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Abstract—Parallel implementations of Turbo decoding has
been studied extensively. Traditionally, the number of parallel
sub-decoders is limited to maintain acceptable code block error
rate performance loss caused by the edge effect of code block
division. In addition, the sub-decoders require synchronization to
exchange information in the iterative process. In this paper, we
propose loosening the synchronization between the sub-decoders
to achieve higher utilization of parallel processor resources. Our
method allows high degree of parallel processor utilization in
decoding of a single code block providing a scalable software-
based implementation.

The proposed implementation is demonstrated using a graph-
ics processing unit. We achieve 122.8Mbps decoding throughput
using a medium range GPU, the Nvidia GTX480. This is, to the
best of our knowledge, the fastest Turbo decoding throughput
achieved with a GPU-based implementation.

Keywords—Turbo decoder, Loose synchronization, Massively
parallel computation, GPGPU, OpenCL

I. INTRODUCTION

Since its invention in 1993, Turbo coding has been a hot
research topic both in academy and industry. Parallelization
of the computationally intensive Turbo decoder [1] has been
studied extensively. In addition to hardware-based Turbo de-
coders, software-based Turbo decoders have been implemented
using General Purpose Processors (GPP) [2], Digital Signal
Processors (DSPs) [3], [4], [5] and stream processors [6].

General Purpose computing capable Graphics Processor
Units (GPGPU) [7] often consist of a large number of parallel
processing elements with reduced dynamic scheduling support.
Thus, the key challenge in utilizing the massive amount of
parallel processing elements is to get the problem expressed in
high enough number of parallel threads. Compared to DSP and
FPGA, GPGPU has higher performance price ratio because of
larger commercial market, thus performing computational in-
tensive tasks in communication area by GPGPU are attracting
more and more researchers.

There are several prior works on GPGPU turbo decoder
implementations [8], [9], [10], [11]. They all have restricted
the number of parallel sub-decoders (SD)/threads to mitigate
the “edge effect” caused by the Code Block (CB) division, and,
therefore, cannot effectively utilize all the processing elements
available in GPUs. The highest reported single CB decoding
throughput has been 7.97Mbps on Nvidia C1060 with 6
iterations [10]. By utilizing the Nvidia GTX470 GPU with
2048 simultaneously decoded CBs, the paper [11] presents a
decoder with 25Mbps throughput using 6 iterations. However,
in addition to the average throughput, also the decoding latency

of a single CB has strict requirements. While the 25Mbps
throughput is quite good, the increased latency in decoding
of a single CB reduces its practicality.

In this paper, we demonstrate that the number of parallel
SDs can be as high as the number of bits in a CB, while Block
Error Rate (BLER) performance is maintained acceptable by
adding more iterations. We also demonstrate that these SDs
do not need to be synchronized strictly, and find out the
asynchronous range of SDs by simulation. By loosening the
synchronization requirements across the SDs, we can utilize all
the processing elements of the GPU for single CB decoding.
The resulting Turbo decoder can reach up to 122 Mbps
throughput using a mid-range GPU.

II. OPENCL PROGRAMMING MODEL

Open Computing Language (OpenCL) [12] is a standard for
heterogeneous parallel programming that is nowadays common
in parallel programming, especially when targeting GPUs.
OpenCL is used for defining the program of the proposed
implementation.

In OpenCL a parallel program is split to kernels. Typically,
multiple instances of one kernel are executed in parallel. The
parallel instances are called Work-Items (WI). The OpenCL
programmer groups WIs into a number of Work-Groups (WG)
while keeping in mind that only the WIs that belong to the
same WG can synchronize with each other using the explicit
synchronization primitives. WIs belonging to same WG access
a local shared memory, and its consistency is guaranteed only
at the points of the barrier or memory fence calls. The standard
does not define synchronization between different WGs. That
is, while WIs in different WGs can access a common shared
global memory, global memory data consistency is guaranteed
only after the kernel execution ends. [13]

In this work we use the Nvidia Fermi [14] GPGPU
architecture as the experiment platform. Fermi consists of a
number of Streaming Multiprocessors (SM) and each SM has
a number of scalar cores. OpenCL WIs execute in the scalar
cores. A WG runs in one SM to completion without switching
to other SMs. One SM can execute multiple WGs in serial or
parallel fashion depending on the number of hardware contexts
available.

III. LOOSELY SYNCHRONIZED PARALLEL TURBO
DECODING

A. Parallel Turbo Decoding

The principle of the Turbo encoder is depicted in Fig. 1.
Picking the LTE Turbo code [15] as an example, encoder1 and



Fig. 1. Turbo encoder.

Fig. 2. Parallel turbo decoding.

encoder2 are the same Recursive Systematic Convolutional
(RSC) encoders. If M information bits are fed into turbo
encoder, M parity bits from encoder1 (parity0), M parity
bits from encoder2 (parity1) and M systematic information
bits (info0) will be sent out from encoder. At the receiver side,
turbo decoder receives noise corrupted info0, parity0 and
parity1. Noise corrupted info1 is acquired by interleaving
info0 in the receiver.

A parallel turbo decoding process of [1] is depicted in
Fig. 2. Assume that P SDs are used, so info0, 1, parity0, 1
are divided into P sub-blocks: sb0, sb1, ..., sb(P −1) and are
fed to P SDs. The decoding process is composed of several
iterations. There first half of the iteration does trellis transversal
for encoder1, second half for encoder2. Thus, info0 and
parity0 are fed to first half and info1 and parity1 are fed to
the second half.

Extrinsic information reflects the additional information
over a known channel. This extrinsic information is refined
throughout the iterative process by leveraging the known
encoding polynomials and interleaving relationship. In the first
iteration half, each extrinsic information sub-block is read
sequentially by each SD and written sequentially after trellis
transversal. In the second iteration half, each SD has to read
corresponding extrinsic bit from interleaved address and write
to the same address, due to the interleaver at the encoder side.
After all iterations, transmitted bits are recovered by doing a
hard decision on converged extrinsic information plus known
channel information.

When doing a trellis transversal in the decoding process,
each SD saves end states to the initializing start states of neigh-
bor SD in next iteration. If the sub-block length is too short,
the state metrics do not converge after trellis transversal. This
“edge effect” leads to reduced BLER performance. Generally,
at least 96 bits should be assigned to each SD to maintain an
acceptable BLER, thus, the number of SDs cannot be arbitrary
large. [1]

P 8 16 32 64 96 128 192 256
ITERs 6 6 6 6 6 7 7 8

P 384 512 768 1024 1536 2048 3072 6144
ITERs 9 10 12 15 20 26 35 65

TABLE I. NUMBER OF ITERATIONS (ITERS) NEEDED WHEN THE
NUMBER OF SDS (P) GROWS.
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Fig. 3. Normalized speedup and efficiency versus number of SDs

In principle, all SDs need to synchronize with each other
to exchange the latest extrinsic information between iteration
halfs, and the number of parallel SDs is limited by the edge
effect. These factors reduce the maximum utilized parallel SDs
for an GPU-based implementation.

B. Effects of sub-decoder count

Thanks to the nature of the iterative decoding process, more
iterations can be used to reduce the edge effect. Table I gives
the number of iterations needed to get a BLER performance
loss less than 0.2dB under different number of SDs for a 6144
bits LTE turbo CB with the Max-Log-Map algorithm [16].

In the extreme case, we can have 6144 SDs, each SD
processing only 1 bit. Assuming that single iteration processing
time of each SD is proportional to number of bits assigned,
i.e. 6144/P , overall decoding time will be proportional to
ITERs×6144/P (ITERs is the number of iterations). Single
CB decoding throughput will be proportional to inverse of
decoding time: P/(ITERs×6144). The overall computational
complexity is proportional to ITERs, because single iteration
complexity is only related to CB length regardless of P .
Fig. 3 shows the normalized throughput and ‘throughput over
complexity‘ versus P , where normalization is done for the
case of P = 96, ITERs = 6. From Fig. 3, throughput
increases monotonously with P , while efficiency (through-
put/complexity) decreases after P = 768. This is caused by
the number of necessary iterations growing faster when P is
larger than 768, as shown in Table I.



Fig. 4. Asynchronous parallel turbo decoding.

C. Loosely synchronized parallel turbo decoding

In the OpenCL programming model, all WIs that require
synchronization have to belong to the same WG, which
can typically utilize only one processor core (a SM in the
Fermi), regardless of how many cores there are available.
Thus, increasing the number of WIs in a single WG doesn’t
help after the scalar cores (or processing elements) of the
single processor core are fully utilized. However, if multiple
WIs used for decoding a single CB could be distributed into
multiple WGs, and thus executed in multiple SMs in parallel,
the resources of multiple SMs could be used for improving the
decoding performance.

Fig. 4 depicts asynchronous parallel turbo decoding, where
multiple SDs used for decoding single CB are grouped into
many WGs. In Fig. 4, SDp does not get its extrinsic values
written into the global memory in time, thus SD0 in the second
half, and SD(P − 1) in the first half of next iteration use the
old values. Because of the iterative nature of turbo decoding as
well as the information passed (essentially bit probabilities),
this kind of relaxation can be allowed. The old values are still
bit probabilities, albeit less accurate ones, as they are produced
in the previous iterations.

In order for the loose synchronization based implementa-
tion to work, the implementation platform has to fulfill two
assumptions: 1) All the global memory updates are made
visible to all WGs eventually during the kernel execution, and
2) There is mutual progress along the WGs participating in the
decoding. That is, all SDs across all WGs experience progress,
although not strictly synchronized.

In order to see the effect of receiving the results from SDs
in another WG late, assume that each WG may be late N
steps after the starting point at probability Pa. Fig. 5 shows a
simulation result on the tolerance of “step lateness”. Tolerance
means that if delay steps of information is larger than the value
in Y axis, BLER performance loss will be more than 0.2dB
compared with the case of Pa = 0 and steps = 0. Labels
CL, SD, WG and ITER mean the length of the CB, total
number of SDs, number of WGs, and number of iterations,
respectively. By adding more iterations the decoder tolerates
more asynchronous steps.
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Fig. 5. Tolerances of asynchronous work groups.

IV. EXPERIMENTAL RESULTS

Nvidia GTX480 GPU and its OpenCL 1.1 SDK was used
for testing the loosely synchronized Turbo decoding approach.
Max-Log-Map algorithm [16], with fixed point width of 32bits,
was chosen to decode a 6144 bits LTE turbo CB. Though
GPU has float point units, fixed point is used to get future
portability for low power fixed point processor. Only global
memory is used in the implementation. At the beginning of
turbo decoding, info, parity, extrinsic and stake data are re-
organized to ensure coalesced global memory accesses.

In total, P × 2 work items are launched to decode a single
CB using a 2D work space. P is the number of SDs, the
second dimension (with size 2) was used for a single SD to
perform forward and backward trellis transversal concurrently
(see Fig. 7b in [1]). Barrier is put in the cross point of forward
and backward transversal to synchronize 2 WIs in the same
SD. We did not attempt to parallelize the 8 states metric or 16
branch metric calculations like in the previous GPGPU turbo
decoder implementations [8], [9], [10], [11]. This is because
8 or 16 WIs for a single SD have to use synchronization, the
overheads of which we wanted to avoid.

Table II shows a throughput comparison of different
GPGPU implementations. The numbers for prior works were
normalized to 6 iterations. We use a little bit better GPU
GTX480 compared to main target GTX470, and they have
the same Fermi architecture. Main differences are number of
streaming processors (15 vs 14) and clock rate (1.215GHz
vs 1.4GHz). For a fairer comparison, a normalized metric is
given in the last column by considering the dominant limiting
factor. Single CB throughputs (first 7 rows) are normalized by
throughput/(Clock×MemBW/1000), because operational
resources won’t dominate decoding speed (processor clock
rate and memory bandwidth are key factors) in this “lack-
of-workload” situation . Multiple CBs results (last 5 rows) are
normalized by throughput/(PeakGFLOPs/1000), because
in this case we want to exhaust all operational resources by



Nvidia GPU Nbr
cores

Clock
[GHz]

Mem
BW
[GB/s]

Peak
GFLOPs

Codeblock size
[bits]

[Mbps] Norm.
metric

ION [8] 16 1.1 25.6 35 WCDMA, 5K 0.378 13.4
GF8600GTS [8] 32 1.45 32 139.2 WCDMA, 5K 0.485 10.5
GF8600GTS512 [8] X 1.63 64 416 WCDMA, 5K 0.958 9.18
C1060 [8] 240 1.3 102.4 933.1 WCDMA, 5K 1.75 13.15
GF9800GX2 [9] 128 1.5 64 576 LTE, 6K 2.1 21.9
C1060 [10] 240 1.3 102.4 933.1 LTE, 6K 7.97 59.9
Proposed GTX480 480 1.4 177.4 1345 LTE, 6K 25 100.7
GTX470 [11] 448 1.215 133.9 1088.6 LTE, 2048*6K 25 23
Proposed GTX480 480 1.4 177.4 1345 LTE, 8*6K 73.6 54.7
Proposed GTX480 480 1.4 177.4 1345 LTE, 12*6K 87.1 64.7
Proposed GTX480 480 1.4 177.4 1345 LTE, 96*6K 119.1 88.6
Proposed GTX480 480 1.4 177.4 1345 LTE, 1536*6K 122.8 91.3

TABLE II. THROUGHPUTS OF VARIOUS GPGPU TURBO DECODERS
INCLUDING THE PROPOSED ONE.
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Fig. 6. Throughput of the proposed LTE Turbo decoder by number of work-
items and work-groups.

throwing plenty of CBs.

Different number of SDs per WG were tested to see
the performance effects. When utilizing multiple WGs, we
expect to utilize multiple SMs which update global memory
without consistency guarantees. Fig. 6 shows the throughput
of decoding a single LTE 6144 bits CB with different number
of WGs and SDs.

Fig. 6 confirms that the loose synchronization enables in-
creased utilization of the GPU resources: higher the number of
SDs and WGs, higher the throughput. The last curve, “connect
max”, connects the maximum point of each of the curves. The
maximum speedup is achieved when P/(numberofWGs) =
32, which is due to Nvidia GTX480 architecture having 32
cores in a single SM. The speedup from additional WGs
saturates at about 15 WGs due to the GPU having 15 SMs
that execute the WGs.

Picking the P = 64 case as a reference [1], [10], [11], the
BLER performance was compared against P = 768, 24WGs
and 12 iterations (Fig. 6 ”P768 ITER12” vs ”P64 ITER6”).
The Eb/N0 gap was only 0.2dB, while observing the four
time increase in throughput.

The performanace was tested also with multiple CBs. In
the extreme case only one WG for each CB decoding was used
to avoid intra SMs coupling. There are plenty of loads and no
reason to introduce much relationship between SMs. Typical
results were 119.1Mbps for C = 96 and 122.8Mbps for C =

1536, where C is the number of concurrently decoded CBs.
From the Table II our Turbo decoder achieves 100.7/59.9 =
1.68 and 91.3/23 = 4 times speedup compared with prior best
results both in single and multiple CB decoding, respectively.

It is worth noting, that our throughput result 87.1Mbps in
Table II of decoding concurrent 12 CBs (each CB with P=192
and 6 WGs) exceeds the required 75Mbps of LTE R10 uplink
categories 1-7 and downlink categories 1-4, 6 (2 layers), 7 (2
layers) for the case of one transport block per 1ms TTI. Also
notice that 73.6Mbps in Table II of decoding concurrent 8 CBs
(each CB with P=192 and 6 WGs) approaches the required
75Mbps. There are about twelve 6144 CBs in a transport block
[17], making the proposed Turbo decoder practical.

V. PREVIOUS WORK

The common aspects in the proposed work and other recent
GPGPU Turbo decoder research [8], [9], [10], [11] are the use
of a Log-Map or Max-Log-Map based algorithm, and a parallel
Turbo decoding scheme. Our contribution to the state-of-the-
art is as follows: 1) Much higher (6144 vs. 192) number of
SDs can be utilized to decode a single CB, 2) use of “loose
synchronized” WGs to decode a single CB for improved task
parallelism, 3) the first GPGPU Turbo decoder which meets
the LTE throughput requirement, thus is approaching hardware
solutions in this respect.

VI. CONCLUSION

In this paper, a loosely synchronized GPGPU implemen-
tation was proposed for Turbo decoder. The use of loose
synchronization allows achieving higher utilization of the
GPGPUs parallel resources. The tolerance of asynchronous
steps among multiple OpenCL WGs was measured to be in
the acceptable range.

The implementation allows a large number of parallel
SDs to be utilized to perform Turbo decoding. The SDs can
be grouped into multiple non-synchronized WGs, which can
execute freely in multiple SMs in parallel.

The OpenCL 1.1 based Turbo decoder implementation was
tested in a mid-range NVidia GPU, producing a throughput that
meets the requirements of LTE uplink category 5 and downlink
category 4, for the first time in a GPGPU-based Turbo decoder
implementation.

Optimizing memory accessing pattern and observing
loosely synchronized execution in real hardware will be the
future work.
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