
Tampere University of Technology    
 
   
  
 
 
 
 
 
 
 
 
 
 
 
Author(s) Ala-Luhtala, Juha; Seppänen, Mari; Ali-Löytty, Simo; Piché, Robert; Nurminen, Henri 

Title Estimation of initial state and model parameters for autonomous GNSS orbit prediction 
 
Citation Ala-Luhtala, Juha; Seppänen, Mari; Ali-Löytty, Simo; Piché, Robert; Nurminen, Henri 2013. 
 Estimation of initial state and model parameters for autonomous GNSS orbit prediction. 
 International Global Navigation Satellite Systems Society IGNSS Symposium 2013, 16-18 
 July, 2013, Gold Coast, Queensland, Australia. International Global Navigation Satellite 
 Systems Society Symposium Tweed Heads, NSW, Australia, 1-15. 
 
Year 2013 
 
Version Post-print 
 
URN http://URN.fi/URN:NBN:fi:tty-201402041071  
 
Copyright IGNSS Society 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication 
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by 
you for your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an 
authorized user.  



 

 

 

  International Global Navigation Satellite Systems Society 
IGNSS Symposium 2013 

 
Outrigger Gold Coast,  Qld Australia 

16-18 July, 2013 

 
 
 
Estimation of initial state and model parameters for 

autonomous GNSS orbit prediction 
 
 

Juha Ala-Luhtala 
Tampere University of Technology/Finland 

Phone: +358456509464, juha.ala-luhtala@tut.fi  
Mari Seppänen 

Tampere University of Technology/Finland 
mari.j.seppanen@tut.fi  
Simo Ali-Löytty 

Tampere University of Technology/Finland 
simo.ali-loytty@tut.fi  

Robert Piché 
Tampere University of Technology/Finland 

robert.piche@tut.fi  
Henri Nurminen 

Tampere University of Technology/Finland 
henri.nurminen@tut.fi  

 
 

ABSTRACT 
 

In self-assisted GNSS the orbit of a satellite is predicted by solving the 
differential equation that models its motion. Our motion model includes the 
most important forces: Earth's gravity, lunar and solar gravity and solar 
radiation pressure. Unmodeled forces are taken into account by using 
Gaussian white noise term with covariance matrix estimated offline from 
historical orbital data. The estimation of model parameters (solar radiation 
pressure and Earth orientation parameters) and initial state for the prediction 
includes both offline and online stages. In the offline stage, priors for the 
solar radiation pressure parameters are estimated using precise orbits issued 
by the International GNSS service (IGS). In the online stage, the satellite’s 
broadcast ephemeris is used to estimate the initial state and model 
parameters. The estimation of the initial state is formulated as non-linear 
continuous-time filtering problem with discrete-time measurements. The 
filtering equations are solved numerically and the performance of different 
numerical methods (Extended, Cubature and Unscented Kalman filters) is 
compared. Using the estimated initial state and model parameters, the 
satellite orbits are predicted 5 days into the future. The accuracy and 
consistency of the predicted orbits is analysed by comparing with the IGS 
precise ephemerides. In this paper only GPS satellites are considered, but the 
method can be extended to other satellite systems.  
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1. INTRODUCTION 
 
In autonomous or “self-assisted” GNSS orbit prediction the orbit is predicted in the 
positioning device using only information from the satellite’s broadcast ephemeris. The 
predicted orbit can be used for example to reduce the time to first fix (TTFF) of a standalone 
GNSS receiver (Mattos, 2008), (Zhang et al., 2008), (Lytvyn et al., 2012).  
 
Like most GNSS prediction algorithms, our algorithm is based on integrating the satellite’s 
equation of motion several days forward using initial conditions computed from the satellite’s 
broadcast ephemeris. Our equation of motion includes the four most significant forces acting 
on the satellite: the gravitations of the Earth, the Sun and the Moon, and the solar radiation 
pressure. The models for the gravitational terms are covered in (Seppänen et al. 2011), 
(Seppänen et al., 2012). Our two-parameter solar radiation pressure model is presented in 
(Ala-Luhtala et al., 2012). The uncertainty caused by modelling errors and unmodeled forces 
are taken into account by adding a Gaussian white noise acceleration term to the satellite’s 
equation of motion. The covariance matrix for the Gaussian white noise term is estimated 
using historical precise ephemeris data. 
 
One of the main problems in the autonomous orbit prediction is obtaining the initial 
conditions needed to start the integration. The broadcast position and velocity are given in the 
Earth-centered, Earth-fixed reference frame and must be transformed to an inertial reference 
frame. However, the Earth orientation parameters (EOP) that are needed in the transformation 
are unknown. We have also noticed that the velocity computed directly from the broadcast 
ephemeris is not accurate enough for prediction. In our previous work, we solved the initial 
condition determination problem by fitting the motion model to the broadcast data using an 
iterative least-squares minimization algorithm (Seppänen et al., 2011), (Seppänen et al., 
2012).  
 
In this paper we propose a Bayesian filtering algorithm for the determination of the initial 
state. The filtering solution has the advantage that it requires only one iteration and enables a 
probability-based interpretation of the problem. The filtering problem we are considering in 
this paper is nonlinear with continuous-time process model and discrete-time measurements. 
The exact solution is analytically intractable and numerical approximations are used. We 
consider the approximate solution obtained using the Extended Kalman Filter (Jazwinski, 
1970), which is based on linearization using a first-order Taylor polynomial. We also consider 
the Unscented Kalman Filter (UKF) (Julier et al., 1995) and the Cubature Kalman Filter 
(CKF) (Arasaratnam and Haykin, 2009), which are based on sigma-point approximations for 
the statistical moments needed in the filtering algorithm.  
 
The paper is organized as follows. The satellite’s equation of motion and the reference frames 
are covered in Sections 2.1 and 2.2. In Section 2.3 a method for estimating the process noise 
covariance matrix using precise ephemeris data is presented. The method for estimating the 
initial state using the broadcast ephemeris is presented in Section 2.4. Section 2.5 summarizes 
the proposed orbit prediction algorithm. The algorithms prediction accuracy is assessed in 
Chapter 3. The paper closes  with conclusion and discussion in Chapter 4. 
 
 
 
 



 

 

 

 
 
2. MODEL 
 
2.1 Equation of motion 
 
The four most significant forces affecting the satellite are the gravitational attractions of the 
Earth, the Sun and the Moon, and the solar radiation pressure (srp). The acceleration of the 
satellite is  
 
  (1) 
   
where all the accelerations are in an inertial reference frame.  
 
The acceleration caused by the Earth is computed by taking the gradient of the gravity 
potential U. To account for the uneven mass distribution of the Earth, the gravity potential is 
written using a spherical harmonic series (Montenbruck and Gill, 2005). Seppänen (2010) 
found that at GNSS satellite altitudes, terms up to the order of at least 4 should be used.  In 
our implementation, we have used terms up to the degree and order 8.  
 
The gravitational acceleration caused by any celestial body can be computed using equation 
 
  (2) 

   
where M is the mass of the body,  is its position in Earth centered inertial reference frame, 
and r is the position of the satellite in the same reference frame. The orbits of the sun and the 
moon are computed using simple models presented by Montenbruck and Gill (2005. See 
references (Seppänen et al, 2011, Seppänen et al, 2012) for more details about the 
computation of the gravity terms.  
 
For the acceleration caused by the solar radiation pressure, we use a two-parameter empirical 
model (Ala-Luhtala et al., 2012) 
 
  (3) 

   
The first term inside the parenthesis describes the effect of direct solar radiation pressure, 
which is directed along the line joining the satellite and the sun. The magnitude of the direct 
solar radiation pressure depends on the satellite’s distance to the sun . The term  is a 
satellite specific parameter that scales the direct radiation pressure, and C is a known constant 
common for all the satellites. The second term inside the parenthesis models the so called y-
bias acceleration, which is directed along the satellites solar panel axis (Springer et al., 1999), 
(Froideval, 2009). The y-bias parameter  is also satellite specific. To account for the 
shadowing of the Earth, we use a time varying term  that is based on the conical shadow 
model described by Montenbruck and Gill (2005). The times when the satellite enters Earth’s 
shadow are called eclipse seasons. 
 
In addition to the previously described four forces, there are numerous smaller forces acting 
on the satellite. These include for example the gravitation of other celestial bodies, the 



 

 

 

radiation pressure of the proportion of the incident sunlight that is reflected by the Earth 
(albedo), and Earth tides (Montenbruck and Gill, 2005). We do not attempt to model the 
forces accurately, but instead take them into account by adding a stochastic acceleration term 
to Eq. (1). In this paper, we use a Gaussian white noise model. Formally, we can write the 
new acceleration equation as 
 
  (4) 
   
where  is computed using Eq. (1) and w is a Gaussian white noise stochastic process with 
zero mean and covariance matrix . We have chosen to use the satellite centered RTN-
coordinate system (Radial, Tangential, Normal) for the white noise term. The transformation 
matrix L(r, v) transforms the white noise into the inertial reference frame. The transformation 
from Earth centered inertial (ECI) reference system to the RTN system is given by (Tapley et 
al., 2004) 
 
  (5) 
 
where the unit vectors are  
 
  (6) 

 
  (7) 
 
  (8) 

 
 
 
 
 

Eq. (4) should be interpreted as a first order Itô stochastic differential equation 
 
  (9) 
 
where  
  (10) 

 
  (11) 

 
and  is a 3-dimensional Brownian motion with diffusion matrix . The state x includes the 
position and velocity of the satellite in the inertial reference frame. See for example references 
(Øksendal, 2003) and (Jazwinski, 1970) for more information about stochastic differential 
equations.  
 
2.2 Reference frames 
 
An Earth-fixed, Earth-centered (ECEF) system has its origin at the mass center of the Earth 
and its axes are fixed with respect to the Earth's surface. In GPS, the reference frame is 
WGS84, which, for our purposes, can be considered equal to the Terrestrial Reference System 
(TRS) maintained by the International Earth Rotation and Reference Systems Service (IERS). 
The origin of the TRS system is the Earth's centre of mass and its z-axis is the mean rotational 



 

 

 

axis of the Earth.  
 
An inertial reference system maintained by the IERS is the Celestial Reference System 
(CRS). CRS is a reference system whose coordinate axes maintain their orientation with 
respect to distant stars. The origin of this reference frame is the center of the Earth and Earth 
is in an accelerated motion while orbiting around the sun. Therefore CRS is not precisely 
inertial, but is an adequate approximation of an inertial reference frame for our purposes. The 
transformation from the TRS system at epoch t to the CRS system is 
 
  (12) 
 
where the matrices W, G, N and P describe polar motion, Earth rotation, nutation, and 
precession, respectively. See references (Seppänen et al., 2011) and (Seppänen et al, 2012) 
for details on the computation of matrices G, N and P. The polar motion matrix W is 
described using equation 
 
  (13) 
 
where  and  are the polar motion parameters and  and  are rotation matrices about 
the x- and y-axes. Together with ,  and  are also called Earth orientation parameters 
(EOP).  is the difference between Universal Time (UT1) and Coordinated Universal 
Time (UTC). This difference is small and in our implementation we use . This 
approximation leads to a median error of 4.2 m in the satellite’s position for a 4 day long 
prediction (Seppänen et al., 2012). The daily values for these parameters can be found from 
the homepage of IERS (IERS, 2013).  
 
Instead of the CRS frame, we choose the inertial reference frame to be an intermediate 
reference system, denoted by , at time . The transformation from  to TRS 
is given by  
 
  (14) 
 
For a prediction of a few days, the nutation and precession matrices remain almost 
unchanged. That is, we can make the approximations  and . 
Using these approximations Eq. (14) is reduced to 
 
  (15) 
 
We used also the result , where  is the angular velocity of the 
Earth’s rotation (Seppänen et al., 2012). We use the notation  for 
the transformation matrix from  to TRS.  
 
The transformation for the velocity can be derived by differentiating Eq. (15) with respect to 
time. This gives  
 
  (16) 
 
where  is the angular velocity vector of the Earth’s rotation.  
 



 

 

 

 
 
2.3 Offline estimation of the process noise covariance 
 
For the process noise covariance we use a diagonal matrix 
 
 

 
(17) 

 
where the diagonal elements are the variances in the radial, tangential and normal directions. 
The exponential parametrization is used for scaling to avoid numerical errors caused by very 
small values, and also to convert the problem of estimating the parameter values to an 
unconstrained optimization problem. The variances are estimated using precise ephemeris 
data from the National Geospatial-intelligence Agency (NGA, 2013). The reason for using 
NGA instead of IGS precise ephemerides is that from NGA we get also the velocity of the 
satellite.  
 
Consider that we have the precise ephemerides  (i.e. the position and velocity) at 
times  in an inertial reference frame. The transformation to inertial reference frame 
can be done using the daily EOP values provided by IERS (IERS, 2013). The posterior 
distribution for the process noise covariance parameters  is 
 
  (18) 
 
The likelihood can be written by 
 
 

 
(19) 

 
The conditional probability densities in Eq. (19) could in principle be obtained by discretizing 
the stochastic differential equation (9) using time step . However, due to the 
nonlinear model and state dependent noise term, the conditional densities are difficult to 
compute. For this reason, we approximate the conditional densities in Eq. (19) with a 
multivariate normal density 
 
  (20) 
 
 where  and  are solutions to the differential equations 
 
 

 
(21) 

 
 

 

(22) 

 
with initial conditions  and . The matrix  is the Jacobian matrix of 
f. Note that this is the same approximation made in the prediction step of the Extended 
Kalman filter (Jazwinski, 1970), (Särkkä and Sarmavuori, 2013). The solar radiation pressure 



 

 

 

parameters needed to compute f are fixed to the values given in (Ala-Luhtala et al., 2012).  
Satellite PRN 1 was replaced since results in (Ala-Luhtala et al., 2012), so new values 

 and  were estimated. 
 
We seek an estimate for the parameters q by maximizing the posterior distribution in Eq. (18). 
The prior is taken to be uniform . With the uniform prior, the maximum can be 
found by minimizing the negative log-likelihood . Using the multivariate 
normal probability densities for the conditional distributions in the likelihood, the negative 
log-likelihood is given by 
 
 

 

(23) 

 
All the terms that do not depend on the parameter vector q are absorbed into the constant 
term. A conjugate gradient method (Luenberger and Ye, 2008) can be used for the 
minimization of Eq. (23). The expressions for the Jacobian and Hessian are computed 
analytically. 
 
We estimate the parameters using precise ephemeris data from GPS weeks 1670-1686. For 
each day during the time period, we estimate a value for the q. This provides a time series of 
parameter estimates. We want a single time independent value for q, so we take the median of 
the resulting time series. We exclude estimates made during eclipse seasons. As an example, 
the median values for satellite PRN 3 are . The values for the 
other satellites in the GPS constellation are [-30.4, -32.5], [-27.7, -29.9],  [-
28.9, -29.6].  
 
2.4 Online estimation of initial state 
 
Our previous studies have shown that the velocity computed directly from the satellite's 
broadcast ephemeris is much too inaccurate for prediction of several days (Seppänen et al., 
2011), (Seppänen et al., 2012). Also, the broadcast position and velocity must be transformed 
from the ECEF coordinate system to the inertial coordinate system using Eq. (11). This 
transformation depends on the EOP values, which are not currently part of the navigation 
message. In addition, the satellite’s solar radiation pressure parameters must also be 
estimated. This leads to the problem of estimating the satellite's initial state (i.e. the positon 
and velocity in an inertial reference frame, the EOP values and the solar radiation pressure 
parameters) using the data available in the navigation message. In the following, a Bayesian 
filtering based solution for the problem is presented. 
 
The state-space model for the problem is given by 
 
  (24) 
 
  (25) 
 
where 



 

 

 

 
 

(26) 

 
 

 
(27) 

   
 
 

 
(28) 

 
The state of the satellite x consists of the position and velocity of the satellite in the inertial 
reference frame, and the d-dimensional ( ) vector p, that contains the EO-parameters  
and , and the solar radiation parameters  and . We note, that the acceleration term 

 depends not only on the solar radiation pressure parameters, but also on the EO-
parameters, since coordinate transformation to ECEF reference frame is needed to compute 
the gravitational acceleration caused by the Earth (Seppänen et al., 2011), (Seppänen et al., 
2012). For the parameter vector p we assume a simple model 
 
  (29) 
 
where  is a d-dimensional Brownian motion stochastic process with a diagonal diffusion 
matrix . That is, we are assuming that the parameters stay approximately constant over the 
broadcast ephemeris’s time interval. Equation (20) gives now the augmented system of 
equations Eq. (9) and Eq. (22). The Brownian motions  and  are assumed independent, 
so that the diffusion matrix for the joint process is 
 
  (30) 

 
The measurements  are the ECEF positions computed from the broadcast ephemeris and the 
matrix T(p) is a transformation matrix from the inertial reference frame to the ECEF 
reference frame. For GPS, the navigation message is valid for a 4-hour time interval from 

 to , where  is the time of ephemeris. Using the 16 Kepler-like 
parameters included in the navigation message, we can compute the satellite’s ECEF position 
at any time during the 4-hour time interval. Note that the measurement model is nonlinear, 
since the parameters p appear nonlinearly in the matrix T(p). The measurement noise  is 
assumed to be zero mean Gaussian white noise with covariance matrix R. The covariance 
matrix R is chosen to be diagonal, with equal variances  for each coordinate axis. 
This is the square of the reference accuracy of GPS broadcast position (IGS, 2013).   
 
We want to estimate the state at time  given all the measurements up to that time. The 
solution for this Bayesian filtering problem is the posterior distribution . The 
filtering algorithm recursively computes the posterior distribution, starting from a prior 
distribution . In the prediction step of the filter, we compute the distribution 

. In the update step, the information from the newest measurement is used to 
get the distribution .  
 



 

 

 

In the nonlinear problem considered in this paper, the computations are intractable and 
approximations must be used. We consider here the Gaussian filtering approximation (Ito and 
Xiong, 2000), (Särkkä and Sarmavuori, 2013), where we approximate the posterior 
distribution with a normal distribution 
 
  (31) 
 
Using this approximation, the prediction step of the filter reduces to solving the ordinary 
differential equations 
 
 

 
(32) 

 
 

 
(33) 

 
where  
 
  (34) 
 
The Eqs. (32) and (33) are integrated from  to  using initial conditions  and 

 from the previous filtering step. 
 
Let  and  be the solutions to the differential equations (32) and (33) at the end 
point . The update step for the filter is given by 
 
  (35) 
 
  (36) 
 
  (37) 
 
  (38) 
 
  (39) 
 
  (40) 
 
The expectations are now taken with respect to the distribution .  
The Gaussian expectations in Eqs. (32), (33) and (35)-(37) are computed using numerical 
approximations. Using different approximations, different filters are obtained, as follows.  
 
2.3.1 The extended Kalman filter 
 
The extended Kalman filter can be derived by linearizing the nonlinear process and 
measurement functions using first order Taylor polynomial. The prediction step of the 
extended Kalman filter is given by (Jazwinski, 1970), (Särkkä and Sarmavuori, 2013) 
 
 

 
(41) 



 

 

 

 
 

 
(42) 

 
where  is the Jacobian matrix of f. The update step equations (35)-(37) are given by 
 
  (43) 
 
  (44) 
 
  (45) 
 
where  is the Jacobian matrix of h, evaluated at . 
 
2.3.2 The unscented Kalman filter and the cubature Kalman filter 
 
The prediction step of the UKF in the present continuous-discrete case is given by (Särkkä 
and Sarmavuori, 2013) 
 
 
 

 
(46) 

 
 

 
(47) 

 
  (48) 
 
 

 
(49) 

 
 

 
(50) 

 
 

 
(51) 

 
 
where the matrix square root is defined to be the lower triangular matrix of the Cholesky  
decomposition  and . Also, ,  and  are parameters of the 
UKF. The differential equations are solved from time  to .  
 
Let  and  be the solutions at the end point. For the measurement update step, 
we form first the sigma-points 
 
  (52) 
 



 

 

 

where  are the same as in Eq. (43). Now we can approximate the expectations in Eqs. (35)-
(37) with 
 
 

 
(53) 

 
 

 
(54) 

 
 

 
(55) 

 
 
Choosing ,  we get the Cubature Kalman Filter (Särkkä and Sarmavuori, 
2013).  
 
2.5 Predicting the satellite’s orbit 
 
The orbit prediction algorithm is summarized in this section. We assume that the process 
noise covariance matrix has been estimated for the satellite in question. First we compute the 
ECEF positions, which are used as measurements, from the broadcast ephemeris. We use the 
time interval  to , with 5 minutes time step. The antenna offset is 
corrected using values provided by the NGA (NGA, 2013).  
 
To start the filtering algorithm, we need a prior  for the state at the initial time of 

 We use a normal prior , where 
the mean and covariance are set as follows. For the position, we take the prior mean in ECEF 
coordinates from the broadcast message. The variance is taken to be , which is the 
square of the reference accuracy for GPS broadcast position (IGS, 2013). For velocity, the 
prior mean is the ECEF velocity computed from the broadcast message and the variance is 
taken to be .  The formulas for computing velocity from the broadcast ephemeris 
are given for example in (Korvenoja and Piché, 2000). The prior mean and variance for the 
EO-parameters are taken to be the mean and variance of the daily precise values provided by 
the IERS over the years 2008--2011. The prior means for the solar radiation pressure 
parameters are given in (Ala-Luhtala et al., 2012). Satellite PRN 1 was replaced since results 
in (Ala-Luhtala et al., 2012), so new values  and  were estimated. A 
prior variance of  is used for both solar radiation pressure parameters.  
 
For the prediction algorithm, we need the position and velocity prior in the inertial reference 
frame. The transformation to the inertial reference frame is a nonlinear function of the 
position, velocity and the parameters. To get the mean and variance in the inertial reference 
frame, we need to compute expectations of the form 
 
  (56) 
 
  (57) 

 



 

 

 

where g is the function that transforms the position and velocity into the inertial reference 
frame. The expectations in Eqs. (56) and (57) can be computed using the sigma point 
approximations in Eqs. (53) and (54).  
 
After the estimation of the initial state, we can start the prediction from the time 

. The prediction can be computed by using the same filtering equations, but omitting the 
update step.  
 
3 EVALUATING TEST RESULTS 
 
Tests are done using broadcast ephemerides from GPS weeks 1679 to 1710. Each test consists 
of estimating the initial state from one broadcast ephemeris, and then predicting the orbit for a 
5- day interval. For the UKF we use parameter values ,  and .  
 
The prediction errors for 5 day prediction are presented in Figure 1. The results show the 
combined orbit prediction errors for the whole GPS satellite constellation. For each GPS 
satellite 40 predictions were made using different initial times. With unhealthy satellites 
removed, the total number of predictions made was 1215. We note that satellite PRN 24 was 
unavailable for the time period used in this paper. We see that all the filtering methods give 
very similar means. The 95% interval for the total error is about 65m. Looking at the 
individual RTN error components, we see that most of the error is in the tangential direction. 
The values for the 95% intervals of RTN errors at day 5 of prediction are approximately 4m, 
62m and 7m for the R, T and N coordinates respectively. The small radial error is a 
favourable result, since this component has the largest effect on the pseudorange error 
(Seppänen et al., 2012).  Comparing the results to the errors using our earlier implementation 
(Ala-Luhtala et al., 2012), we can conclude that the method proposed in this paper seems to 
have about the same accuracy in terms of RTN errors. 
 
The consistency of the orbit prediction is assessed by determining the proportion of cases the 
precise position  is inside the 95% probability ellipsoid defined by equation 
 
   
 
where r and P are the predicted position and corresponding covariance matrix, and  is the 
value of the chi-squared inverse cumulative distribution function at point 0.95, with degrees 
of freedom 3. The consistency of the prediction measures how well the variance of the 
prediction corresponds to the realised error. The results are listed in Table 1. All methods 
have consistencies close to the ideal value of 0.95. This is a clear improvement over our 
earlier prediction algorithms, where consistencies of 0.25-0.40 were observed for predictions 
of over 3 days.  
 

 EKF UKF CKF 
 0.90 0.94 0.94 

Day 1 0.97 0.99 0.98 
Day 2 0.96 0.98 0.97 
Day 3 0.94 0.98 0.95 
Day 4 0.92 0.97 0.94 
Day 5 0.91 0.97 0.93 

 

Table 1: 95% consistencies of the predicted orbits 



 

 

 

 

 
 

Figure 1: Box plots of the 3D and RTN errors for the different filters. The boxes present the 
25%, 50% and 75% quantiles and the whiskers extending from the boxes show the 5% and 95% 

quantiles. 

 
4 CONCLUSION AND DISCUSSION 
 
This paper considers the prediction of GPS satellite orbits using information from the 
satellite’s broadcast ephemeris. The model for the satellite’s equation of motion includes the 
four major forces affecting the satellite: gravitational forces of Earth, Moon, and Sun, and the 
solar radiation pressure. The uncertainty caused by modelling errors and unmodeled forces 
are taken into account by including a Gaussian white noise term in the equation of motion. 
The covariance for the process noise is estimated using precise ephemeris data.  
 
To start the prediction, we need to determine the satellite’s initial position and velocity in an 
inertial reference frame, values of the EO-parameters and the solar radiation pressure 
parameters. We have shown how these parameters can be found using a Bayesian filtering 
algorithm. Three different filters were considered in this paper: the Extended Kalman filter, 
the Unscented Kalman filter and the Cubature Kalman filter. After the estimation of the initial 
state, the prediction can be carried out by computing only the prediction step of the filtering 
algorithm, using numerical integration to propagate the mean and variance. 
 
The proposed method is assessed by computing the orbit prediction error in the RTN 
reference frame, using precise ephemerides from the IGS as reference. All the methods give 



 

 

 

almost identical errors for the predicted orbit. Errors are largest in the tangential direction, 
where the 95% interval of the error is about 62m for a prediction of 5 days. The 95% intervals 
of the errors in the radial and normal directions are about 4 m and 7 m respectively for the 5 
day prediction.  
 
Using filtering algorithms for prediction provides an estimate for the variance of the position. 
We analyse the predicted variance by checking if the true position of the satellite is inside the 
95% probability ellipsoid for the predicted position. The results show that all the filtering 
methods provide good consistencies. The UKF and CKF tend to have slightly larger values 
for the predicted variance and overall slightly better consistency results than the EKF. 
 
From the results we conclude that the UKF and CKF do not seem to offer any clear 
improvement over the EKF. The consistency results are slightly better for the UKF and CKF, 
but the computational cost in our implementation is about 6 times larger than for EKF. The 
method proposed in this paper seems to have about the same accuracy as our previous 
method, where a deterministic algorithm was used to solve the initial state (Ala-Luhtala et al., 
2012). A downside in predicting also the variance is that the differential equations are no 
longer independent of the velocity, and we cannot use the efficient Runge-Kutta-Nyström 
numerical integration method. The results for this paper were produced using Runge-Kutta 
method of order 4 with 15 second time step. The relatively small time step means that we 
need a large number of force model evaluations in the numerical integration. The 
computations can be made more efficient by using a more sophisticated numerical integration 
method, e.g. the Gauss-Jackson method (Jackson, 1924), (Berry and Healy, 2004). With the 
Gauss-Jackson method, we could use much larger time step and hence reduce the number of 
force model evaluations. 
 
The method described here could be easily implemented also for the European Galileo and 
Chinese Compass satellite systems, since their broadcast ephemeris format is similar to GPS. 
For GLONASS the implementation is more difficult, since each broadcast ephemeris is valid 
only for a 30-minute time interval. This interval may be too short for accurately estimating the 
parameters of the model. A possible solution may be to use more than one broadcast 
ephemeris.  
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