$ TAMPERE UNIVERSITY OF TECHNOLOGY

Author(s) Hylli, Otto; Lahtinen, Samuel; Ruokonen, Anna; Systa, Kari
Title Service composition for end-users

Citation Hylli, Otto; Lahtinen, Samuel; Ruokonen, Anna; Systa, Kari 2013. Service Composition
for End-Users. In: Kiss, Akos (ed.) . SPLST '13, 13th Symposium on Programming
Languages and Software Tools, August 26-27, 2013, Szeged, Hungary. Symposium on
Programming Languages and Software Tools Szeged, Hungary, 100-113.

Year 2013
Version Post-print
URN http://URN.fi/lURN:NBN:fi:tty-201402061080

All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by
you for your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an
authorized user.

Service Composition for End-Users

Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systi

Department of Pervasive Computing
Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland
otto.hylli, samuel.lahtinen, anna.ruokonen, kari.systa@tut.fi

Abstract. RESTful services are becoming a popular technology for providing
and consuming cloud services. The idea of cloud computing is based on on-
demand services and their agile usage. This implies that also personal service
compositions and workflows should be supported. Some approaches for REST-
ful service compositions have been proposed. In practice, such compositions typ-
ically present mashup applications, which are composed in an ad-hoc manner. In
addition, such approaches and tools are mainly targeted for programmers rather
than end-users. In this paper, a user-driven approach for reusable RESTful service
compositions is presented. Such compositions can be executed once or they can
be configured to be executed repeatedly, for example, to get newest updates from
a service once a week.

1 Introduction

In service-oriented approaches, the focus is on the definition of service interfaces and
service behavior. Service-oriented architecture (SOA) aims at loosely coupled, reusable,
and composable services provided for a service consumer. SOA can be implemented by
Web services, which is a technology enabling application integration. Web services can
be used for composing high level composite services and business processes. Business
processes are often realized as a service orchestrations implemented, for example, as
WS-BPEL based processes [1]. WS-BPEL is targeted for composing operation-centric
Web services utilizing WSDL and SOAP [2,3]. WS-BPEL is close to a programming
language defining the logic for a service orchestration. Thus, it is mostly used by IT
developers.

In cloud computing, resources are provided to the user as services via the Internet.
Cloud computing and SOA share similar interests on service reuse and service compo-
sition. Moreover, cloud computing emphasis on-demand services, which impose more
requirements on flexible service and workflow configurations.

Compared to business processes, typical on-demand processes are personal, sim-
pler, and their lifetime is shorter. Thus, on-demand processes are often characterized as
instant service compositions and service configurations. Such processes are typically
defined by the end-user instead of the developer of the cloud services. Due to instant
nature of the on-demand processes, their usage and specification should be as simple as
possible and require no installation of process development and management tools.

An end-user driven approach for WS-BPEL-based business process development
has been proposed in [4]. The approach is targeted for providing a method for easy

sketching of service orchestrations. In the proposed approach, a set of scenarios, given
as UML sequence diagrams, are synthesized into a process description. However, in the
context of cloud computing and on-demand processes, the use of UML modeling and
standalone tools is not a proper solution.

Software services in the cloud, namely Software-as-a-Service (SaaS) applications,
differ from fine-grained IT services, which are typically used to form business pro-
cesses in SOA systems. SaaS applications are often targeted for end-users. They are
self-contained and contain user-interfaces, business rules, and possible some metadata.
In addition, such services often provide REST API instead of SOAP interface. Repre-
sentational State Transfer (REST) is a resource-oriented architectural style developed
for distributed environments such as for Web and HTTP based applications [5]. REST-
ful services provide an unified interface (GET, PUT, POST, DELETE) for data manip-
ulation. Thus, composition of such services often includes combining resources and is
characterized as mashup-type of development. Some guidelines for mashup develop-
ment have been proposed (e.g. [6]). Composing RESTful services is still lacking tool
vendor independent practices and description languages. Thus, the development is often
done more in an ad-hoc manner.

A recent trend is cloud mashups, which combine resources from multiple services
into a single service or application [7]. The provider of these service compositions can
enhance the cloud’s capabilities by offering new functionalities, which make use of
existing cloud services, to clients.

In this paper, a semi-structured approach for developing personal service compo-
sitions is presented. The approach is targeted for end-user and allows composition of
RESTful cloud services. The approach includes tackling the following issues: (1) easy
sketching of service compositions using a simple visual language, (2) a mechanism
to export/save composite descriptions for future usage i.e. reusable composite descrip-
tions, and (3) an engine for executing the service compositions, once or repeatedly. The
implementation is currently under development. The proposed tool support include a
web browser based editor, which can be used to create simple on-demand service com-
positions.

The rest of the paper is organized as follows. In Section 2, we describe the overall
approach and related components. In Section 3, two use cases for end-user driven ser-
vice composition is presented. The proposed tool support is described in Section 4. In
Section 5, related work and topics are discussed. In Section 6, conclusions and plan for
future work are presented.

2 User-driven approach for service composition

In this paper, an end-user driven approach for defining personal service compositions
is presented. The main goal of the approach is on easy design of service composi-
tions, which requires minimal technical knowledge. The service composition is created
by using GUI widgets, which are generated based on an imported service description.
Widgets present individual resources and they can be dragged and dropped on the can-
vas. The user can draw dataflow pipes to connect the widgets. Incoming and outgoing

dataflows are mapped to REST methods (e.g. outgoing dataflow for GETting a resource
presentation).

The approach is supported by two components, designer Ilmarinen and engine Sampo.
Ilmarinen is a client side application running in a web browser. Sampo is a server side
application, which is an engine for running the service compositions. The composition
description is given in XML-based format, called Aino description. As a service de-
scription format, the approach is based WADL descriptions [8]. It defines the resources,
i.e., URIs, methods, and parameters. That is, while the Aino description specifies the
service logic, the WADL description describe the service interface.

Sampo also plays a role of a service registry. Once a service is registered in Sampo
engine, it can be used as a constituent service for future applications. One reason for
providing a centralized registry, instead of letting the user search from the web, is that
for RESTful services there is no agreement on one service description format. In case
a third-party service do not have a compatible WADL description, it can be created
afterwards and registered to Sampo. Thus, the approach allows using services, which
do not natively provide a WADL description, as a reusable constituents.

The main focus of the approach is on easy design of service compositions, which
requires minimal technical knowledge. The service composition is created by using GUI
widgets, which are generated based on an imported service description. Widgets present
individual resources and they can be dragged and dropped on the canvas. The user
can draw dataflow pipes to connect the widgets. Incoming and outgoing dataflows are
mapped to REST methods (e.g. outgoing dataflow for GETting a resource presentation).

The approach includes the following steps:

(1) query services from the service registry,

(2) select services to be used as a part of the compositions,

(3) composition described as a data flow between services, and

(4) send the composition description to the server engine to be executed.

The main steps are shown in Fig. 1. It also shows the relations of the main compo-
nents and descriptions, Aino and WADL, which are used for importing and exporting
data (i.e. service and composition descriptions).

3 Use cases

The following two use cases illustrate the possibilities offered by service compositions
for regular internet users. They show how after encountering a normally labor intensive
internet based task including multiple services, a user can pretty easily create a service
composition that takes care of the task.

3.1 Use case 1: photos from Twitter to Flickr selectively

An avid Twitter user has been sending many photos taken with his smart phone directly
to Twitter. The user wants a better way to organize and share his photos so he opens an
account in Flickr which enables him to save photos to different albums, associate key-
words to them and decide which photos are public. Uploading all his photos manually

ILMARINEN composition designer

Services

GPS

SMS

Google Maps /D_n

H Export AINO
description
(1) Search for| . (3) Execute
services 2) Re'tu.rn service composition (4) Return
descriptions (AINO) result
R SAMPO
Service Engine

registry

Fig. 1. The main steps of the approach

to Flickr would be tedious for the user. He would have to go through his Twitter time
line, download each photo to his computer and then upload it to Flickr.

To automate the upload process the user wants to create a service composition. He
opens the service composition editor Ilmarinen and chooses that he wants to get photos.
Ilmarinen shows him a list of services from where he can get photos and he chooses
Twitter. He also indicates that all photos shouldn’t be fetched instead he will select the
ones he wants. Then the user tells Ilmarinen that he wants to upload the photos selected
in the previous step. From the services list shown by Ilmarinen he chooses Flickr as the
upload target. Additionally he specifies that he wants to choose for each photo are they
private or public. Lastly, he tells Ilmarinen that he wants to delete photos and chooses
Twitter. He specifies that from Twitter he wants to delete those photos he has marked as
private for Flickr.

When he executes the composition the execution engine Sampo first asks him to
authorize Sampo’s use of his Twitter and Flickr accounts. Authorization will be done
by using OAuth [9] which means that the user authenticates to both services which then
give access tokens to Sampo. Sampo will store these access tokens for later use if the
user wants it so that next time a service composition using these services is run the user
doesn’t need to authenticate to the services. He just has to log in to Sampo. When
the actual execution has started Sampo will first show the user all his photos from
Twitter and asks him to choose those he wants. After that Sampo shows the user his
previously chosen photos and asks which of them he wants to be private in Flickr. After
the execution has finished Sampo shows the user a execution results summary which
tells that the execution was a success and shows how many photos were processed in
each step.

3.2 Use case 2: affordable reading

An enthusiastic book reader uses the Goodreads service in aid of her hobby. Goodreads
is an online community for readers where users can search for books, rate and re-
view them. Users can also categorize books in their profile by adding them to differ-
ent shelves. One of these shelves is to-read where the user has been adding interesting
books, which she has found through Goodreads’ recommendation system. She wants to
buy some new reading from her to-read shelf but due to her current poor economic sit-
uation she wants it to be as cheap as possible. Searching for each book’s price from her
favorite online book retailer Amazon and then comparing the prices manually would
be time consuming so she decides to create a service composition to make the process
quicker.

The user opens the service composition editor [Imarinen and chooses that she wants
information about books. Ilmarinen gives the user a list of services that deal with books.
The user chooses Goodreads and indicates that she wants the content of a particular
user’s, in this case hers, particular shelf. Ilmarinen asks the user to input the name of the
user and the name of the shelf which in this case are the user’s Goodreads user name and
to-read. Next the user tells Ilmarinen that she wants online shopping services. From the
service list she chooses amazon.com. She specifies that she wants product information
about the books from the previous step. Lastly she tells Ilmarinen that she wants the
results in ascending order by price. When this composition is run the result is a table
containing book information from Amazon including the price and a link to the Amazon
product page where the book can be bought.

4 Implementation

[Web browser)

In execution
""”'”*fimfpr*”””) "”'””*smr*”’””_
~ (serviceregistry) - (execution engine)

Sampo
Execution Ul

Service = —
er_/lc_e Serylc? Composition 1 Composition 2
description description (Aino) (Aino)
WADL WADL e Lo

o L T

Fig. 2. High level architecture of the system

The prototype implementation consists of two main components: Designer Ilmari-
nen and Sampo Engine and Service registry. Sampo executes the services compositions,
stores the service descriptions and offers Ilmarinen access to the information. Figure 2

illustrates the high-level architecture of the system. The user uses browser-based Il-
marinen to create service compositions. A service composition is a service. Its inteface
is defined as a WADL document and its execution instructions are defined as an Aino
description. Both XML documents are stored in Sampo. The user interacts with Sampo
engine component is used to execute the compositions. The execution and possible user
interaction related to the execution is again done in a browser based UL

4.1 Service description

All the constituent services, as well as the service composition, are described as a
WADL description. WADL description defines the web resources, provided methods
and their parameters, as well as data types. Data types can be defined as separate XML
schema files. An example of a simple service description is shown below. It has a par-
tial definition of Twitter’s get user timeline method which returns a specified number of
tweets from the given user.

<?xml version="1.0" encoding="UTF-8"7>
<application>
<grammars></grammars>
<resources base="https://api.twitter.com/1.1">
<resource path="statuses/user_timeline.json">
<method href="getTimeline"/>
</resource>
</resources>
<method name="GET" id="getTimeline">
<request>
<param name="screen_name" style="query" type="xsd:string" />
<param name="count" style="query" type="xsd:integer" />
</request>
<response>
<representation mediaType="application/json" />
</response>
</method>
</application>

4.2 Sampo Engine

Sampo engine is used in two ways, as a service registry and as an engine to execute
the service compositions. Services can be added in the service registry as WADL de-
scriptions. It provides the basic functionality for registration of the services, i.e. API for
adding, removing, and searching the services. When a new WADL is added to Sampo
the part of the categorization of the service and the resources can be done automati-
cally based on the WADL and the user can complete the information and extend the
suggested categorizations.

The given meta-information is used to offer Ilmarinen lists of the services. For in-
stance, the user can ask to get a list of services related to pictures. Thanks to the meta-
information Ilmarinen only needs to process WADLs of the services user adds to her
composition instead of processing every WADL.

The other part of Sampo provides an API for executing Aino service descriptions.
The service composition execution uses Aino and the corresponding WADL descrip-
tions for getting the required information on the services and their API. The engine

uses this information to invoke correct API calls to the services and combine the tasks
to create the complete composite service.

Sampo contains a user interface for handling the compositions. The user can param-
eterize the composition and define time intervals of execution. In case of a recurring task
the service page can be used to start and stop the compositions and change their time
intervals. For instance, one could define a service composition that is launched weekly.

Sampo implements simple basic services, for example, for displaying images and
news feeds. These are available as components in Ilmarinen and can be added to a
service composition in similar fashion as external services.

4.3 Designer Ilmarinen

Ilmarinen is a client side application, which provides a graphical interface for creating
the service compositions. The user is provided a simple visual environment for defin-
ing the service composition. The composition is done partially in a guided manner. A
screenshot of an early prototype version of the tool is shown in Figure 3. The user can
choose the services e.g. Twitter, BBC Program guide, Weather) she wants based on
the service category (e.g. Social media, file storage, picture, program guides). For the
services the user can define the interaction and the resources related to the interaction.

In the service composition key elements are the services and data flow between
them. After adding a service one can see the input and output possibilities offered by
it. These inputs and outputs are parameterized and services are connected to each other
using them. When the user has finished, Ilmarinen generates the Aino description. This
is exported to Sampo engine for execution. The composition is stored in Sampo and
can be accessed directly using a corresponding link. That allows the users to access and
execute the compositions directly without using Ilmarinen. This also enables sharing
service compositions among different users.

& @ @ netp/localhos iightappl © = B € || @ Home

Tlmarinen
4 toukokuu 201:

CJan o ma G ke to pe

[¥] Social media | 301 2 3
6 7 8 3 10
AL - Flicke 12 14 15 16
Picture
Services 021 2 2 2
Facebook Name constrai
neve

Twitter
Flickr

27 28 29 30 31
3 4 5 6 7

Fig. 3. Screenshot of Prototype of Ilmarinen

4.4 Composite description Aino

Aino description defines the resources involved in the composition and the composite
dataflow among resources. A dataflow from one service to another means by getting

resource presentation from one service with GET methods and using it as an input
to another service using PUT, POST, or GET methods. Composite dataflows include
three types of resources: resource out (for GETting a representation), resource in (for
PUTting or POSTing), and resource in/out (for PUTting or POSTing and GETting). For
data manipulation, control nodes, such as merge and select nodes, are used. In addition,
data structures used for the resource presentation can be defined by attaching an XML
schema to a dataflow or referring to a corresponding WADL file.

The composite dataflow can be modeled as an acyclic graph structure, which con-
sists of resources, control nodes, and dataflow elements between them. Control nodes
are used for manipulating resource representations. The main elements to compose the
composite dataflow graph are shown in Fig. 4. Each resource is expected to have at most
one incoming and outgoing dataflow element.

Data flow Resouce in Resouce infout Resouce out
Merge Split Select Decision

Fig. 4. Dataflow modeling

To enable importing and exporting of the Aino descriptions, composite dataflow
graphs are transformed in XML format. The XML description consists of two main
parts: resources and dataflow. The former describes all the resources involved in the
composition. The latter defines the composite dataflow among the resources.

A simple composite dataflow consists of a sequence of method invocations, which
are executed by the composite service on the constituent resources. These are presented
as GET, PUT, POST, and DELETE elements in the XML description. In addition, the
composite service can receive method calls. These are presented as onPUT, onGET,
onPOST, and onDELETE elements. Corresponding request and response message types
(including data types) are described in the services” WADL documents. These activities
corresponding to REST operations are the same, which are used in BPEL for REST [10]
proposal.

An example of Aino description is given in the listing below. It presents an example
of uploading photos from Twitter tweets to Flickr. Resources part define two resources,
Twitter and Flickr, which participate in the composition. The dataflow consists of a
receive message and two message invocations. Execution starts when the client invokes
GET method on the composite resource (onGET element). Execution continues with
a sequence of two invocations. First the composite service invokes GET method on
Twitter and second it invokes POST method on Flickr.

<?xml version="1.0" encoding="UTF-8"?7>
<description name="tweet2flickr" >
<doc>Upload photos send to twitter to flickr.</doc>

<services>
<service name = "twitter" id="id1"/>
<service name = "flickr" id="id2"/>
</services>
<resources>

<resource uri="https://api.twitter.com/1.1/statuses/
user_timeline. json"
resource_id ="rl1" service_id = "idl1" />
<resource uri="http://api.flickr.com/services/upload/"
resource_id ="r2" service_id = "id2" />
</resources>

<variables>
<variable name="screen_name" type="string" />
<variable name="photos" type="photolist" />
</variables>

<dataflow>
<onGET>
<request>screen_name</request>
<response></response>
<resource_id>r_comp</resource_id>
<sequence>
<GET>
<request>screen_name</request>
<response>photos</response>
<resource_id>rl</resource_id>
</GET>
<POST>
<request>photos</request>
<response></response>
<resource_id>r2</resource_id>
</POST>
</sequence>
</onGET>
</dataflow>
</description>

Variables are used for storing and manipulating message values. For example, the
given code listing defines two variables, which correspond to input and output message
types of the used GET and POST methods. screen_name variable presents a user name
and it is passed as an input message for the GET method. A return message of the
operation call is stored in photos variable and it is passed as an input message to the
POST method.

screen_name is initialized, when the user fills-in the required input data, when she
decides to run the composition (see Figure 5). A control interface is used for specify-
ing process instance specific information, such as initial value of process variables and
repetition information, which is not part of Aino description.

In addition to a sequence flow, Aino supports splitting, merging, and conditional
branching of data flows. Example structures for merge, split, and if-else patterns are
shown in the following listing.

<merge>
<operand>
activity
</operand>
<operand>

]

[c

i SilverlightApplication

€

[+]
c VGDD;:'EP 4+ A B~

& localhost: 36086/ SilverlightApplic

Fw

itter 2Flickr ‘

This service fetches pictures from Twitter and loads them to Flickr.
The service uses the Flickr account of the user, if she has registered one.
Twitter account can be changed in this page.

uUser name testuser Twitter account
password | BarackObama
Repeat weekly i

Starting from | 7.6.2013 F

Time

12:00:00

Confirm

activity
<operand>
</merge>
<sequence>
some activity
</sequence>

<sequence>
some activity
</sequence>
<split>
<operand>
activity
</operand>
<operand>
activity
</operand>
</split>

<if>

Fig. 5. A Control User Interface for the service Compositions

<condition>some conditon expression</condition>

activity
<elseif>*

<condition>some condition expression</condition>
some activity

</elseif>
<else>?

some activity

</else>
</if>

5 Related work

The idea of cloud computing is based on on-demand services, which are provided as
SaaS applications. In the cloud, traditional business process management tools are al-
ready available as SaaS. However, they are targeted for design and management of
structured business processes. Requirements for on-demand processes differ from tra-
ditional BPM. The ideal situation is to provide easy and instant mechanism to support
execution of personal and dynamic processes, which utilize existing SaaS applications
available on the cloud.

5.1 Tools for mashup development

Ad-hoc processes are often expected to live only a short time. The lack of documenta-
tion and proper design might make them single-use only. Thus, they may not be reusable
and flexible, but they always need to be recomposed.

JOpera [11] is an Eclipse-based tool build for composing SOAP/WSDL and REST-
ful Web services. For software developers it provides many useful features such as
process modeling, debugging and execution. For composing RESTful services JOpera
uses BPEL for REST [10]. BPEL for REST is an extension to WS-BPEL to support
compositions of RESTful Web services. The approach does not rely on usage of WSDL
or other service descriptions. Resources are defined in the BPEL for REST description
as a resource construct, which defines the resource URI and supported operations.

In [12], Marino et al. present HTML5-based prototype tool support for mashup de-
velopment. They present a visual language for service composition. However, the paper
is missing details on the user interface and tool usage. Also, details on the composition
description are not given.

In [13], Aghee et al. discuss different types of mashups enabled by HTMLS. A case
example includes a location sensitive mobile mashup. The mashup runs natively in a
mobile device and uses GPS sensor build-in the device. In addition, it uses external Web
APIs. Location data is sent to a server, which executes API calls to external services.
This enables sharing the application between several uses. Mobile mashups enable use
of real-time data gathered from the sensors in a mobile phone, e.g. real-time navigation.

Bottaro et al. present a simple visual language for composing location-based ser-
vices [14]. The user uses a repository of web widgets. Widgets are dragged and dropped
to build UI for the application. The application logic is defined by drawing connections
between data widgets.

In [15], Gronvall et al. present ongoing work on user-centric service composition.
GUI elements are prototypes of service invocations, which can be chained to com-
pose data flows among services. They present a lightweight tool support for composing
simple dynamic workflows, such as for combining SMS, email, and calendar services.
Instead of modeling complicated workflows, the emphasis is on the user experience.

In EzWeb project [16, 17], a service-oriented platform for end-user mashups de-
velopment have been built. The idea is to provide gadgets (e.g. Twitter, Flickr) the user
could add to her ”‘application page”* creating a set of different applications and web ser-
vices. The user can also define dataflow between the gadgets by connecting ”‘events””
the gadgets could give, e.g., an image url could be connected to another image displayer

99 ¢

gadget that is able to show the picture. All these gadgets are implemented for EzWeb
environment. That is, implementation of their user interface, way of communicate with
servers, their events and event slots, are specific for the EzZWeb environment. In our
approach, the aim is to provide means to compose existing services together and exe-
cute these compositions. Thus, our target is to support composition of any third party
services by introducing their service descriptions to our system.

5.2 Describing service compositions

Some approaches for modeling and describing RESTful service compositions have been
proposed. Guidelines for UML modeling of RESTful service compositions is presented
in [18] by Rauf et al. The static resource structure is modeled using class diagrams. The
behavioral specification of the composite service is given using state chart diagrams.

In [19,20], Zhao et al. discuss formal describing of RESTful services and resources
as well as RESTful composite services. Their main interests is on supporting automatic
service compositions. For service compositions they present a logic-based synthesis
approach utilizing linear-logic and pii-calculus.

In [21], Alarcon et al. state that many of the recent service composition approaches
rely on operation-based models and neglect hypermedia characteristics of REST. As a
solution for composing RESTful services, they present a hypermedia-driven approach
realized by using resource linking language (ReLL) for service description. The ap-
proach aims to support machine-clients by enabling automatic retrieving of resources
from a web site. For describing the composite resources PetriNets are used. As an ex-
ample of a composite resource, a social network application was presented.

6 Conclusions

Cloud computing is based on on-demand services, which should be available as needed.
Similarly, it should also enable on-demand service compositions. In this paper, end-user
driven approach for personal service composition have been presented. The proposed
tool support includes an editor running in a web browser and a server-side engine for
storing and executing service compositions. The editor is designed for the end-users and
it is used for sketching personal service compositions. It focuses on end-user concepts
and aims to hide complicated and unnecessary information, e.g. service descriptions,
which are handled by the engine. Instead of handling data types, the user is allowed to
use concepts such as a picture or a photo gallery. The presented use cases concentrate
on combining social media services into a composite service. Also, the user is allowed
to define repeatable executions for checking updates from the services.

To characterize the approach, it is designed for cloud environment providing a
browser-based tool for building service compositions. It is based on WADL descrip-
tions, which are also used for generating GUI widgets for the end-user. In addition, it
enables defining RESTful workflows as a composite services.

Our future work includes finalizing the implementation and conducting case studies
on applying the approach utilizing the developed tool support. Our future plans also
include experimenting the tool usage with novice users.

References

10.

11.

12.

13.

15.

17.

. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank

Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva
Weerawarana. Business Process Execution Language for Web Services Version 1.1, May
2003. http://www.ibm.com/developerworks/.

. W3C, http://www.w3.org/TR/wsdl. Web Services Description Language (WSDL) 1.1, 2001.
. W3C, http://www.w3.org/. Simple Object Access Protocol (SOAP) 1.2, 2007. Last visited

December 2011.

. Anna Ruokonen, Lasse Pajunen, and Tarja Systa. Scenario-driven approach for business

process modeling. Web Services, IEEE International Conference on, 0:123-130, 2009.

. Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine, 2000.

. Tommi Mikkonen and Arto Salminen. Towards a reference architecture for mashups. In Pro-

ceedings of the 2011th Confederated international conference on On the move to meaningful
internet systems, OTM’11, pages 647-656, Berlin, Heidelberg, 2011. Springer-Verlag.

. Mukesh Singhal, Santosh Chandrasekhar, Tingjian Ge, Ravi Sandhu, Ram Krishnan, Gail-

Joon Ahn, and Elisa Bertino. Collaboration in multicloud computing environments: Frame-
work and security issues. Computer, 46(2):76-84, 2013.

. W3C, http://www.w3.org/Submission/wadl/. ~ Web Application Description Language

(WADL), 2009.

. Internet Engineering Task Force (IETF), http://tools.ietf.org/html/rfc6749. The OAuth 2.0

Authorization Framework, 2012.

Cesare Pautasso. RESTful web service composition with BPEL for REST. Data Knowl.
Eng., 68(9):851-866, September 2009.

Cesare Pautasso. Composing RESTful services with JOpera. In International Conference on
Software Composition 2009, volume 5634, pages 142-159, Zurich, Switzerland, July 2009.
Springer.

Enrico Marino, Federico Spini, Fabrizio Minuti, Maurizio Rosina, Antonio Bottaro, and Al-
berto Paoluzzi. HTMLS visual composition of rest-like web services. In 4th IEEE Interna-
tional Conference on Software Engineering and Service Science (ICSESS 2013), 2013. To
appear.

Saeed Aghaee and Cesare Pautasso. Mashup development with HTMLS. In Proceedings
of the 3rd and 4th International Workshop on Web APIs and Services Mashups, Mashups
’09/°10, pages 10:1-10:8, New York, NY, USA, 2010. ACM.

. Antonio Bottaro, Enrico Marino, Franco Milicchio, Alberto Paoluzzi, Maurizio Rosina, and

Federico Spini. Visual programming of location-based services. In Proceedings of the 2011
international conference on Human interface and the management of information - Volume
Part I, HI’11, pages 3—12, Berlin, Heidelberg, 2011. Springer-Verlag.

Erik Gronvall, Mads Ingstrup, Morten Plgger, and Morten Rasmussen. Rest based ser-
vice composition: Exemplified in a care network scenario. In Gennaro Costagliola, An-
drew Jensen Ko, Allen Cypher, Jeffrey Nichols, Christopher Scaffidi, Caitlin Kelleher, and
Brad A. Myers, editors, VL/HCC, pages 251-252. IEEE, 2011.

. D. Lizcano, J. Soriano, M. Reyes, and J.J. Hierro. EzZWeb/FAST: Reporting on a successful

mashup-based solution for developing and deploying composite applications in the “upcom-
ing ubiquitous SOA”. In Mobile Ubiquitous Computing, Systems, Services and Technologies,
2008. UBICOMM °08. The Second International Conference on, pages 488—495, 2008.

David Lizcano, Javier Soriano, Marcos Reyes, and Juan J. Hierro. EzZWeb/FAST: reporting
on a successful mashup-based solution for developing and deploying composite applications
in the upcoming web of services. In Proceedings of the 10th International Conference on

18.

19.

20.

21.

Information Integration and Web-based Applications & Services, iiWAS ’08, pages 15-24,
New York, NY, USA, 2008. ACM.

Irum Rauf, Anna Ruokonen, Tarja Systd, and Ivan Porres. Modeling a composite RESTful
web service with UML. In Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ECSA ’10, pages 253-260, New York, NY, USA, 2010.
ACM.

Xia Zhao, Enjie Liu, G.J. Clapworthy, Na Ye, and Yueming Lu. RESTful web service com-
position: Extracting a process model from linear logic theorem proving. In Next Generation
Web Services Practices (NWeSP), 2011 7th International Conference on, pages 398—403,
Oct.

Haibo Zhao and P. Doshi. Towards automated RESTful web service composition. In Web
Services, 2009. ICWS 2009. IEEE International Conference on, pages 189-196, July.

Rosa Alarcon, Erik Wilde, and Jesus Bellido. Hypermedia-driven RESTful service compo-
sition. In Proceedings of the 2010 international conference on Service-oriented computing,
ICSOC’10, pages 111-120, Berlin, Heidelberg, 2011. Springer-Verlag.

