is already known. states, and stop.

Although the original publications on ample, persistenja To preserve safety properties, various additional coonliti
stubborn sets aimed at solving different verification peold have been suggested. One possibility is to recognize the
and had significant differences in various details, it wagrminal strong components of the reduced state space and
obvious from the beginning that they are different membeemsure that in each of them, every enabled transition is.fired
of the same family of methods. This family does not have Bo preserve liveness properties, a common strategy is tarens
widely known unambiguous name. It is often called “partighat every enabled transition is fired in every cycle of the
order methods”, but equally often “partial order methodsfeduced state space.
refers to a larger family that also contains certain gerlyine These additional conditions are problematic in two respect
different methods, most importantly the unfolding methad a First, there is the general phenomenon that the more conditi
sleep sets. there are, the more enabled transitions the stubborn sets

It has proven useful to investigate the methods on a marentain, and the bigger the reduced state space becomes.
abstract level than on which the sets are actually complttedSecond, as was pointed out in [4], a condition may choose the
facilitates combining ideas from all three original apprbes states where it fires all enabled transitions in an unfotieina



way, leading to the construction of many more states thaloes guarantee that receiving the service is not impossible
would be needed. The well-known liveness condition in [Zdnd will not become impossible. With this notion, fairness
suffers from this problem. assumptions become unnecessary. It may or may not be a

In the present publication, a stunningly simple solutiosufficiently stringent correctness property from the picadt
to the ignoring problem is suggested, proven correct, apdint of view, but certainly it is much better than nothing.
experimented with. It suffices for safety and some progreBsr instance, a process-algebraic variant of this theme was
properties. It is: if the modeller tries to make the verifioat presented in [10].
modelsalways may-terminatinghen no additional conditions ~ With always may-terminating systems, this weaker notion
are needed at all. A model is always may-terminating if anéduces to the requirement that no terminal state has unsat-
only if from every reachable state, a terminal state is rabtéh isfied service requests. This condition can be modelled as a
In the well-known logic called CTL [3] it can be expressed asheck that is run on each terminal state. The present author
“AG EF termination”. “Tries to make” refers to the fact thatbelieves that modellers will not find it difficult to formukat
the modeller need not prove that the model is always mastich checks.
terminating. Instead, the model checker tool checks whethe This approach facilitates early on-the-fly detection oesaf
it is. In other words, not being always may-terminating iand non-progress errors. The basic stubborn set method suf-
considered an error, and the model checker is guaranteedi¢es during state space reduction. The order in which tte sta
reveal it (unless another error stops it first). space is constructed is left unspecified, making it possible

Trying to make models always may-terminating is a morgse breadth-first for short counterexamples. As described i
natural goal than it might first seem. Using Peterson’s mutugection V, the check that the system indeed is always may-
exclusion algorithm forn customers [9] as an exampleterminating can be implemented as a postprocessing step tha
Section Il demonstrates that naive modelling may lead o performed only if no errors are revealed during state spac
the loss of non-progress errors. It is justified in Section Iconstruction. Doing it as a postprocessing step is one ffacto
that this problem can be solved by making the customers it facilitates early on-the-fly detection of safety anchno
the algorithm capable of choosing to terminate. This makggogress errors. Furthermore, it makes the algorithm apple
the model as a whole always may-terminating. That is, evef not always may-terminating systems as a one-sided test
forgetting about stubborn sets, to check the eventual accesat can reveal safety and non-progress errors but cannot
property, the model must be made always may-terminatiggmonstrate their absence.

(or some more complicated method such as a suitable wealn addition to this approach to progress, a subset of linear-
fairness assumption must be used). time liveness properties is covered in Section V.

A counterexample in [14] leaves little hope of finding an gection IV presents the necessary background on stubborn
essentially better condition for the full class of linean¢ sets. The new theorems are developed and their implementa-
liveness properties than some variant of the cycle contlitidjon options are discussed in Section V. Experimental tesul
Another difficulty stems from the fact that the validity ofpptained with a new state space tool that implements the
linear-time liveness properties often depends on sod#i- approach are reported in Section VII. Section VI describes

ness assumptions. They may be problematic for the modeligfe choice of the stubborn sets in the experiments.
Furthermore, although some publications have combined am-

ple, persistent, or stubborn sets with commonly used fagne
assumptions, none of the combinations seems to be fully
satisfactory [1]. Consider one or more concurrent processes catias-

In essence, a typical linear-time liveness requiremerreeortomers each of which has a distinguished piece of code called
sponds to the CTL formulaG(y — AF ), wherey denotes critical section The purpose of anutual exclusion algorithm
that a request for service is pending andlenotes receiving is to ensure that at any instant of time, no more than one
the service. That is, for every reachable state, if a requeststomer is in the critical section. The algorithm must have
for the service is pending in the state, theveryfuture of the eventual access propertthat is, if any customer tries to
the system must eventually lead to a state where the servigder the critical section, it eventually succeeds. Tyipici
is received. For this property, it is not important whether is assumed that an atomic operation can access at most one
denotes the requesting of the service or the existence oflmared variable, and only once. For instance, it a shared
pending request (that is, a request has been made but notwgtable, then-+i involves at least two atomic operations, one
served). reading the original value of and another writing the new

Some authors have advocated the use of the strictly weakalue.
notion AG(¢ — EF ). That is, for every reachable state, Peterson’s algorithnis a famous algorithm for solving the
if a request for the service is pending in the state, theén mutual exclusion problem on this level of atomicity. In his
least onefuture of the system must eventually lead to a statwiginal publication [9], Peterson first described his aiton
where the service is received. Here it is important that for two customers and then generalized itrta@ustomers for
denotes that the request is pending. The property does aotarbitrary fixed positive integer. We call these algorithms
necessarily guarantee that the service will be receivetljtbu“Peterson-two” and “Petersom®, respectively.

II. A MOTIVATING EXAMPLE



I* protocols for P; */ interpret. Other than that, the function is straightforgiar

for j:=1ton—1do The functioncheck_st at e specifies the mutual exclu-
begin sion property. The ling#defi ne chk_st at e commands
Qli] = j; ASSET to check every state that it has found by calling
TURNj| =i the check_st at e function. (It would have been nicer to
wait until (V& # i, Q[k] < j) or TURNj| # i use the same wordheck_st at e both in #def i ne and
end, as the function name. Unfortunately, C++ does not allow
Critical Section; that.) By returning a character string, the function intsa
Qi =0 that something is wrong with the state. This makes ASSET

terminate the construction of the state space and printram er
message that contains the string. That the state is good is
indicated by returning the null pointé.

Figure 1 shows Peterson-copied verbatim from [9]. It  The line#defi ne chk_may_progress and the func-
implementsn — 1 gates To go through gatej, customeri; tion immediately after it specify that for every state that
writes j to the shared variabl€)[i]. Then it gives priority to the model can reach, the model may continue to a state
other customers by writing its own numberto the TURN  where customer 0O is in the critical section. That is, the nhode
variable of the gate. It can go through the gate when no oth@nnot go into a state from which there is no path to a state
customer is trying to go through the same or further gate, where customer 0 is in the critical section. This represtgs
when some other customer comes to the same gate, changiventual access property. We call this particular form “may
the TURN. access”.

Figure 2 shows a model of Petersanaritten for ASSET. Peterson-two satisfies a stronger eventual access property
ASSET is A State Space Exploration Tool that is based avhich we call “must-access”. In it, after a customer has
presenting the model as a collection of C++ functions thafobset its Q variable, every path in the state space eventually
certain conventions [15]. The model is checked by copyinglgads to a state where the customer is in the critical section
to the fileasset . nbdel and then compiling and executingHowever, because thevk # i, Q[k] < j” test in Peterson-
asset . cc. This approach facilitates very fast execution of. accesses more than one shared variable, and because one
the transitions of the model and makes the modelling veatomic operation may access at most one shared variable, the
flexible, because most features of C++ are available. On tlest must be implemented as a loop. An unsuccessful test
other hand, the modelling language does not always suppiottoduces a cycle in the state space that does not take the
intuition well. This problem could be solved by implemeigtin customer to the critical section. That is, Petersodees not
a preprocessor tool that inputs some nice modelling languagatisfy must-access. If must-access is specified and there a
and outputs the input language of ASSET. At the time @it least two customers, then ASSET reports an error. This is
writing, no such tool has been implemented. At presentthy may-access is used in Figure 2.

ASSET is unsuitable for production use, but it can be usedASSET calls the functiomr _t ransi ti ons to find out
for making scientific experiments. how many transitions the model contains. The model in

Variables that describe the state of the model must be ijure 2 has one transition for each customer. It models all
the special typest at e_var . The value of such a variable isatomic operations of the customer. The grouping of atomic
an unsigned integer in the rang@e...,2° — 1, whereb = 8 operations to transitions for ASSET is rather flexible. The
by default but can be specified for each state variable oyarranly strict rule is that if two atomic operations may be
of state variables individually. executed in the same state and they yield different stdtes, t

The modelling of the shared arra of Petersom: is they must belong to different transitions. This is because f
obvious in Figure 2. The shared array URN has been ASSET, transitions must be deterministic. (This implieatth
abbreviated tdl. Because the input language of ASSET has nondeterministic atomic operation must be modelled with
no notion of local variables of processgsand k& have been more than one transition.)
modelled as arrays. That is[ 7] models thej of customer, Finally, the functionfire_transition specifies the
and similarly withk[ ¢] . The variableS[ 7] keeps track of the transitions. Given the number of a transition, it must eithe
local state of customet. It can be thought of as a progranmreturnf al se indicating that the transition is disabled in the
counter. current state, or modify the state according to the effect of

When ASSET has found an error, it prints a counterexamplee execution of the transition and returnue. If it returns
in the form of a sequence of states that leads from the initighl se, then it must not modify the state.
state to an error state. Depending on the type of the errer, th To improve readability, Figure 2 introduces got o( x)
counterexample may also contain a cycle of states where thacro. It moves the customer to local stateand indicates
system fails to make progress towards some desired situatithat the transition was enabled.

For this purpose, the model must contaipai nt _st at e The modelling of the atomic operatiofi| := j, TURN|j]
function. The function in Figure 2 presents the local states := ¢, andQ[i] := 0 of Petersom is straightforward. Thdor j
the customers as characters, to make the print-out easieldop has been modelled by cases 0 and 1 andtttjg i ] ;

Fig. 1. Peterson’s algorithm fat customers [9].



const unsigned n = 3; /'l nunber of custoners

state_var
S[n], /1 state of customer i: 0 =idle, 7 =critical, 1...6 = trying
ji[n], /1 local variable j of custoner i
k[ n], /1 local variable k of custoner
qan], /1 nunber of gate through which custoner i wants to go
T[n-1]; // nunber of customer who has _no_ priority at gate j
const char Itr[] ={ '-", "j’, 'Q, '"T", "w, "k, "A, "+ };
void print_state(){
for( unsigned i = 0; i < n; ++i

std::cout << j[i] << Itr[ S[i] ] << K[i] << Qi] <<’
}
for( unsigned i = 0; i <n-1; ++i ){ std::cout << T[i]; }
std::cout << '\n’;

}

/+* Check that at npbst one custoner is in critical section at any tine */

#define chk _state

const char *check_state(){
unsi gned cnt = O;

for( unsigned i =0; i <n; ++i ){ if( gi] ==7 ){ ++cnt; } }
if( ent >= 2 ){ return "Mutex viol ated"; }
return O;

}

/* Check that custoner O may al ways nake progress. x/
#defi ne chk_may_progress
bool is_may_progress(){ return S[0] == 7; }

unsigned nr_transitions(){ return n; }

bool fire_transition( unsigned i ){
#define goto(x){ S[i] = x; return true; }
switch( S[i] ){
case 0: j[i] = 0; goto(1)

case 1: if( j[i] >=n-1){ goto(7) }else{ goto(2) }
case 2: i] =j[i]; goto(3)
case 3: T[j[i]] =1i; goto(4)
case 4: if( T[j[i]] '=1i ){ ++[i]; goto(l) }else{ k[i] = 0; goto(5) }
case 5: if( k[i] >=n ){ ++j[i]; goto(l) }else{ goto(6) }
case 6: if( k[i] ==1i || Ak[i]] < j[i] ){ ++k[i]; goto(5) }else{ goto(4) }
case 7: /* critical section *x/ {i] = 0; goto(0)
default: err_msg = "lllegal local state"; return false;
b}

Fig. 2. A questionnable model of Peterson’s algorithm focustomers as ASSET code, and custornas a state machine.

goto(1) in cases 4 and 5. In Figure 1, arrays are indexauistomer tries only once to go to the critical section, a jump
starting from 1. However, consistently with the usual C+the beginning has been added to case 7.ddfeaul t branch
convention, indexing starts from 0 in Figure 2. Cases 4 te never entered, but the compiler complains if it is absent.
6 model the line The entry “plain not non-progress revealing” in Table |
. . , . , , in Section VII shows the state space size and state space

wait until (vk # 4, Q[k] < j) or TURNIj] # i construction and exploration time in seconds of this model.
with two loops. The inner loop triek = 0, k¥ = 1, and so ASSET reported no errors. Excluding small variation in the
on until theV test is found to fail or pass. The outer loogimes, the results remained the same when any customer
first tests whethe@' URN 4] # ¢ and if it fails, then starts the replaced customer O ins_may_pr ogr ess. However, the
inner loop. If either test passes, themj [i]; goto(1l) is model was deemed “questionnable” in the caption of Figure 2.
executed, modelling the completion of an iteration offitle;  The reason for this will be discussed next.
loop. If theV test fails, then the outer loop is started again. In a second model of Petersan-customers were made
Because the model checking is obviously incomplete if eaelble to not try to go to the critical section. To do this, a



new local state 8 and a new transition to it from local state df @) incorrectly mean both that the customer is not trying to
were added to the model. When in local state 0, the custonger to the critical section and that it is trying to go through o
chooses nondeterministically and without being affectgd Mhas just gone through the first gate. It looks to customerd lik
the other customers to either terminate (by going to loctie terminated customer 1 were trying to go through the first
state 8) or to start trying to go to the critical section (bgate. Because customer O does not have priority, it keeps on
executingj [i] = 0; and going to local state 1). This wasrunning around the waiting loop.
implemented by adding ' to the end ofl tr; making Why does the error not manifest itself in the original model?
i s_may_progress to returntrue if and only if S 0] In it, if customeri; is waiting at the first gate, some other
>=7; makingnr _transi tions return2+n; addingcase customel, eventually arrives at the same gate. This is because
8: return fal se; tothesw t ch statement; and addingalways at least one customer can make progress T(thest
the following lines immediately before tteai t ch statement: blocks at most one customer per gate and there are one
iF( 0 >=n){ fewer gates than customers), a progressing cu_stomer albntu
S reaches local state 0, and when all progressing customers ar
i -=n /1 extract customer nunber . .
if( S[i] == 0 ){ goto(8) } there, there is nothlng else that the modgl_ can do thgn move
) one of them to the first gate. When arriving there, it gives
return fal se; g _ L
priority to customeri; by assigningi» to T[ O] .

} To fix the error,d i] =j[i] in case 2 was changed to
Whenn = 2, ASSET gives the following error messageJ i] =j [i] +1 and the latter test in case 6 was changed to
after 2.3 s of compilation and negligible analysis time: QA K[i]] <=j[i].Theentry“correct”in Table | shows the
results with the fixed model. No matter which customer was
0-00 0-00 O .
tested byi s_rmay_progress, ASSET reported no errors.
0-00 0 00 O .
__________ To have an example of safety errors, finally the model was
T T T analysed that was obtained by swapping the statenggrity
0j00 0 00 O e ] e
0Q00 0 00 0 =j[i]+1; andT[j[i]] =i; inthe correct model. ASSET
reported a mutual exclusion error. In it, customer 1 went
0TOO0 0 00 O ) :
Owo0 0 00 0 through the first gate while customer O stayed between the
__________ above-mentioned statements. Customer 1 got through, becau
0K0O 00 Q 0] had not yet been assigned to. Then customer 0 got

through because when customer 1 had passed by, it had given
priority to customer O by assigning to T[ 0] .

o
o
[cNeoNeoNe)

IIl. APPROPRIATEMODELLING OF NOT REQUESTING

00 0 The message of Section I is that

111 - - .
'11 May-type non-progress error If, in a model, customers are not made able to not
163 states, 326 arcs request for service, then non-progress errors may

o
~
[

o
[oNeoNoNeNe]
o
o

In it, customer 1 terminates (its local state changes freth “ escape model checking.
to “ ") and then customer O goes to local state " The Another way to look at this is that the first line in Figure 1
line ========== indicates that there is no path from thiss different from the other places in that while in any of the

state to a state where customer O is in local state 7 or 8. Thaster, the customer must eventually go further if it can.ywh
means thatustomer O cannot go to the critical section aftethe same must not be required of the first line was found out
customer 1 has terminate&o eventual access fails even inn Section Il. It is obvious that if a customer never leaves th
its less stringent form “may-access”. critical section, then the eventual access property cabpot
In the continuation of the counterexample, customer 0 gopeovided to other customers without violating mutual exclu
to local state 4 as expected. Then it starts to run aroundsian. Although it is less obvious, a similar argument apptie
loop where it first executes cases 5 and 6 withk- 0, then it most other places. For the remaining places the requirement
executes them witlk = 1, and then goes back to local statés at least reasonable, even if not absolutely necessary.
4. This corresponds to being stuck in the statement In linear temporal logic [8], the customary way to express
. . , , , , this difference is to assume so-called weak fairness tasvard
wait until (7k # i, Q[k] < 7) or TURNj] # i all other transitions but not towards those that model the
Why does the customer not go through the gate? The padstomers making requests. Every model has an imaginary
TURN[j] # i does not let it pass, because it can be seé&dling” transition that is always enabled. When the onlynth
from the state thaf[ 0] = 0. Neither does th& part, because that the modelled system can do is to request for the service,
i =0, 1] =0,andj[0] =0. In Petersom, Q[1] would the model can avoid making the request by executing thegdlin
be 0 but ;5 would bel, because théor-loop starts withj = 1  transition.
in it. In Figure 2 indexing and thus also tHer-loop were Because the solution adopted in Section Il is different, it
made to start withj = 0. This made the valué in entries is justified to ask whether it is appropriate. Certain preees



\ _ leave Because the first atomic operation of Figure 2 does not
T/ :T re uestienter access any sha_red varia_b!e_s, the abpve—mentioned semantic
models see no difference if it is fused with thet o command
from the new initial local state to the initial local state of
Figure 2. Doing so yields precisely the second model of
Section II.
algebraic semantic theories provide strong evidence thiat i  Further discussion on this issue can be found in [16].
appropriate. For the benefit of non-process-algebra-taien
readers, the discussion below is at the intuitive level. ) )
The standard semantics of CSP [11], should testing [10], and\Ne_Wlll need formal notation for concepts that have been
the CFFD and NDFD semantics [17], among others, naturaliped informally above. _
yield a notion for deeming a process “better than” or “as good 1he set of states is denoted with and the set of tran-
as” another process. The notion also applies to systems baifions with 7. In the case of ASSETS consists of all
as compositions of processes. If a component of a systenP%SS'me combinations of values qf the state variables, and
replaced by a “better” component, then the system as a whdie= {0;1,---,|T| — 1}, where|T| is the number returned
either becomes “better” or remains “equally good”. Withfret by nr_transitions. _ _
limits of the information that is preserved by the semaniics ~ Thatt € T' is enabled at € S is denoted by —(—, and if
a system satisfies a specification, then also all “bettettesys (s —t—) holds, thert is disabled at. The notatiors —t— s’
satisfy it. For instance, if a system satisfies a next-date- denotes that is ena_bled ak apd if ¢ occurs (that is, is flrgd)
linear temporal logic specification, then also each “NDFDRL S, then t_ht_—? r_esultlng state i8. We assume that transitions
better” and each “CFFD-better” system satisfies it. aredeterministic That is, for anys € 5, s1 € 5, s € 5, and
To apply this idea to Peterson-assume that each customef € T if s —t—s1 ands —t—s,, thens; = s,. A state is
is split to two processes, a customer proper and a server, TgENInalif and only if no transition is enabled at it.
customer proper is shown in Figure 3. The edges that arelN€ obvious extension of —i— s’ to a finite sequence
labelled with~ denote activities that are neither affected b@f transitions is denoted with —i, ---t,— 5. States’ is
nor observable by the rest of the model. The server is like fRachablefrom states if and only if there is a (possibly empty)
Figure 2.Request synchronizes with moving from local stateS€quence of transitiorts - - - ,, such that —t, -- - ¢, —s". The
0 to local state 1 (that is, starting to try to go to the Crmicdnltlaj state pf.th_e model is denoted with A state isreachable
section) enter with the arrival to local state 7 (that is, arrivingif @nd only if it is reachable frons. _
to the critical section), anteave with leaving local state 7. 1he reachable states and the triplest— s’ connecting
This customer proper obviously does not do anything thatfiém constitute a directed graph callstate spaceFor this
should not and does not stop when it should not. Furthermof@ason,s —t— s is called edge Also other directed graph
any tentative customer proper that is not “better than” ¢grminology will be used, such as “path”. The state space can
“as good as” Figure 3, tries to executequest, enter or be constructed by declaring as found, and then firing, in
leave when it should not; fails to executequest, enter each found state, all the transitions that are enabled Eaith
or leave when it should: or, in the case of CSP, NDFD angges_ulting state is declared as found. The algorithm is couetil
CFFD, may steal all processor time at some point. So it ¥l all found states have been processed.
unacceptable. In other words, Figure 3 presents the “worst” T hebasic strong stubborn set methassigns to each € S
acceptable customer proper, the one that makes the greafegt!bset of transitionS'(s) C T', called stubborn setsuch
challenge to the ability of the servers to guarantee mutdhgt the following conditions hold. In them, it is assumedtth
exclusion and eventual access. The system is correct withfaf 7 (s0) andty & T(so), ..., tn & T (s0)-
arbitrary acceptable customer proper if and only if the syst DO: If so is not terminal, then7 (so) contains an enabled
is correct with Figure 3. So the customer proper in Figure 3  transition.
is most appropriate for a verification model. D1: If so—t1 - tpt— s, thensg —tty -~ t,— s),.
The parallel composition of customer proper with the servB2: If so —t— andsg —t1 - - - t,— s, thens,, —t—.
yields a process that plays the role of the original customer Many practical algorithms for constructing sets with the
With Figures 3 and 2, the result is like Figure 2 with itabove properties have been presented. ASSET uses the strong
initial local state replaced by three local states and g@bo component algorithm in [13]. To compute strong components,
commands. One of the three is the new initial local stati#,uses the optimized version of Tarjan's algorithm [12]ttha
another is a terminal local state, and the third can be thbudtas been presented in [5].
of as the initial local state of Figure 2. Tlygot o commands  The reduced state spacis constructed otherwise like the
lead from the new initial local state to the other two locadtate space, but only the enabled transitiong &) are fired
states. They do not access any other variables ®[an] . ats. The phrasdull state spacés a synonym of state space. It
The atomic operation that models leaving the critical secti is useful when it may be unclear whether “state space” refers
leads to the new initial local state instead of the initiaddb to the reduced or full state space. The sets of states and edge
state of Figure 2. in the reduced state space are obviously subsets of thefsets o

Fig. 3. A generic customer proper of a mutual exclusion syste

IV. BACKGROUND ON STUBBORN SETS



states and edges in the full state space. We say that a state /ssume now that the full state space does not contain
anr-state an edge is anedge a path is an-path, and so on, terminal states. Then by DO, the reduced state space does not
if and only if it is in the reduced state space. Obviously gvercontain terminal states either. So the property holds otheaei
r-state is a reachable state and every r-path is a path, but siate space.
necessarily vice versa. Finally, assume that neither of the preceding cases holds.
The benefit of stubborn sets is that the reduced state spac€hiat is, the full state space contains a state from which no
often much smaller than the full state space, so its cortibruc terminal state is reachable, béiis not such a state. We have
requires less time and memory. Even so, it can be usedttoprove the existence of an r-statérom which no r-terminal
check many properties of the model. state is r-reachable. By Theorem 1 it suffices to prove that no
Letting s = § in the next theorem yields that the reductioterminal state is reachable frof
preserves all reachable terminal states of the model, and foFor some natural number and for0 < ¢ < n, we will
each path to a terminal state, the reduction preserves soshew the existence of a transitiap r-states;, statess, s/,
permutation of it. Furthermore, an r-state is terminal idanst, and finite sequences of transitioas and p; such thats!
only if it looks like terminal in the reduced state spaces terminal,s;, —t;— s/, s; —o;— s, —p;— st, and there is no
Although the theorem is old, its proof is presented herpath froms! to a terminal state. Furthermore,iik n, either
because it is essential background to the new results in the; is shorter thars;, or they are of the same length but

next section. pi+1 IS shorter tharp;.
Theorem 1 (old)Let s be an r-state and; be a terminal We choosesy; = 5. Because the first case above does not
state such that —¢, - - - t,,— s;. The following hold. hold, a states”” is reachable from which no terminal state
« There is an r-path from to s; such that its sequence ofis reachable. Because the second case above does not hold,
transitions is a permutation of - - - ¢,,. a terminal state is reachable fromy. Therefore, along the
« No r-edge starts a;. path from sy to s’ there is an edge(, —to— s; such that
. If s is an r-state and no r-edge starts satthen s is No terminal state is reachable frosf and a terminal state
terminal. which we callsf is reachable froms). Thenoy and py may

Proof: If n = 0, then the first claim is obvious. Otherwise?® chosen such that —oo— s, —po— s;. The base case has
s—t;—. By DO, somet € 7 (s) is enabled at. If none ofty, been proven. . _ . .

.., tn is in T(s), then D2 yieldss, —t—, contradicting the To prove the md_uc_tlon step, we first consider the case
assumption that, is terminal. So there i$ < i < n such that Wheret; ¢ 7 (s;). Similarly to the proof of Theorem 1, an
t; € T(s) and none ofy, ..., ¢;_; is in 7(s). By D1, there is @pplication of DO and D1 to the path —oi—s; —pi—s;

s’ such thats —t;— s' —t1 ---t;_1t;11 - --t,— 5. The states’ yields sii1, iy, Uiy € T(si), 0it1, and pi+1 such that

is an r-state, and there is a path frefmto s. of lengthn —1. % —t§+1—j Sit1 —Oit1— Sip1 ~Pit1— S§ Either pip1 = ps

Repetition of this argument times yields the first claim. and Tit1 1S obtained fromo; by removingt;,,, or the same
The second claim follows trivially from the fact thatholds with the roles ofc and p swapped. In the former

7 (s¢) C T ands; is terminal. The last claim follows trivially case,s;;; = s; and we letsi, = 52/ Otherwise by
from DO. m lLemma 2s;—t; ,—s; ,, by D2 there iss} ;, such that
. . " / 1

Also a lemma will be used in the sequel. si —ti;1—siy1, and by D1 and becausg,, and; are

Lemma 2:1f t € T(s0), t1 ¢ T(50)s ..., tn & T(s0), deterministics;  ; —t;— s;’ﬂ. No terrr_unal state is reachable
S0 —t1— 81 —la— ... —lp— Sp, S0 —t— s}, ands) —t;— s} from s/, ;, because otherwise a terminal state would be reach-
—ty—s ... —t,— s, then forl < i <n we haves; —t— s/, able froms}. The induction step is completed by choosing

oo n1 —_ — (2

Proof: Let 1 < i < n. By D2, there iss/ such that Siy1 = $; andtiy1 =t;. _ _
si—t—s!. By D1, 5o —tt, -- - t;— 5. Because transitions are 1he casef; € 7(s;) remains. Then D1 can be applied to

deterministic,s/ = /. m the paths; —o;,— s, —t;— s/ If it picks a transition fromo;,
then the case is similar to the cgse, = p; above. Otherwise

V. STUBBORN SETS ONALWAYS MAY-TERMINATING there is an r-state; 1 such thats; —t;— s, .1 —o;— s”. If no

MODELS terminal state is reachable from),, then it qualifies ass.

This section is devoted to new results that concern stubbdbtherwise the same reasoning as in the base caseswith

sets and always may-terminating models. playing the role of ands! playing the role ofs”’ yieldst, 1,
Theorem 3The basic strong stubborn set method preserves, ,, si, |, si, 1, oi11, andp;;1 with the required properties.

the property “always may-terminating”. The length claim holds, becausg, ; is a proper prefix ob;.

Proof: Assume first that the property holds on the full Each step of the construction in the proof either yiefds
state space. That is, from every reachable state, a termighabrtenso;, or shortensp; while retaining the length of;.
state is reachable. Consider any r-statd-rom it there is a Becauses; and p; cannot become shorter without limit as
path to a terminal state;. By Theorem 1, there is also angrows, eventuallys is obtained. [ ]
r-path froms to s;, and s; is terminal also in the reduced If the reduced state space is constructed in depth-firstorde
state space. So the property holds on the reduced state spihea it is possible to check efficiently on-the-fly that it is
as well. always may-terminating. By Theorem 3, the result applies



also to the full state space. The check is based on computiman-progress error occurs if and only if the user has regaest
the strong components of the reduced state space on-thefdlyservice but does not get it.
using Tarjan’s algorithm [5], [12], recognizing terminaates,  ASSET distinguishes between two types of progress states:
and propagating backwards the information whether a texminmay and must In must progressevery path must lead to
state is reachable. a progress state. If the state is terminal, then it must be a
ASSET works in breadth-first order. So it cannot use thisrogress state in itself. This is the notion of progressadsiy
algorithm. Instead, it performs the check as a post-praegssused in linear temporal logic. In may progress, it sufficest th
step. It re-constructs the edges storing them in reversed-di at least onepath leads to a progress state. Must progress
tion, and then performs a linear-time graph search stadingimplies may progress, but not necessarily vice versa. May
each terminal state. progress is a branching-time property and related to thisnot
The idea behind the implementation of stubborn sets §f home properties in Petri nets.
ASSET s that the modeller should try to make the model For reasons briefly mentioned in Section I, the stubborn set
always may-terminating, but it is the responsibility of ASB  jmplementation of ASSET does not support must progress.

theorems list three properties that the basic strong stubbghegrem.

set method preserves, if the model indeed is always may-rheorem 5:Assume that the model is always may-terminat-
terminating. For all of them, a counterexample found by,q s fy|| state space contains a state from which no pEsgr
the method is valid even if the model is not always maysate is reachable if and only if it contains a terminal stagt
terminating, but if the method finds no counterexampleg; ot 4 progress state if and only if the reduced state space

the result can be trusted only if the model is always maypained with the basic strong stubborn set method contains
terminating. Therefore, ASSET first checks the first two cguch a state.

them (the .third one has not yet begn implemented). If .it fir_lds Proof: Assume thats is reachable but no progress state

nic\)/i?]rroall‘i’grfohrerzkess;gatet?feitT:?]iltIS always may—term|gat|nls reachable from it. Because the model is always may-

gving ) 9 ’ . erminating, a terminal state is reachable framlt is a
The following theorem tells that a well-known simple too

tor checking li i fot i ks | = erminal state that is not a progress state. If a termindé sta
or checking linear-time Salety properties works In ourte. o,y 5 progress state, then obviously no progress state is

. Theorem 4Assgme that the model Is always may-terminaf, achable from it. The first claim has been proven. The second
ing. For any transition, the basic strong stubborn set methog‘le

. i aim follows from Theorem 1. [ ]
preserves the propertys‘may become enabled”. B the th h f Idb
Proof: If ¢, cannot become enabled in the full state space y the theoreém, no other support for may progress would be

then clearly it cannot become enabled in the reduced st eded in the case of always may-terminating systems tiean th

space either. If; may become enabled in the full state spacg, eck_deadl ock feature of ASSET. Furthermore, it can be

then there s a path 11 -1, s, from the initial sate to | Z5C AT AL AE S . the
a terminal state such thai = ¢; for somel < i < n. By y ’

Theorem 1. occurs also in the reduced state space. m notion of may progress _states is useful. It is convenient th_a
If the construction of the reduced state space is abort y can also be used with stubbom sets when they work with

whent, is found enabled, thety is never fired. In that case, them ) ) )
need not contain statements that change the state; thérenabl "€ ast theorem in this section can be used to check
condition suffices. Even so, to use Theoremi4must be SOMe linear-time liveness properties, such as “if the chhnn

taken into account in the construction of the stubborn sef, @ Protocol passes (that is, does not lose) infinitely many
In ASSET, the enabling condition af is represented via the MeSSages, then the protocol as a whole passes infinitely many
check st at e function. messages”. Actually, it locates the challenge that lirizae

To detect complicated errors, additional state variaties t Iiveness_ causes to stubborn sets precisely as the problem of
store some information about the history of the executidg€Serving cycles that do not make progress.
may be added to the model. For instance, consider a protocof heorem 6:Let ¢, € T and T, C T. The basic strong
whose purpose is to deliver messages from a sending sitebborn set method on always may-terminating models pre-
to a receiving site over an unreliable channel. To verify the€rves the property “there is an execution whegeoccurs
ability of the protocol to prevent distortion of messagekew infinitely many times but no member . occurs infinitely
a message is given to the protocol, a copy of it is stored in &Ny times”.
extra state variable. When the protocol delivers the massag Proof: If such an execution exists in the reduced state
at the receiving sitecheck_st at e checks whether it is space, then it is present also in the full state space.
identical to what was stored in the extra variable. Now assume that such an execution exists in the full state
The next theorem assumes that each state is classifiecspace. It is of the forms —p— sg —t,01—5s1 —t,00— ...,
a progress state or other state. Typically progress states where no element of’, occurs in any of ther; (butt¢, may
those where the user either has not requested for servicasor biccur in p). Let ns be the number of states in the full state
received the service that it requested. With this convento space, and letn = 2nf2. There ared < j < k < ns such that



s; = sg. There ares;, p1, and p, such thats, is terminal, Vvoid next_stubborn( unsigned i ){

§—p1—sj —p2— st, |p1] < ng, and|pz| < n. !Srl\li(tlch(>:SPi %{){St b(i-n); return; }

S05—p1— 8j —(twojt1 - twor)"—sj —pa—se. Theap-  case 0: st b(i+n); return;
plication of Theorem 1 to it yields an execution in the redlice case 1: return;
state space that contains at ma@st; — 2 occurrences of case 2: stb_all(); return;
elements of7, and at leastn? occurrences of,,. It has at ~ case 3: stb_all(); return;
least one part that contains at leagtoccurrences of,, and Ca.sfe(4ﬂ|_[ L] 1= ){ return: 3
no occurrences of elements 8. Because the reduced state ISt b all J()' ret ur_n'; urn,
space contains no more states than the full, this part aentai case 5: return:
a cycle. The prefix of the execution up to the cycle together case 6: stb_all 8 ; return;
; return;

with an infinite number of repetitions of the cycle consemt case 7: stb_all
the infinite execution whose existence had to be provem gase 8. return, _
. o : . .. default: stb_all(); return;

This theorem does not facilitate meaningful use of Bichi
automata with stubborn sets, because a Biichi automajon
observes every action by the system. Thus it forces every
enabled transition to every stubborn set, so the state spilice Fig. 4. Stubborn set rules for three models of Peterson-
not become smaller. For this reason, a related type of automa
has been defined that only observes actions that may affect th
validity of the property [7]. Unfortunately, some propesi state. Assume that it is theof D1 and D2. So it is irZ (so).
require the detection of cycles consisting solely of transs The callst b(i - n) makesi ~ i—n hold, implying that also
that the automaton does not synchronize with. This seemstf@nsitioni —n is in 7 (sp). It models all the remaining atomic
require the linear-time liveness cycle condition and ppshaoperations of customer— n.
also the representation of fairness assumptions as noppart If transition s is disabled, then D2 holds trivially. Further-

the formula. more, the only way to enable it is that custonier n moves
to local state 0. Therefore, €y —t1 - - - t,— s, and none of
VI. STUBBORN SETS IN THE EXPERIMENTS t1, ..., t, is in T(so), then none oft, ..., t, is transition

The construction of stubborn sets relies on rules of the— n, so transition: is disabled ats,,. This implies D1.
form “if this transition is in the stubborn set of the current Assume now that transition is enabled. Clearly the only
state, then also these other transitions must be”. A compl&tay to disable it is that either it or transitian- n occurs. So
implementation of stubborn sets would contain a preprazes®?2 holds. Because transitiondoes not access any variable
tool that reasons these rules from the model. Unfortunatetiat the other customers access, also D1 holds.
ASSET is not complete in this respect. As a consequence, thdhe casé) < i < n remains. Transitiofi is disabled only in
rules must be provided by the modeller. This is unacceptalglase 8. In that case nothing can enable it, so D1 and D2 hold
from the point of view of industrial use. On the other handndependently of what other transitions areZiisy). Thus no
in Section |, the analysis of the program-code-level retati rule of the form: ~~ j is needed. From now on we assume
between the transitions was mentioned. Reduction restéts that transitior: is enabled.
very sensitive to the level of carefulness of this analysis. In cases 0, 1, and 5 transitiondoes not access variables
Because the rules may be provided by hand, ASSET facilitatesed by other customers. We already say that transitiom
easy experimenting with this issue. never accesses variables used by other customef5(&9 =

Figure 4 shows the rules used in other experiments of this i+n} suffices, and no rule of the forin~ j wherej refers
publication than the first. (In the first experiment, an olmgo to another customer is needed to make D1 and D2 hold. The
adaptation of the rules was used.) To discuss themgsdet rule i ~» ¢ + n can be dropped in cases 1 and 5, because
denote the current state and~~ j denote that if transition then transitioni +n is disabled, so it does not matter whether
numberi is in the stubborn sef (sq), then ASSET makes 7 (so) = {i,5 +n} or T (so) = {i}.
sure that alsgi € 7 (sp). It was mentioned after Theorem 4 In cases 2, 3, and 6 D1 and D2 are forced to hold by
that also the enabling condition atheck_st at e must be introducing a rule of the form ~» j for every transitionj.
taken into account. It will be discussed as a separate cake &S a consequence, no transition can be any oftthe. ., ¢,

can be ignored until then. of D1 and D2.
The discussion below emphasizes the reasons why thé&he crucial observation behind case 4 is that the only
rules are valid. So it gives an over-pessimistic impressibn transitionthatcanturi[ j[i]] ! =i fromtruetofal se

how difficult it is for a human or preprocessor tool to finds i. The other customers may write ] j [i]], but they

the rules. Excluding case 4, all the rules arise from simplerite to it their own index instead of Therefore, ifT[ j [ 1] ]

principles. Even for case 4, it is not beyond imaginatiort tha=i , then D2 holds automatically. D1 is not a problem either,

a preprocessor could find its rule. because other than this test, the atomic operation does not
Consider first the case < ¢ < 2n. Transitioni models access variables that are used by other customer§|Ifi ] ]

customeri — n moving from the initial to the terminal local == i, then D1 and D2 follow like in cases 2, 3, and 6.



plain stubborn sets
n states edges time states edges time
not non-progress revealing
2 133 266 0.0 88 124 0.1
3 38038 114114 0.3 18817 34083 0.2
4| 12346971 49387884 70.8 4312993 8988034 22.2
non-progress revealing
2 163 326 0.1 116 162 0.0
3 43675 131025 0.3 23134 41562 0.2
4 | 14186506 56746024 85.6 5316461 10903336 36.9
correct
2 574 1148 0.0 378 522 0.0
3 96 854 290562 0.4 44868 78750 0.3
4| 26209918 104839672 184 9318636 18581236 62.7
mutex-violating
2 336 602 0.0 219 258 0.0
3 32957 87081 0.2 15164 22100 0.2
4 6614675 23547787 16.4 2116738 3527255 5.8

TABLE |
RESULTS WITHASSETON MODELS OFPETERSON™.

Because a safety error was detected in the mutex-violating
model, the postprocessing steps that check progress piesper
and always may-termination were not executed. This explain
the exceptionally short times obtained with the model.

A comparison of the results on the first two models tells
that the addition of terminal states and transitions to tlokain
not make the state space grow much.

ASSET has also an implementation of the well-known
symmetry reduction method. However, the models discussed
in this publication are not symmetric. Experiments have als
been made with models where thetest is represented as a
single atomic operation. The symmetry method can then be
used. Both methods together reduced the number of states of
a deadlocking version to quadratic in In [15] an analysis
of a demand-driven token-ring protocol was reported. With 1
processes, the plain method yielded 81933120 states in 262
seconds, stubborn sets yielded 1514 900 states in 4.6 sgcond
symmetries yielded 8 193 312 states in 59.5 seconds, and both

Case 7 is affected byheck st at e. (Without it, no rules
would be needed.) Its rule comes from the principle that If
a transition may change the state “further away” from the
checked condition, then rules must be added to a “sufficien{y;
subset of transitions that may change the state “closeri®” t
condition. Full formal treatment of this principle is beybthe
scope of this publication but, to give some idea, let us shoyg)
the correctness of this particular rule.

Let t. be an imaginary transition such that its occurrencé’
does not change the state and it is enabled if and only if the
check_st ate in Figure 2 returng r ue. Case 7 may be [4]
interpreted as implementing the rulés~ t. ~~ j for every
transitionj, forcing D1 and D2 to hold. It remains to be shown s
that excluding case %,~ t. is not needed. That is, we must
show thatt. may be added t@ \ 7 (s¢) without invalidating
D1 and D2.

To prove that D2 remains valid, assume tkat-t— and
8o —t1---tc---tn,— s,. Becausé. does not change the state,
we havesy —t; - - - t,— s,. The assumption that D2 was valid
beforehand yields,, —t—.

To prove that D1 remains valid, for sonte< i < n let [9]
8o =ty ti— S; —te— 8§ —tip1 - tn— Sp —t— s, By D1
there aresy, ..., s/,_; such thatsp —t— s, —t;— s} —to—  [10]
... —tp,—s,,. Lemma 2 yieldss; —t— s}. Because case 7 has[n]
been excluded from the discussion, the occurrence ddes
not change the value of ar§f i'] from 7 to something else. [12]
So s; —t.— implies s; —t.— . Becauset. does not change [13]
the state, we have D1.

(6]

(7]

(8]

VII. [14]

Table | shows, for the models discussed in this publicati0|115
and for different values ofi, the number of reachable states[,

EXPERIMENTS ANDDISCUSSION

together yielded 151 490 states in 0.9 seconds.
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