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Figure 1. Average RSS of one AP measured on calibration points. 
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Abstract— In this paper, questions related to design of WLAN 
radio map for fingerprinting based positioning were investigated. 
The experiment results show that with histogram based 
algorithms, the positioning accuracy improves as the number of 
histogram bins increases until the number of bins reaches eight. 
With the number of bins lower than this, the uneven bin 
distribution with separate bin for missing samples gives better 
accuracy than even bin widths. If the calibration data contains 
samples from several measurement directions, it is beneficial to 
combine them into one fingerprint, as this decreases the size of the 
radio map and gives at least the same accuracy as having separate 
fingerprints for different measurement directions. In the 
experiments, the combination of the signals from correlating 
sources before the computation of the radio map and position 
estimate decreases the positioning accuracy only by 1-2 m, but 
decreases significantly the size of the radio map. The best method 
for signal combinations depends on the bin configuration and 
position estimation algorithm. 

Keywords-Position estimation; Received signal strength; Pattern 
recognition; Bayesian methods; Histograms 

I.  INTRODUCTION 
For positioning methods based on WLAN signals, several 

possible observables have been proposed: Received Signal 
Strength (RSS), Time of Arrival (TOA), Time Difference of 
Arrival (TDOA), or Angle of Arrival (AOA). From these, the 
RSS observables are the easiest to be applied in consumer 
market positioning applications since mobile terminals (MT) 
can obtain them by passive scanning of WLAN beacon frames, 
which the infrastructure WLAN Access Points (AP) emit 
periodically according to IEEE 802.11 standard [1]. In 
addition, in many mobile devices, such as mobile phones, 
Personal Digital Assistants (PDAs) and laptop computers, RSS 
measurements are easily available through Application 
Programming Interfaces (APIs) of their standard WLAN 
services. 

In RSS based positioning, the MT location is estimated by 
using models that relate the strength of the received radio 
signal either to the distance between the MT and the signal 
emitter or to the MS location directly. Path loss models of radio 
signals can be used to translate RSS measurements to distance 
estimates between the receiver and APs, from which the MT 
position can be obtained using trilateration process [1],[3]. 
However, for indoor positioning, non-line-of-sight propagation 
and attenuations caused by walls, other structures, and even 
people cause significant fluctuations to RSS, which makes the 

simple path loss models too inaccurate in many real life 
situations [4]. 

Fingerprinting approaches are based on experimental 
models that relate the measured RSS values directly to the 
measurement position; these models are called radio maps. The 
estimation of a radio map is based on data collected off-line 
from several locations (calibration points) covering the area 
where positioning service is performed. 

Compared to other RSS-based methods, fingerprinting 
algorithms are more robust against the signal propagation 
fluctuations generated by environment characteristics, since 
fingerprinting makes use of the location-dependent variation of 
RSS. As an example, averages of RSS from one AP, measured 
in several locations, are shown in Fig. 1. 

In indoor positioning with WLAN fingerprints, the 
positioning accuracy is affected by the amount of RSS data 
details that are stored into the radio map. Previously has been 
found that the calibration point (CP) grid density has an effect 
on the accuracy [5]; the mean positioning error grows 
gradually but clearly as the distance between calibration points 
grows. It has also been found that when probabilistic methods 
are used for position estimation, and the RSS distribution in 
calibration point is approximated using histograms, the number 
of histogram bins affects positioning accuracy, as well as the 
way how the information about the measurement direction is 
treated in the radio map [6]. 

However, due to the radio map configurations chosen for 
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Figure 2. Calibration and estimation phases of fingerprinting based 

positioning. 

comparisons in [6], answers to some questions still remained 
unclear as listed in the following: 

x What is the number of histogram bins after which the 
positioning accuracy does not improve any more even 
if the number of bins is still increased? 

x Is it beneficial to have a separate bin for missing 
samples, i.e. samples with measurement value below 
the minimum of correct RSS measurement range? 

x Does it improve the positioning accuracy if the 
information of the measurement directions is included 
into the radio map? 

We addressed these questions by using the same WLAN 
RSS data as was used in [6]. From these data, we computed 
several radio maps from the CP measurements, used 
independent test point data to estimate positions with the 
different radio maps, and compared the positioning accuracies 
obtained using these radio maps. 

II. FINGERPRINTING 
WLAN fingerprinting consists of two phases: in calibration 

phase, off-line-collected RSS data is used to generate a radio 
map, and in estimation phase new RSS measurement vectors 
are related with the information stored in radio map. This 
process is illustrated in Fig. 2. For each CP, the radio map 
contains the known coordinates (or other suitable location 
identifier) of the CP together with RSS features extracted from 
RSS measurements collected in the CP. The CP coordinates 
together with the extracted features is called a fingerprint. 

The RSS features reported in the literature to have been 
used for positioning with WLAN fingerprints include the 

sample mean of RSS measurements [4],[7],[6] and 
approximations of the probability density functions (PDF) of 
the RSS samples [8],[9],[5],[6],[10]. In each CP, the sample 
means or PDFs are computed separately for each AP. 

III. ALGORITHMS 
In this section, we present the algorithms used in this paper 

for fingerprinting based positioning. The simplest of the 
algorithms is pattern recognition based on RSS sample means. 
Maximum Likelihood (ML) estimation and Minimization of 
Expected Error (MEE) are probabilistic algorithms, where 
histograms of measured RSS can be used to approximate their 
PDFs  

A. Pattern Recognition  
For pattern recognition, the calibration measurements from 

the CPs are collected into vectors. The vector elements are the 
RSS measurements associated with different MAC addresses, 
so that the order of MAC addresses is fixed. In calibration 
phase, the RSS values ji,]  measured in location "  are 
collected to a matrix 
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where Sn  is the number of measurement vector samples in 
location "  and APn  is the number of APs. The pattern vectors 
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In estimation phase, new measurement vectors are 
compared with pattern vectors stored in the radio map. The 
comparison is based on distances in signal space [7]. A simple 
choice for distance measure between a measurement vector 

> @
APnyyy ,,1 �  and the pattern vector of radio map entry "z  

is the usual Euclidian distance: 
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Now the position estimate can be found by searching the 
nearest neighbor in signal space, i.e., the pattern vector, which 
minimizes the distance: 

� � �� �"" zydl ,minargˆ  �� ����
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Figure 3. Floor plan and locations of calibration and test points. 

B. Maximum Likelihood  
In histogram based approximation of PDF, the signal range 

is divided into Bn  bins when the continuous or fine-resolution 
discrete scale becomes discrete scale with coarse resolution. 
The value Bn  is a design parameter of an algorithm; it has an 
effect to the obtainable positioning accuracy, memory 
requirement of the radio map, and computational load of 
position estimation. A radio map with Bn  bins requires 
memory for BAPCP nnn  elements. 

A histogram based radio map stores marginal distributions 
)|( "yp  for each CP location " , i.e. the conditional 

probabilities that the measured RSS vector y  can be observed 
at location " . In estimation phase, the conditional probabilities 
are employed to calculate the posterior probability )|( yp " , i.e. 
the probability of being located at " , given the measured RSS 
values y . 

The posterior probabilities of the locations can be computed 
using Bayes’ Theorem [8]: 
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where � �"p  is the prior probability of being at location " . For 
snap-shot type of positioning, where prior information of 
location is not available or not used, a non-informative uniform 
distribution is used. The set L  contains all the possible 
locations and � �yp  is the probability of the measurement 
vector > @

APnyyy ,,1 �  over all locations; � �yp  does not 
depend on location and can be treated as normalizing constant. 

The maximum likelihood estimate of the posterior 
probability is given as: 

� � �yp |maxargˆ "" " �� ���� �

Using Bayes' theorem (5), assuming non-informative prior 
(equal � �"p  for all " ), noting that � �yp  does not depend on " , 
and assuming independence of observations iy , i.e., 
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(6) can be computed using the following [9]: 
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C. Minimization of Expected Error 
The MEE estimate 
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minimizes the expected squared location error, if the location 
variable is numerical [8], which is the case when location 
variable is coordinates. Assuming equal � �"p  for all "  and 
independence of observations iy , the posterior probabilities 

)|( yp "  in (8) can be computed using Bayes' theorem: 
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Compared to the ML algorithm, this algorithm has the 
advantage that it allows the estimate to interpolate between the 
CPs. Its disadvantage is that the nominator in (9) needs to be 
evaluated, which increases the computational load in the 
estimation phase. 

IV. DATA AND EXPERIMENT SETUP 
The experiments were carried out using the same WLAN 

RSS data as in [6]. The data was collected at Tampere 
University of Technology (TUT) library with a mobile terminal 
(Nokia N800 Internet Tablet) and it contains measurements 
from 287 CPs and 77 test points (TP). Calibration data were 
measured from four directions in each CP; on average it 
contained 13 samples from each direction. In test points, the 
data were collected from only one direction that varied 
randomly from point to point, and the average number of 
samples from each test point was 10. In total, the calibration 
and test data sets contain 15372 and 791 RSS vector samples. 
The test area and the CP and TP locations are shown in Fig. 3. 
The separation between the CPs varied between 1.5 and 2.1 m. 
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Figure 5. Correlation coefficients between the measurements from 

different MACs. 
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Figure 6. Root Mean Square Error with different bin configurations. 
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Figure 7. 75th percentile of positioning error. 

To compare the effects of the aforementioned design 
choices, i.e., number of histogram bins, separate bin for 
missing values, direction information in radio map, and 
combining of the signals from adjacent transmitters, we varied 
them to compute several different radio maps from the CP data. 
Then the test point data was used to estimate positions with 
these radio maps, and finally the positioning accuracies 
obtained with the different radio maps were compared with 
each other. 

A. Effect of Bin configuration 
To study the effect of the number of bins, radio maps were 

generated with 2-15 bins. To investigate the effect of separate 
bin for missing samples, we performed the number of bins test 
in two different ways. For each number of bins, there was one 
bin configuration with even bin widths where the RSS 
minimum (-96 dBm used to indicate the missing samples) was 
classified to the same bin with other small values. Another 
configuration was defined to have one narrow bin for the 
minimum RSS value while the rest of the bins had equal 
widths. An example of the used bin widths for six bins is 
shown in Fig. 4. 

B. Benefit of Direction Information in Radio Map  
The effect of direction information in radio map was tested 

by generating three radio maps where the information on 
measurement direction was treated differently. One radio map 
(rmap1) included the direction information such that separate 
fingerprints (radio map entries) were generated for each 
measurement direction in each CP. In the second radio map 
(rmap2), the direction information was omitted, thus all the 
measurements from the same CP regardless of the 
measurement direction were combined to one fingerprint. The 

resulting radio map had a size of only a fourth of size of the 
first radio map. On the other hand, now there were four times 
more calibration data available for each radio map entry. 

To analyze the effect of combining samples from all 
directions in isolation from the sample size for a fingerprint, we 
created the third radio map (rmap3) where only one fourth of 
the samples from each direction were combined together to 
compute one fingerprint. This yields approximately the same 
calibration set size for each fingerprint as was available when 
each direction was treated separately.  

C. Effect of Combining Measurements from Adjacent 
Transmitters 
In our test area, the infrastructure WLAN access points 

contain four antennas each. Therefore, the measured data 
contains groups of four MAC-addresses, where the RSS 
measurements within each group show high correlation due to 
the mutual proximity of their sources. Fig. 5 shows the 
correlation coefficients computed for the RSS data from 
different MACs where the higher correlations within the 
groups of four MACs can clearly be observed. On the other 
hand, there is quite large amount of missing samples in 
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Figure 8. 90th percentile of positioning error. 
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Figure 10. Maximum positioning error. 
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Figure 9. 95th percentile of positioning error. 
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Figure 11. Direction Information in Radio Map, Root Mean Square Error. 

measurement sets [10]. One approach for mitigating the 
problem of missing samples is to combine the measurements 
from the correlating sources before computations, both in radio 
map and in estimation. We tried five alternative methods for 
combinations: mean, median and maximum of the four signals 
from the same AP, and the mean and median where minimum 
values were excluded from the data.  

V. RESULTS 
For each number of bins (uneven and even bin widths), 

three different treatments of the direction information a radio 
map was generated, and they were used with the test data to 
estimate positions using the three positioning algorithms 
described earlier. 

A. Effect of Bin configuration 
The results of the bin configuration tests are shown in Figs. 

6 -10 where RMS errors, 75th, 90th, and 95th percentiles of 
positioning errors and maximum positioning errors are plotted 
for all the test cases. The results are plotted for all the three 
treatments of direction information (rmap1, rmap2, rmap3) to 

illustrate the fact that the bin configuration results do not 
depend on how the direction information is used. 

According to the test results, the RMS position error as well 
as the 75th and 90th percentiles of position error distance 
decrease as the number of bins increases until it gets the value 
seven or eight, after which the error measures stop decreasing 
(Figs. 6 -8). The number of bins has very little impact, if any, 
on the maximum errors (Fig. 10). From the plots of the 95th 
error percentile it can be observed that with ML algorithm, the 
error measure clearly drops as a function of the number of bins, 
but the effect is not so significant with MEE algorithm (Fig. 9). 

The results in Figs. 6 -10 also show that it depends on the 
number of bins whether a separate bin for missing samples 
brings a benefit or not: if the number of bins is six or less, the 
positioning errors are smaller with uneven bin widths where 
there is a separate bin for RSS minimum. With numbers of bins 
seven or more, it seems to vary randomly whether the 
positioning accuracy is better using unequal or equal bin 
widths. The effect of the number of bins on the accuracy is 
more significant with even bin widths, as the errors with fewer 
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Figure 12. 95th percentile of positioning error. 
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Figure 13. Maximum positioning error. 

bins are larger with this configuration. 

B. Benefit of Direction Information in Radio Map  
The test results using radio maps where the direction 

information is treated differently are shown in Figs. 11 -13. In 
the figures, results are shown for the both histogram based 
algorithms (ML and MEE), and for configurations with uneven 
(ML1, MEE1) and even bin widths (ML2, MEE2). 

In the tests three radio maps were compared: 

x rmap1: Separate fingerprint for each direction, 
therefore less data per one fingerprint than in rmap2, 

x rmap2: CP data from all directions lumped to one 
fingerprint, therefore containing the largest amount of 
data per fingerprint, and 

x rmap3: CP data from all directions lumped to one 
fingerprint, but only 25% of the data used for radio 
map, therefore contains the same amount of data per 
fingerprint as rmap1. 

The RMS error and 95th error percentile are presented in 
Figs. 11 -12. As expected, based on the sample size, the 
performance of rmap2 is always better than the performance of 
rmap1. The performance of rmap3 is comparable with rmap2; 
which one is better, varies with the number of bins, but 
variation appears to be random. Hence the crucial factor to 
explain the differences between the radio maps seems to be the 
sample size used to compute one fingerprint. 

As with bin configuration tests, neither treatment of the 
direction information seems to have effect on maximum 
position error (Fig. 13); here the superiority of radio maps 
seems also to behave randomly as the number of bins changes. 
The effect is similar regardless of the positioning algorithm and 
the bin configurations. 

The effect of different treatments of direction information 
in pattern matching with sample means is illustrated in Fig. 14. 
The difference between the cumulative distribution functions 
of the position errors is fairly small: the difference between the 

medians obtained using the different radio maps is less than 0.5 
m. With small and large error percentiles the curves mostly 
overlap. The RMS errors using the radio maps are 10.84, 
10.79, and 10.95, which do not either show significant 
differences.  

An interesting observation can be made by comparing the 
RMS errors of pattern matching with RMSE results of MEE 
algorithm shown in Fig. 6. With only two unevenly distributed 
bins, the RMSE values of MEE algorithm are bellow 10 m, 
slightly smaller than errors obtained using pattern matching 
with sample means. This two-bin configuration is actually an 
experimental coverage map of the area, containing only 
probabilities for APs to be hearable in CPs. In this case, 
probabilities of RSS belonging to these two bins can be 
expressed using one parameter only, as the other probability 
can be obtained by subtracting the first from the probability 1. 
Therefore, we have two radio maps with only one feature 
representing each CP-MAC pairs, where the experimental 
coverage map with probabilistic MEE algorithm provides 
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Figure 14. Effect of direction information in radio maps for pattern 
matching with sample means. 
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Figure 15. Effect of combining signals from correlating sources for ML 
and MEE algorithms with 8 evenly and unevenly distributed bins. 
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Figure 16. Effect of combining signals from correlating sources for ML 
and MEE algorithms with 2 unevenly distributed bins and sample mean 

based pattern matching. 

better accuracy than pattern recognition with sample mean. 

C. Effect of Combining Measurements from Adjacent 
Transmitters 
To mitigate the problem of missing samples, and to 

decrease the size of the radio map, we tried to utilize the 
correlations among RSS measurements from adjacent emitters. 
Five alternative methods were used to combine the four signals 
from the same AP: 

x mean: Mean of the signals, 

x mean2: Mean of the signals where minimum values 
were excluded from the data, 

x median: Median of the signals, 

x median2: Median of the signals where minimum 
values were excluded from the data, and 

x max: Maximum of the signals. 

Positioning estimates using these combinations were 
computed for three bin configurations and sample mean based 
pattern recognition. The results of combining signals together 
with the original results without source combinations are 
shown in Figs. 15 and 16. 

The RMS positioning errors for eight bins with even and 
uneven bin widths are shown in Fig. 15. In Fig. 16, the results 
for two uneven bins (experimentally determined coverage map) 
and sample mean based pattern recognition are shown. From 
the figures it is clear that the original approach without 
combinations is the most accurate, yielding always smaller 
position error than the combined versions. This can be 
observed with all three radio maps, all three algorithms, and all 
three bin configurations. 

With the bin configurations where missing samples are 
classified to a bin separate from other measurements, shown in 
the two lower plots in Fig. 15 and two upper plots in Fig. 16, 
the combination method that yields the best accuracy is the 

median of all the four correlating signals. Using probabilistic 
algorithms with eight evenly distributed bins and with pattern 
recognition based on sample mean, the accuracy using 
combined signals is the best with either mean or median while 
excluding missing samples, i.e., taking into account only the 
samples larger than the minimum value. (Fig. 15, two upper 
plots, and Fig. 16, the lowest plot). This is reasonable, as these 
algorithms do not include inherent mechanism for handling the 
missing samples, which is the case when using the histogram 
based algorithms with separate bins for missing samples. 

VI. CONCLUSIONS 
In this paper, questions related to design of WLAN radio 

map for fingerprinting based positioning were investigated. 

The results of our experiments show that with histogram 
based algorithms, the positioning error decreases as the number 
of histogram bins increases, until the number of bins reaches 
seven or eight, after which the error measures stop decreasing. 
With the numbers of bins lower than these, the uneven bin 
distribution with separate bin for missing samples gives better 
accuracy than even bin widths with missing samples included 
to the bin for measurements with lowest signal strength. With 
only two unevenly distributed bins, one for missing samples 
and the other for all the hearable signals, the radio map is 
actually an experimental coverage map. The number of 
parameters required for this is the same as for pattern matching 
based on sample mean, but better accuracy is obtained using 
MEE algorithm and experimental coverage map. 

In tests regarding the effect of direction information in 
radio map, if the sample size for one fingerprint is same in both 
cases, the positioning performances are about the same with a 
radio map where separate fingerprints are generated for each 
measurement direction compared to a radio map where 
calibration samples from all the four measurement directions 
are included into one fingerprint. Hence the crucial factor to 
explain the differences between the radio maps is the sample 
size used to compute one fingerprint. Therefore, the same 



accuracy can be obtained using less calibration samples, if 
samples from all directions are lumped into one fingerprint; 
this decreases also the size of the radio map and computational 
load of the positioning algorithm.  

From the test results regarding the combination of signals 
from adjacent, correlating sources, it is obvious that combining 
the signals does not improve positioning accuracy when 
compared with the case where each signal was treated 
separately. However, the size of the radio map with combined 
signals is smaller than without combination, while the accuracy 
degradation with the best combination methods is only 1-2 m, 
depending on the positioning algorithm and histogram bin 
configuration. For radio maps where missing samples are 
treated separately, the best method for signal combination was 
the median. If the missing samples are not treated separately in 
the radio map, the best methods for combining the signals were 
either mean or median of the signals exceeding the minimum 
value. 
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