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ABSTRACT

Traditional point-by-point image similarity metrics, such

as the ℓ2-norm, are not always consistent with human per-

ception, especially in textured regions. We consider the

problem of identifying textures that are perceptually identi-

cal to a query texture; this is important for image retrieval,

compression, and restoration applications. Recently proposed

structural texture similarity (STSIM) metrics assign high sim-

ilarity scores to such perceptually identical textured patches,

even though they may have significant pixel-wise deviations.

We use an STSIM approach that compares a set of statistical

patch descriptors through a weighted distance, and, given a

dataset of labeled texture images partitioned into classes of

perceptually identical patches, we calculate the weights as

the variances of each statistic centered around the mean of

its class. Experimental results demonstrate that the proposed

approach outperforms existing structural similarity metrics

and STSIMs as well as traditional point-by-point metrics

when assessing texture similarity in both noisy and noise-free

conditions.

Index Terms— Perceptual equivalence, structural simi-

larity, statistical analysis, content-based retrieval

1. INTRODUCTION

In the past decade, image redundancy and self-similarity en-

abled a substantial improvement for several image processing

applications, and, although such redundancy is used in differ-

ent forms by different algorithms, determining image similar-

ity is always a task of fundamental interest [1–4].

The traditional strategy for measuring patch similarity is

based on point-by-point metrics, such as the Euclidean dis-

tance (ℓ2-norm) of the difference of the data being compared.

However, such metrics are not always consistent with human

perception, especially when comparing textured content, be-

cause they fail to account for the typically stochastic charac-

teristics of natural textures. Thus, there is an increasing in-

terest in structural texture similarity (STSIM) metrics that re-

place point-by-point comparisons with statistical approaches
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that compare a set of patch statistics [4–6]. We focus on the

retrieval of “perceptually identical” textures (henceforth iden-

tical) such as those in Fig. 1, which can be considered to

be pieces of a larger perceptually uniform texture [6]. Dis-

tinguishing identical and nonidentical textures is important

for a variety of applications including content-based retrieval,

restoration, and compression [4, 6–8]. STSIM metrics are ca-

pable of assigning high similarity values to patches with sig-

nificant pixel-wise deviations that are perceived as essentially

identical.

In this paper we adopt the STSIM-M formulation [6], in

which the statistics of two patches are compared using a Ma-

halanobis distance [9]. In particular, given a dataset of labeled

texture images partitioned into classes of identical patches,

we propose a variation of the STSIM-M metric, whereby the

covariance matrix of the Mahalanobis distance is diagonal (as

in STSIM-M), but each diagonal entry is computed as the

variance of the corresponding statistic centered around the

mean of its class, thus capturing the intra-class variance (also

known in literature as “within-class” variance [10]) instead of

the global variance as is done in STSIM-M.

We evaluate the proposed metric in the context of the

retrieval of identical textures using a labeled database that

consists of noisy or noise-free 1181 grayscale patches di-

vided into 425 classes [6]. For our purposes, the noise should

have no structure, so we consider an i.i.d. additive Gaussian

white noise. Our results demonstrate that, in all cases, the

proposed strategy outperforms structural similarity metrics

(SSIMs) [11, 12] and previous manifestations of STSIMs [6].

The remainder of the paper is organized as follows. Sec-

tion 2 reviews STSIMs, setting the stage for the formulation

of the new metric framework, which is presented in Section

3. The experimental results are reported in Section 4 and the

conclusions are summarized in Section 5.

2. REVIEW OF STRUCTURAL TEXTURE

SIMILARITY METRICS

The development of STSIMs was inspired by the introduction

of the structural similarity metric (SSIM) [11], and its trans-

form domain (complex wavelet) extension CW-SSIM [12].

However, even though they represent an attempt to move

away from point-by-point comparisons, SSIM and CW-SSIM



still incorporate a point-by-point comparison term (the “struc-

ture” term). STSIMs [5,6] on the other hand, rely completely

on patch statistics, and are characterized by the following

main stages:

1. Subband Decomposition. The compared patches un-

dergo a multi-scale multi-oriented frequency decompo-

sition, such as the steerable filter [13], to mimic the bi-

ological processing of the human visual system.

2. Extraction of Statistics. Each patch is represented by

a number of statistical descriptors separately computed

over the individual subbands.

3. Statistics Comparison. A final similarity score is given

by defining a strategy to compare the statistics of each

patch.

In [6], Zujovic et al. presented a number of STSIM formula-

tions, including the one proposed initially by Zhao et al. [5].

In this paper, we propose a variation of the STSIM-M formu-

lation [6]. Let zi and zj be two image patches and let ωi,k

and ωj,k with k = 1, . . . ,m, be independent statistics ex-

tracted from zi and zj , respectively [6]. Then, the STSIM-M

between two patches zi and zj can be defined as the following

particular case of Mahalanobis distance [9]
√
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where σ2
k is the variance of the k-th statistic over a training
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where mean{ωi,k} = 1/n
∑n

i=1 ωi,k.

The development of the STSIM metrics was motivated by

the texture analysis/synthesis model proposed in [14], which

in its entirety contains 846 parameters; Zujovic et al. select

a subset of m = 82 statistics for (1) which are considered

sufficient for the development of a STSIM [6].

3. INTER-CLASS AND INTRA-CLASS VARIANCES

The STSIM-M formulation allows to differently weight dif-

ferent statistics. In particular, statistics with larger variance

are penalized by (1) as they are expected to be less informa-

tive for the overall metric. However, the problem with this

approach is that it does not discriminate between the variance

due to the inherent statistic fluctuation (within a perceptually

uniform texture) and the variance due to fluctuations of the

statistic that are due to differences in content (across differ-

ent textures). Thus, we identify two additive terms within the

overall variance σ2
k of the k-th statistic:

σ
2
k = ς

2
k + ϑ

2
k (3)

Fig. 1. Example of perceptually identical patches.

where the first term ς2k is the inherent (intra-class) variance of

the k-th statistic, while the second term ϑ2
k accounts for the

variation of the k-th statistic across dissimilar patches.

Formally, let Λ = {λi : i = 1, . . . , n} be the set of n
labels λi ∈ N

+ for the patches in the training set Γ. Two

labels λi and λj are equal if and only if the corresponding

patches zi and zj are perceptually identical. In this way we

can explicitly define the class of (indices of) patches identical

to any given patch zi ∈ Γ as

Θ(zi) =
{

j : λi = λj , j = 1, . . . , n
}

. (4)

As a reference, we show in Fig. 1 two perceptually identi-

cal patches. Note that, despite having a significant point-by-

point difference, the two patches looks identical according to

human perception.

Then, from each Θ(zi), we obtain the class-wise mean of

the k-th statistic as

µi,k =
1

|Θ(zi)|

∑

j∈Θ(zi)

wj,k, (5)

where |Θ(zi)| is the cardinality of Θ(zi). Observe that, when-

ever λi = λj then we also have µi,k = µj,k. With (5), we

calculate the intra-variance ς2k as

ς
2
k = var

{

ωi,k − µi,k

}

=
1

n− 1

n
∑

i=1

(

ωi,k − µi,k

)2
, (6)

because by construction mean{ωi,k − µi,k} = 0. Intuitively,

(6) is the sample variance of the k-th statistic of every patch

zi ∈ Γ centered around its class mean (5) discarding the in-

fluence of the fluctuations due to inter-class variability, which

is instead captured by the second term ϑ2
k. Note that the inter-

class variance ϑ2
k can be easily obtained by subtracting (6)

from (2), or as ϑ2
k = var{µi,k}.



0 10 20 30 40 50

{ωi,1}
n
i=1

σk = 5.8

0 10 20 30 40 50

{ωi,1}
n
i=1

σk = 4

0 10 20 30 40 50

{ωi,1}
n
i=1

σk = 2.7

0 10 20 30 40 50

{ωi,1}
n
i=1

σk = 2.1

−2 0 2

{ωi,1− µi,1}
n
i=1

ςk = 0.7

−2 0 2

{ωi,1− µi,1}
n
i=1

ςk = 0.6

−2 0 2

{ωi,1− µi,1}
n
i=1

ςk = 0.5

−2 0 2

{ωi,1− µi,1}
n
i=1

ςk = 0.6

ση = 0 ση = 35 ση = 70 ση = 100

Fig. 2. Distributions of the statistic ωi,1 (i.e. the mean of the modulus of the first subband in the decomposition [13]) for all the

patches in the image database [6] before (top row) and after (bottom row) the subtraction of (5) under different noise levels ση .

Since the two terms composing (3) are available, we can

define a structural similarity metric between patches zi and zj
accounting for the inter- and intra-class variances as

√
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where the statistics ω
·,k are first divided by the inter-class

standard deviation ϑk to equalize their response to inter-class

differences, and then by their intra-class variance ςk divided

by ϑk which acts as a signal-to-noise ratio between the quan-

tity of interest ςk and its dispersion ϑk. The metric (7) empha-

size differences between statistics whose intra-class variance

(6) is small. The advantage of using (6) over (3) is that (6) is a

better representation of the actual variability of the statistics.

In particular, our model evaluates the similarity of the patches

by sphering the data through the intra-class variances around

the centers of mass (5) of the classes.

4. EXPERIMENTS

In this section we evaluate the performance of the proposed

metric (7), which we denote STSIM-I, with a series of image

retrieval tests. We use a database of 1181 grayscale noise-free

patches originating from 425 high-resolution images charac-

terized by perceptually uniform textures1. The extracted

patches have size 128×128 pixel, and patches extracted from

the same source image are considered to belong to the same

class, i.e. to be perceptually identical. For the noisy case, we

generate noisy patches zi following the standard observation

model

zi = yi + ηi, (8)

where yi is the noise-free patch, and ηi ∼ N (0,σ2

η
) is i.i.d.

Gaussian noise with variance σ2

η
. All images are hereafter

considered to be in the range [0, 255].
For the subband decomposition, we use the steerable fil-

ter [13] using four orientations and three scales without sub-

sampling. Thus obtaining a pyramid of twelve complex sub-

bands plus one real innermost lowpass band and one real out-

ermost highpass band. Every set Ω(zi) contains m = 82
statistics: mean, variance, and vertical and horizontal auto-

correlation for each subbands, and one cross-correlation for

each pair of subbands at a given scale and for each pair of sub-

bands adjacent in scale. The statistics are calculated from the

magnitude of the subband coefficients as it has been proven

to be more effective [6]. In Fig. 2, we show the distribu-

tion of the statistics wi,1 (i.e. the mean of the modulus of the

first subband) of all the patches in the database before and af-

ter the subtraction of the class means (5) under the different

noise conditions.

1The dataset was originally designed in [6] using images from the Corbis

database http://www.corbisimages.com/
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Fig. 3. From left to right: precision at one (P@1), mean average precision (MAP) and mean reciprocal rank (MRR) of STSIM-I

(red ◦), STSIM-M (blue ⋄), STSIM-2 (cyan !), SSIM (magenta ▽), CW-SSIM (green △), and MSE (black ⊲).

We compare the retrieval performance of the proposed

STSIM-I and STSIM-M [6] against SSIM [11], CW-SSIM

[12], STSIM-2 [6], as well as MSE. For every noise level

ση ∈ {0, 2.5, 5, . . . , 100}, we measure the similarity between

a given patch (the query) and the rest of the patches (the tar-

gets) in the database, and then we sort the results in descend-

ing value of similarity. Since Λ (i.e. the class of each patch)

is known, we can measure the performance of the compared

metrics using three criteria:

• Precision at one (P@1): percentage of cases for which

the target with the highest similarity score is identical

to the query;

• Mean Average Precision (MAP): average goodness in

the ordering of the targets [15];

• Mean Reciprocal Rank (MRR): average distance of the

first target identical to the query.

For both STSIM-M and STSIM-I we perform a K-fold

cross-validation with K = 5. In every K run, we extract a dif-

ferent training set Γ comprising of 85 classes and nK patches

from our original image database. The remaining patches will

be used as validation data. In order to increase the number of

training samples, we generate M = 100 Montecarlo realiza-

tions of every training patch in Γ following (8) for each con-

sidered noise level ση . Then, we calculate independently for

each ση the variances (6) and (3) from the m statistics of all

M · nK training patches. The final performances of STSIM-

M and STSIM-I are obtained by averaging the results of the

K cross-validations.

In Fig. 3, we report the performances of STSIM-I (red ◦),

STSIM-M (blue ⋄), STSIM-2 (cyan !), SSIM (magenta ▽),

CW-SSIM (green △), and MSE (black ⊲) according to P@1,

MAP, and MRR as a function of the ση . The metrics STSIM-

2 and CW-SSIM also embed the decomposition [13], thus

we use the same scale and orientation parameters of STSIM-

I and STSIM-M. All other parameters are set to their de-

fault values. As one can clearly see, the structural similar-

ity metrics STSIM-I, STSIM-M and STSIM-2 clearly outper-

forms SSIM, CW-SSIM and MSE, and, in particular, the pro-

posed STSIM-I achieves an improvement over STSIM-M that

ranges between 2% (in the noise-free case) and 30% (in the

most noisy case ση = 100).

The performance degradation of STSIM-I as ση increases

is also more graceful than that of STSIM-M, thus demon-

strating a superior ability to discern unstructured noise from

stochastic texture.

5. CONCLUSIONS

We presented a structural similarity metric, called STSIM-I,

that accounts for the stochastic nature of patches and is able

to cope with the presence of Gaussian noise. The metric,

inspired by [6], identifies patches that according to human

judgment are perceptually identical even if there exists a sub-

stantial point-by-point difference. The metric is based on the

filter [13], which provides a multi-scale multi-orientated sub-

band decomposition of the patch, and on a set of statistics

calculated over such subbands. Then, the statistics of two

patches are compared using a weighted distance. We propose

to calculate the weights as the intra-class variance of each

statistic centered around the mean of the class of perceptu-

ally identical patches.

Our experiments demonstrate that the proposed approach

outperforms the structural metrics STSIM-M, STSIM-2,

SSIM and CW-SSIM, as well as the traditional MSE in

both noisy and noise-free condition. Future work addresses a

direct applicability of the proposed metric as well as the sta-

tistical representation of patches in the restoration/denoising

problem.
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