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ABSTRACT 

The paper discusses the issues of shift variance and cyclostationarity in multirate filterbanks as investigated in a series of 
articles by Til Aach. In its first part, the paper overviews the most important properties of multirate filterbanks such as 
perfect reconstruction, sampling rate conversion factors, number and type of subbands and subdivisions, orthogonality 
and bio-orthogonality, and frequency selectivity and preservation of polynomials. This part is intended introduce the 
reader to the topic and make a bridge to the properties of shift variance and cyclostationarity discussed next. Criteria for 
shift (in)variance and cyclostationarity as derived by Til Aach are presented and commented and conclusions about their 
importance are made.  
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1. INTRODUCTION 

Many signal processing applications require that the signal of interest is decomposed in some transform domain where 
its processing is more effective or efficient. The signal reconstruction out of processed transform-domain sub-signals is 
then to be performed. The dual requirement, that is, the recombination of several signals into a single, compound signal, 
to be processed or transmitted and then split into individual components, is also valid in some applications. In digital 
signal processing, such decompositions and reconstructions are usually combined with sampling rate conversion. 
Furthermore, multirate signal processing is related with fundamental problems such as analysis of a signal in different 
scales and resolutions, finding multiscale signal derivatives, performing spectral analysis or transmultiplexing. Typical 
and important signal processing problems such as audio echo cancelation1, multi-channel signal transmission2,3, image 
noise suppression4 rely on multirate systems for separating the information signal from the contaminating one or for 
combining multiple signals into one carrier signal.   

Multirate signal processing systems are generally built by multirate filterbank2,3. In its core, a filterbank is a carefully 
designed set of filters that separates an input signal into several sub-signals or transform coefficients based on a given 
separation criteria. After processing those subband signals, a second set of filters combines the processed subband 
signals back into a single signal. It has been proven that in many applications by applying similar algorithms on the 
subband signals instead of on the original signal, considerably better results can be achieved – from the perspective of 
implementation complexity as well as quality of the achieved result. This made filterbanks widely spread in various 
areas of signal processing and established them as a methodologically very powerful tool for many, and different in first 
sight, applications2,3. 

While different classes of multirate filterbanks carry on methodological similarities, it is the wide variety of applications, 
which specify particular demands for a suitable filterbank. Correspondingly, over the last four decades a large variety of 
filterbanks have emerged – each having numerous, sometimes even opposing properties5. Based on the properties a 
filterbank satisfies, as well as the way a filterbank is designed and/or implemented, it is possible to identify several 
filterbank types, e.g. multirate filterbanks, modulated filterbanks, linear-phase filterbanks, orthogonal filterbanks. 
However, a “perfect recipe” that would enable a user to select the optimal filterbank for any possible application still 
does not exist. It is up to the user to determine which type of filterbank (having which properties) would be the best fit 
for his/her use scenario under consideration. 

An important property related to multirate filterbanks that has not been until recently discussed much in the literature is 
the issue of shift-invariance6. In the ideal case, it would be beneficial for a filterbank to be shift invariant. This would 
ensure that the performance of the system (particularly from the point of subband processing) does not change when the 
input signal shifts. There are two main issues regarding shift invariance. First, due to the multirate nature of the 
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filterbank, perfect shift invariance in the subbands can only be achieved for a limited set of filterbanks, as illustrated in 
prior work6-12. Second, a quantitative measure of shift-invariance is needed in order to include it in the filterbank design 
process as one of the constraints. In this way, at least good nearly shift-invariant filterbanks can be designed. Deriving 
appropriate quantitative measures has been addressed by Til Aach in his work8-10. 

The purpose of this paper is twofold. First, various filterbank properties are overviewed in an introductory fashion to 
help the reader with the most frequent problems in selecting a suitable filterbank. Second, an overview of Til Aach’s 
work in the area of shift-variance for filterbanks is presented. The overview concentrates on his three journal papers 
covering this topic8-10 and aims at demonstrating the significance of his work to the mentioned area. 

The outline of the paper is as follows. In Section 2 an overview of most important filterbank properties is given. Section 
3 discusses the shift-invariant property together with a summary of quantitate analysis of results as suggested by Aach 
when processing deterministic as well as random signals. Finally, some concluding remarks are presented in Section 4. 

2. FILTER BANK PROPERTIES 

The general block diagram of an M-channel filterbank is shown in Figure 1. As seen in the figure, the filterbank consists 
of an analysis part (analysis filterbank) and a synthesis part (synthesis filterbank). The analysis part contains set of 
analysis filters that decompose the signal into subbands and down-sampling blocks for reducing the sampling rate in the 
subbands. The synthesis part contains up-sampling blocks followed by a set of synthesis filters that enable re-assembling 
the subband signals into one signal.  

 

Figure 1. M-channel (analysis-synthesis) filterbank. 

The input-output transfer function of filterbank in Figure 1 can be expressed as 
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is referred to as distortion transfer function and 
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is referred to as aliasing transfer function caused by the process of sampling rate conversion. Consequently, depending 
on the selection (design) of filters (�) and �(�) and sampling rate factors � for � = 0,1,… ,� − 1, filterbanks with 
different properties can be obtained. Various properties are described in the following sections. It should be pointed out 
that the discussed properties are not exclusive – a filterbank can have various combination of properties listed in the 
following sections. The optimal combination of properties is very much application specific.  
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For the sake of simplicity, in all cases (for all properties), if not mention otherwise, it is assumed that there is no 
processing done on the subband signals. Furthermore, it is assumed that filters having real-valued coefficients are used. 
Filterbanks with filters having complex-valued coefficients are not discussed in this paper. Finally, term subband and 
term channel are used interchangeably. 

2.1 Signal Reconstruction 

One of the basic assumptions regarding the filterbank is that the filterbank itself does not alter the signal.This means that 
in an ideal case it is expected that the output of a filterbank is a delayed version of the input, that is, 

���� � ��� ��� (4) 

with � being the filterbank delay. In the frequency domain this is equivalent to ����	 
 ��� and ����	 
 0 for � 
0,1,…�� � 1. Filterbanks satisfying (4) are known as perfect reconstruction (PR) filterbanks. 

PR requirement is a very strict design requirement. Fortunately, in many applications it is enough if (4) is only 
approximately satisfied, that is, 

���� � ��� ���. (5) 

Such filterbanks are known as nearly-perfect reconstruction (NPR) filterbanks. 

2.2 Amount of Data (Sampling Factors) 

The down-sampling factors �� for � 
 0,1,… ,� � 1 determine the amount of data in the subbands. Larger ��’s result 
in less data in the subbands but increase the amount of aliasing (imaging) errors that are (potentially) generated in the 
filterbank. Smaller values of ��’s increase the amount of data but at the same time increase the redundancy in the data 
that is beneficial in various applications (e.g. de-noising 4). In all cases, in order not to lose information (assuming that 
filters are designed correctly), the following relation must be satisfied: 

� 1��
���

���
� 1 (6) 

If (6) is not satisfied, then the input signal cannot be reconstructed from the subband signals. 

A critically-sampled multirate filterbank is a filterbank for which the equality in (6) holds. In this case the sum of all 
samples in the subbands equals the number of samples in the input (output) signal – assuming a finite length input signal. 
All other selections of factors ��, result in an oversampled filterbank – filterbank with more subband samples than 
needed for signal reconstruction. In the extreme case, when all ��’s are equal to one, the sampling rate in each subband 
is equal to the input (output) sampling rate. Such filterbanks are known as single-rate filterbanks. 

2.3 Number of Channels 

A sub-category of M-channel filterbanks shown in Figure 1 are the two-channel filterbanks (� 
 2) shown in Figure 2. 
There are of special interest due to several reasons. First, they are much simpler to analyze than their M-channel 
counterpart, both, from design and implementation viewpoint. Second, they provide an easy to interpret band separation 
into low-pass and high-pass sections, where low-pass is related with global behavior or averaging while high-pass is 
related with differentiability or local details. For many applications this is quite sufficient. Finally, M-channel filterbanks 
can be constructed in a cascade manner by using two-channel filterbanks as building blocks (e.g. tree structure). 

 

Figure 2. Two-channel filterbank. 

2.4 Subband Division 

Based on the selection of down-sampling factors, the frequency support of a filter bank in subbands can be uniform or 
non-uniform. In a uniform filterbank, the number of samples in each subband is equal. This is achieved by having 
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identical down-sampling factor in all subbands, that is, �� 
 � for � 
 0,1,… ,� � 1. Example of a four-channel 
uniform division of the frequency domain is shown in Figure 3(a). 

A filterbank, in which at least two down-sampling factors are different, results in non-equal widths of subbands and is 
referred to as a non-uniform filterbank. An example of four-channel non-uniform frequency division is shown in Figure 
3(b). 

 
(a)                                                              (b) 

Figure 3. Some possible subband divisions for a four-channel filterbank. (a) Uniform filterbank for � � 4.  
(b) Non-uniform filterbank for �� � �� � 8,�� � 4, �� � 2. 

2.5 Filterbank Configuration 

Most commonly used filterbanks are the so-called analysis-synthesis filterbanks as shown in Figure 1 (when referring to 
a filterbank, typically an analysis-synthesis filterbank is assumed). In those filterbanks, an input signal is separated to 
several subband signals, which in turn are (somehow) processed, and then the processed subband signals are recombined 
into one signal into the synthesis stage. By exchanging the position of the analysis and synthesis bank, as shown in 
Figure 4, a synthesis-analysis filterbank is obtained (also known as transmultiplexer). In such filterbanks several input 
signals are recombined in the synthesis filterbank into one signal. This signal is, for example transmitted through some 
media to the analysis filterbank that reconstructs individual input signals. A typical use scenario of transmultiplexers is 
in communication applications – transferring several signals through a single channel. 

It is worth mentioning that although filters designed for an analysis-synthesis filterbank can directly be used in a 
transmultiplexers, it turns out that in the some cases (particularly if NPR filterbanks are used) it is beneficially to directly 
design filters for usage in transmultiplexers. 

 

Figure 4. M-channel synthesis-analysis filterbank (also known as transmultiplexer). 

2.6 System Delay 

In a filterbank, the output signal is desired to be a delayed (PR or NPR) version of the input signal. The delay of the 
filterbank is directly related to the filters building the filterbank and the implementation structure. Assuming, without 
loss of generality, that the analysis and synthesis filters are of the same order N, in the most common case the filterbank 
delay is equal to the filter order, that is, � 
 �. Filterbanks satisfying this are known as linear-phase filter banks. 
Filterbanks in which the delay is smaller than the filter order, that is, � � �, are referred to as low-delay filterbanks. 

Low-delay filterbanks are beneficial in application where the delay of the system is critical since they enable keeping the 
delay low and using longer filters (thereby improving other properties of the filterbank). However, low-delay filterbanks 

ωπ0

1
|Hk(ejω)|

ωπ0

1
|Hk(ejω)|



 

R. Bregović and A. Gotchev, “On the performance of multirate filterbanks: Quantification of shift variance and cyclostationarity in 
the works of Till Aach,” Proc. SPIE-EI: Image Processing: Algorithms and Systems XII, San Francisco, USA, Feb. 2014, 10 pages. 

 

are considerably more difficult to design than their linear-phase counterparts mainly due to a higher non-linearity 
between the design constraints and the filter coefficients. 

2.7 Frequency and Time (Space) Domain Behavior 

The most common filterbanks are the so-called frequency-selective filterbanks. In frequency-selective filterbanks, the 
main goal is to design filters building the filterbank such to ensure maximum possible frequency separation between the 
channels. In the ideal case, this would mean no overlapping between the adjacent channels (filters). Since in practice this 
is not possible to achieve, the aim in designing frequency-selective filterbank will be in obtaining filters with narrow 
transition bandwidths and ‘good’ stopband attenuations. Frequency-selective filterbanks are typically used in audio and 
communication applications2,3. 

In some applications (e.g. image processing) more commonly used filterbanks are filterbanks with regularities 
interpreted in terms of vanishing moments, also known as wavelets. Filters building such (usually two-channel) 
filterbanks sacrifice frequency selectivity for smoothness in the low-pass channel. Correspondingly, a wavelet with n 
vanishing moments has n derivatives of the wavelet filters at zero frequency equal to zero. Vanishing moments are 
instrumental for representing or canceling out piecewise-polynomial components of the processed signal13. 

In comparison to aforementioned properties that are exclusive (e.g. a filterbank can be linear-phase or low-delay, but not 
both) it is possible to combine frequency selectivity property and regularity in a trade-off fashion, specifically when 
designing the synthesis (reconstruction function). Such hybrid filterbanks could inherit benefits from both categories – 
they are selective enough in terms of pass, transition and stop bands thereby reducing data leakage between channels and 
they exhibit certain regularity property that is beneficial for representing piecewise-polynomial signals of certain degree. 

2.8 Filters Building the Filterbank 

In addition to down-sampling and up-sampling blocks, filters are the main building blocks of a filterbank. As already 
commented, filters building the bank determine most properties of a filterbank. The main purpose of analysis {synthesis} 
filters is to reduce (eliminate as well as possible) aliasing {imaging} effects due to down-sampling {up-sampling}. Two 
basic classifications of filterbanks based on used filters can be made. 

First, filterbanks can be built by using Finite Impulse Response (FIR) filters or Infinite Impulse Response (IIR) filters. 
FIR based filterbanks are in principle easier to design and are by design stable, however IIR filterbanks can achieve 
better properties (e.g. frequency selectivity) with a lower implementation complexity. 

Second, filters building the filterbank can be linear-phase filters or non-linear phase filters. Filterbank with linear-phase 
filters has a constant group delay between the individual subbands and the input signal. Constant group delay preserves 
the shape of the signal. The main drawback of filterbanks with linear-phase filters is in the fact that the filterbank delay 
is directly related with the filter orders, which in turn could be problematic in applications where the filterbank delay is 
of importance. Filterbanks with non-linear phase filters have greater design flexibility (more degrees of freedom) but are 
more difficult to design. 

It should be pointed out that the second property is not directly related with aforementioned linear-phase filterbank 
property – a linear phase filterbank can be designed by using non-linear phase filters (the cascade of non-linear phase 
analysis and synthesis filter can result in a linear-phase input-output response). 

2.9 Orthogonality 

Orthogonality implies energy preservation – sum of energy in subbands is equal to energy of the input signal. This 
guaranties that the energy errors in subbands (or in a transmission channel) will not be amplified by the filterbank. This 
is useful, for example, in communication applications. Filterbanks satisfying the orthogonality property are known as 
orthogonal filterbanks. In an orthogonal filterbank, all filters are derived from one prototype filter. Unfortunately, PR 
orthogonal filterbanks cannot be built by using linear-phase filters.  

By relaxing the orthogonality property, a different category of filterbanks can be constructed, namely, biorthogonal 
filterbanks. Biorthogonal filterbanks are filterbanks that satisfy the orthogonality property approximately and are built by 
using several different linear-phase filters in the analysis filterbank (synthesis filters are derived from analysis filters). 
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3. SHIFT (IN)VARIANCE IN MULTIRATE SYSTEMS 

A shift (time) invariant system, as shown in Figure 5, is a system for which any shifted input ��� � �� results in a 
shifted output ��� � ��. A simple example of a shift-invariant system is an FIR filter with transfer function ���	 
∑ �����	��� . 

 

Figure 5. Shift-invariant system. 

In the general case of multirate filterbanks, a shifted input ��� � �� produces a shifted subband coefficients (signals) 
only if shift m is a multiplier of M, the number of channels. In the literature, this is referred to as periodic shift variance 
(or linear periodically shift variant – LPSV – since they use linear shift-invariant filters). In an ideal case, it is desired 
that the shift invariance holds for every m. This is important since multirate systems are used in various applications – 
for example, in compression (subband signals are grouped and quantized) or for signal and image analysis and non-
linear processing (e.g. subband coefficient thresholding for de-noising and enhancement). In such cases, lack of shift 
invariance causes that different shifts in the input might lead to very different signals in the subbands (very different 
distribution of subband energy) and consequently to very different results. Furthermore, the subband processing destroys 
the balance between aliasing terms in subbands and as such amplifies the shift variance. 

Main cause for shift variance is the presence of sampling rate changing blocks. By using over complete representations 
(e.g. complex wavelets14,15, cycle spinning16), periodic shift invariant systems can be designed. For critically sampled 
filterbanks, it has been shown7 that there is a special class of M-channel multirate filterbanks for which PR and perfect 
shift-invariance can be achieved. The authors have shown in 7 that in order for a filterbank to be shift invariant, all 
polyphase components of every filter in the filterbank must be linear-phase filters. Since this is a too restrictive 
requirement, it is more interesting to have quantitative criteria for estimating the amount of shift variance in a multirate 
filterbank, which in turn, can be used during the filterbank design together with other design criteria with the goal of, if 
not eliminating, then at least minimizing the amount of shift variance. Several criteria (quantitative measures for shift 
variance and cyclostationarity) proposed by Aach are reviewed in the following sections8-10. 

Due to the structure of a filterbank, it is logically to assume that the shift variance of the overall filterbank will be low if 
the shift variance of individual channel is small. Therefore, all criteria are derived for a single channel only. A block 
diagram of one channel of a filterbank is shown in Figure 6. Furthermore, the analysis is performed for two large classes 
of signals: deterministic and random wide-sense stationary (WSS) signals. The later ones are of interest when one aims 
at studying the expected error of an algorithm (e.g. in compression or filter approximation). 

 

Figure 6. One channel of a multirate filterbank. 

3.1 Shift Invariance for Deterministic Signals  

After some multirate system expression manipulation, the energy spectra at the output of the system shown in Figure 6 
(one filterbank channel), can be expressed for all possible shifts m as (for full step-by-step derivation see8) 

�

� ��, �	 
 �����	���� ��, �	���	 (7) 

with the subband energy spectra being 

���� ��, �	 
 1�� ����/���	���
���

���
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���	 
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Aach proposed to estimate shift-invariance of a single channel by measuring undesired (aliasing caused) shift-variant 
energies ���(�) at the output of the channel. This can be evaluated by integrating (8) over the unit circle: 

���(�) = 1
2� � ���� ��, ������	

�	
 (10) 

By grouping ���(�) into a vector and evaluating the spectra of the energies �� one gets ����(0) ���(1) … ���(� − 1)�� = 	���� �� … ������. (11) 

The shift-invariant part of the energy is contained in the value �� whereas all other values are shift variant parts. 
Consequently, the shift-variant criteria can be expressed as 

��� = ∑ |��|�������|��|�  (12) 

In a shift-invariant system, ��� will be zero. A deviation from zero is a measure of shift-variance.  

The criterion (12) establishes an integral measure of shift variance over the entire frequency range. As such it cannot 
quantify changes in spectra, which do not change the energy. Therefore, (12) was further improved in order to capture 
also changes in the energy spectra. The updated criteria is8  

��� = 1
2� � ∑ ���(���)��������|��(���)|� ��	

�	
 (13) 

with 

����� �0, �� ���� �1, �� … ���� �� − 1, �� � = 	��� ���(�) ��(�) … ����(�)�� (14) 

It is seen from (12) and (13), the amount of introduced shift-variance depends mainly on the behavior of the analysis 
filter (�). The synthesis filter !(�) attenuates the shift-variant components. Theoretically, for a very narrow synthesis 
filter, it would be possible to fully eliminate the shift-variance. However, this is not possible in practice since the 
synthesis filter is related to the analysis one through the filterbank reconstruction criteria. 

Another approach for deriving a measure for shift invariance in multirate filterbanks has been presented in 10. Given a � ∈ �(ℓ�(ℤ))�ℤ where �(ℓ�(ℤ))�ℤ is the subspace of �ℤ-invariant operators (	�(ℓ��ℤ�) is a space of bounded 
operators on ℓ��ℤ�) and T being the associated matrix valued function uniquely characterized by the relation #�(���) = $(���)%�(���) (15) 

with %�(�) and #�(�) being the modulation vectors of s and y (e.g. %���� = [&���	&��	�… 		&��	����]� and &��� 
being the Z transform of '[(]). For such case, the measure for shift invariance of system T can be expressed as (for full 
derivation see 10): &)��(�) = �

�	 * ∑ �$(���)((,�)����� ��	/�
�	/� . (16) 

With other words, for a (near) shift-invariant system the matrix-valued function has to be a diagonal one, i.e. the 
elements that are not on the main diagonal should be zero or negligible small. 

When applying the ��� criteria (12) for various commonly used two-channel filterbanks, the best performance among the 
tested ones has been exhibited by the Haar filter based filterbank. However, the criterion ���  (13) has shown that the PR 
conjugate quadrature filters proposed in 17 are exhibiting the best in terms of shift-invariance. 

3.2 Shift Invariance for WSS Random Signals 

For a WSS random signal the concept of shift does not apply. Instead, the WSS signals are characterized by their 
correlation functions and power spectra. A multirate system (more precisely the interpolation stage of a multirate 
system) turns a WSS signal to a wide-sense cyclostationarity (WSCS) signal18,19. Therefore, for an WSS signal the goal 
is to determine the cyclic nonstationarities of +[(]. After performing similar analysis as for deterministic signals, the 
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criteria for evaluating the amount of cyclic nonstationarity can be expressed through the mean square power deviation 
from the average power as8 

��� = ∑ |��|����
���

���
, (17) 

where ,� is the power from overlapping !(�) and !(���	�) and is defined as 

,� = 1
2�� � ���������!(���)!(���(���	�� ))��	

�	
 (18) 

and ���(�) being the power spectrum of the down-sampled signal 

������ = 1� � ����/�	��
������/�	�
����/�	�
���

���
. (19) 

In an ideal case ��� should be zero. Similar to the deterministic case, (17) evaluates the periodic variations of the power 
of the output, but not the variations of the shape of ���(�, �). A modified criteria taking into account changes in the 
shape can be formulated as 

-�� = ∑ .��(�)������.��(0)  (20) 

with 

.��(�) = 1
2� � /���(����)� !(���)!(����	�)/� ��	

�	
 (21) 

In comparison to the deterministic case, the amount of nonstationarity depends on the synthesis filter !(�) whereas the 
analysis filter (�) tends to attenuate nonstationary components. Although achieving a filterbank without nonstationary 
components is possible, as in the case of shift invariance, it is not practical since several other filterbank properties 
(discussed in Section 2) could not be met effectively. 

When applying the -�� criteria for various standard two-channel filterbanks assuming an AR(1)-random process as the 
input signal, it turns out that the filterbank with the best performance, among the tested ones (see 8 for details) is, as in 
the case of the criteria for deterministic signals, the PR conjugate quadrature filters of length 16 proposed in 17 with 
biorthogonal 5/3 filters performing worst. 

3.3 Expected shift variance 

A more general approach for evaluating the expected shift variance has been proposed in10. It can be expressed as (for 
full derivation see 10) 

���(�') = 1� � � ��$(���)(0,�)��
���

× ���(���	�)
���

���
��	/�

�	/�
 (22) 

Where ���(�) denotes the power spectrum of the WSS process s. 

In order to illustrate the value of this estimate, it will be applied to one channel of a filterbank (c.f. Figure 6). In this case 
the operator T is given as �: ' → 1 ∗ (↑ � ↓ �(ℎ ∗ ')) (23) 

and its matrix valued Fourier transform is  

$(�) = 1� 2�(�)3�� (�) (24) 

resulting into the following criterion of expected shift variance 
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���(��) = �
��� � ∑ ∑ ��(���	�)
(���	�)���	� × �

(���	�)����� ��/�

��/� . (25) 

In this equation, the term �(���	�)
(���	�) evaluates the overlap between analysis and synthesis filter. This makes 
this estimate more general since, on one hand, the proposed cyclostationarity measure looks only in the synthesis filters, 
see e.g. (21), since they are the source of cyclostationarity, and on the other hand, the proposed shift invariant measure 
for deterministic signals puts emphasize on analysis filters since they are the major source of error. In contrary to those, 
(25) is more balanced. 

Applying the above criteria for various filterbanks, it turns out that the �� criteria is very consistent with other criterias 
discussed in this and previous section. Furthermore, lower values have been achieved for longer filters, since in this case 
the filter provide better subband division. 

4. CONCLUDING REMARKS 

Multirate filterbanks are important building blocks in modern signal processing. When selecting and designing a 
filterbank for a given application, many properties must be taken into account. In addition to the plethora of filterbank 
properties that are well understood, the shift variance is an aspect of the filterbanks that requires more attention. 

In this paper several criteria, proposed by Til Aach, for estimating the shift variance and cyclostationarity, have been 
discussed. It has been noted that the shift variance in a multirate filterbank (system) is caused by the aliasing occurring in 
the decimation stage whereas cyclic nonstationarities are generated by imaging occurring in the interpolation stage. The 
contribution of the presented works lies in the systematical approach for quantifying the shift variance and 
cyclostationarity. The cases of deterministic and random signals have been studied in parallel and the corresponding 
similarities and differences have been clarified. Furthermore, the criteria are easy to interpret and implement. Thus, they 
provide an additional tool for analysis of existing filterbanks and design of new ones where near shift invariance is 
required.  

The reviewed work of Til Aach shows his deep involvement in the area of two-channel and multi-channel filterbanks 
and more specifically in the development of criteria for characterizing their shift variance. His work has formed a solid 
base for future research. Powerful tools for characterizing filter banks and selecting suitable ones for particular 
applications can be built using the developed criteria. As mention in 10 , the proposed shift-variance measures are quite 
general and more application-specific research can be performed using them as a starting point. 
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