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Abstract—When particle filters are used to estimate indoor position
with floor plan constraints, it can happen that, even when all the particles
lie in the corridor, the particles’ mean is not in the corridor. Such a
position estimate is perceived by the user as a mistake in the algorithm.
Projecting the particles’ mean to the nearest corridor location is an
obvious ad-hoc solution, but it is not optimal and the trajectory may be
discontinuous in time. Another solution is to use a maximum a-posteriori
estimate for the particle cloud where the particles in an inaccessible
region are eliminated. However, this optimal solution might also have
discontinuous trajectory and so it is not ideal for the real time positioning.

In this work, the following principled approach is taken. Given a
particle cloud representation of a posterior distribution for position, the
position estimate is defined as the solution of a least squares problem
with linear inequality constraints. This problem can be solved efficiently
and reliably using standard numerical optimization algorithms and codes.
Results are presented for simulated data and real-world data.

I. INTRODUCTION

In indoor positioning, particle filters are often used to combine
floor plan data with WiFi received signal strength (RSS) and other
data, see e.g.[2]. The walls’ non-crossing constraint is easily modelled
in a particle filter and taking these constraints into account generally
improves position estimate considerably.

However, it can happen that, even when all the particles represent-
ing the position’s posterior distribution lie in allowed regions, the
particles’ mean is in an inaccessible region. This typically happens
when the particle cloud is L-shaped, such as when a user is turning
a corner in a corridor. Consequently, even when the particle filter
is working correctly, the user sees the position estimate “cutting the
corner” on the floor plan, and typically perceives this wall-crossing
as a defect in the positioning estimation.

An obvious ad-hoc solution to this defect is to project the particles’
mean to the nearest corridor location, and report this location as the
position estimate. However, the mean of the posterior distribution is
the location that is optimal in the sense of mean square error, and this
optimality is lost when using an ad-hoc projection. Also, the ad-hoc
projection might jump discontinuously from one wall to another as
the particle cloud flows forward with time, and such jumps might
also be perceived by the user as a defect.

Another solution is to compute the maximum a-posteriori estimate
from the particles [1]. While this estimate would remain in the
feasible region, it might still have a discontinuous trajectory, because
a mode can jump even for a continuously evolving continuous density
function.

In this work, the following approach is taken to computing a
position estimate from the cloud of weighted particles that represents
the posterior distribution. The approach is inspired by the variational
characterisation of the mean that was alluded to in the previous
paragraph, that is, the fact that the (weighted) mean of the particle
cloud is the location from which the weighted sum of squares of
distances to the particles is minimised. The situation can be visualised
with the help of a well-known physical analogy for least squares

estimation: the weighted mean is the static equilibrium of a system of
linear springs whose spring stiffnesses are determined by the particle
weights (Fig. 1).

Figure 1. Physical analogy showing the mean as the static equilibrium of a
system of linear springs; this is mathematically equivalent to the minimizer
of the sum of squared errors.

It is straightforward to incorporate wall constraints into this varia-
tional characterisation of the mean: instead of an unconstrained min-
imum, the minimisation is done over the space of allowed positions
defined by the floor plan. The result is an inequality-constrained linear
least-squares minimisation problem. Thus, the estimate is optimal
in the sense of minimising mean-square error. Also, because the
estimate is an orthogonal projection, then if the particle cloud moves
continuously in time, so does the estimate.

If, as is usually the case in practice, the feasible region can be
decomposed into the union of a finite number of convex polygons,
then the estimate can be computed efficiently and reliably using
standard algorithms.

This work is organised as follows, In section II a standard particle
filter and how it is used for positioning in a restricted 2D environment
is presented. Sections III and IV present the wall-constrained mean
and maximum a-posteriori position estimates for positioning. In
section V the tests and results are presented and finally section VI
concludes the paper.

II. PARTICLE FILTER

A particle filter is an estimation algorithm that approximates the
posterior density of the state space p(xt|y1:t) with a set of weighted
particles. Assume that the probability distributions p(x0), p(yt|xt)
and p(xt+1|xt) are known and their densities are computable for
each time step t. The vector xt is called the state vector and the
vector y contains the measurements.978-1-4799-4671-61141$31.00 c© 2014 IEEE



In this work, the state is 4-dimensional vector containing 2-
dimensional position and velocity vectors rt and vt

xt =


r1,t
r2,t
v1,t
v2,t

 .
For the state and measurement model assume normally distributed

state and measurement model errors

xt+1 = ft(xt) + qt, qt ∼ N(0, Q)

yt+1 = ht+1(xt+1) + ut+1, ut+1 ∼ N(0, R).

In the beginning of filtering independent and identically distributed
particles x(i)0 for i ∈ 1 . . . N are drawn from a given prior density
p(x0) ∼ N(m0, D0) and importance weights wi0 are set equal such
that wi0 = 1/N for all i ∈ 1 . . . N .

At a time instant t+1 the particles are drawn from the importance
distribution which is also known as a proposal distribution [3]. In
this work the state transition distribution p(xt+1|xt) is used as a
importance distribution and the new particles are drawn according to

x
(i)
t+1 ∼ p(xt+1|x(i)t ), i = 1 . . . N.

Then, the importance weights of particles that are outside the feasible
region C are set to zero. Importance weights are updated using
measurements yt+1, after which the unnormalised weights are scaled
to sum to unity

wit+1 ∝ p(yt+1|x(i)t+1), i = 1 . . . N

wit+1 =
wit+1∑N
i=1 w

i
t+1

.

The estimate of a particle filter at a given time instant t + 1 is a
weighted mean of the particles

x̂t+1 =

N∑
i=1

wit+1x
(i)
t+1.

Every particle filter requires resampling stage to avoid all the weight
concentrating to one particle. Resampling is done by sampling N
new particles from the previous particle set such that the previous
particle weights are used as probability densities [3]. In a standard
particle filter the resampling is normally done at each time step.

III. WALL-CONSTRAINED MEAN

Consider a particle filter’s posterior distribution of position in the
plane at a given time instant, represented by particles located at x(i)

and having importance weights wi, for i ∈ 1 . . . N . Assume that
the particle filter has eliminated particles that lie outside the feasible
region C. Then the constrained minimum least-squares estimate is

x̂ = arg min
ξ∈C

N∑
i=1

wi‖x(i) − ξ‖2. (1)

In order to expedite the computation, let the feasible region be
partitioned into disjoint convex polygons, that is, C = ∪Jj=1Pj . Each
convex polygon Pj can be characterised as the intersection of Kj

half-planes:

Pj =

Kj⋂
k=1

{x : ajkx1 + bjkx2 < cjk}

= {x :
[ aj1 bj1

: :
ajKj

bjKj

]
x <

[ cj1
:

cjKj

]
},

where the notation of inequality between vectors is to be interpreted
as applying to all components.

With this representation of the feasible region, the estimate (1) can
be written as

x̂ = arg min
j∈1:J

min
ξj∈Pj

N∑
i=1

wi‖x(i) − ξj‖2. (2)

Each minimisation over Pj is a linear least-squares minimisation
problem with linear inequality constraints, for which efficient and
reliable algorithms exist, see e.g. [5, §5.2]. Implementations are
available in numerical libraries, for example lsqlin in the MATLAB

Optimization Toolbox. The computation is illustrated in Figure 2.

Figure 2. Computation of constrained position. The posterior is represented
by particles (cyan dots) with weights (∝ area of dot). The feasible region
is the union of three rectangles. The three minimizers of weighted sum of
square distances over each rectangle are shown by green crosses. The position
estimate (red circle) is the one that has the smallest weighted sum.

IV. MAXIMUM A-POSTERIORI ESTIMATE

To calculate a maximum a-posteriori (MAP) estimate for the
particle filter the Viterbi algorithm can be used [1]. The Viterbi
algorithm is a technique for the estimation of discrete state-space
hidden Markov models. In a continuous state-space Markov model
the discretisation of the state-space is generated automatically using
any particle filtering method [1]. Consider a particle filter’s posterior
distribution of position in the plane represented by particles located
at x(i) and having importance weights wi, for i ∈ 1 . . . N . Again
assume that the particle filter has eliminated particles that lie outside
the feasible region. Because all the particles in the inaccessible region
are eliminated the MAP estimate stays in the feasible region.

In the beginning of the filtering a posteriori densities a(i)0 for each
particle are computed from a given prior distribution

a
(i)
0 = log(p(x

(i)
0 )), i = 1 . . . N.

At every time instant t ≥ 0 current set of particles are stored
as a random grid denoted ΩNt = {x(i)t } for i = 1 . . . N before
resampling. At time t+1 > 0 assume the random grids ΩNt and ΩNt+1

as well as {a(i)t } for i = 1 . . . N are available, then for i = 1 . . . N

a
(i)
t+1 = log(p(yt+1|x(i)t+1)) + max

k∈{1...N}

[
a
(k)
t + log(p(x

(i)
t+1|x

(k)
t ))

]
ψ

(i)
t+1 = arg max

k∈{1...N}

[
a
(k)
t + log(p(x

(i)
t+1|x

(k)
t ))

]



The MAP estimate x̂MAP
t+1 is computed recursively at every time step

t+ 1 > 0
it+1 = arg max

i∈{1...N}
a
(i)
t+1

x̂MAP
t+1 = x

(it+1)
t+1 .

The Viterbi algorithm also includes a method for a MAP estimate
backtracking for finding the best path from the current time instant
to the beginning. For k = t− 1, t− 2, . . . , 1

ik = ψ
(ik+1)

k+1

x̂MAP
k = x

(ik)
k

This algorithm has a computational complexity O(N2t) and memory
requirements of order O(Nt) if the whole path xMAP

1:t is needed. In the
case of estimation when only the latest MAP estimate is needed the
memory requirements are only of order O(N) and the computational
complexity of order O(N2). In this case the past history of the
simulated paths can be discarded and the storage requirements do
not increase over time. [1]

V. TESTS AND RESULTS

We tested methods using simulated data and real-world data. The
following linear state model was used in the particle filter in both
test cases

xt+1 = Axt + qt, qt ∼ N(0, σ2
qI)

where

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


where T is the time step size. In the tests we used N = 400 particles.
In the beginning of the filtering a prior information x0 ∼ N(m0, D0)
was used, where

D0 =


σ2
r 0 0 0

0 σ2
r 0 0

0 0 σ2
v 0

0 0 0 σ2
v


such that σ2

r > σ2
v .

A. Simulated data

In the simulations we tested performance of the MAP estimate and
the constrained minimisation problem solution by using a corridor
with many turns. An imagined mobile device carried at uniform speed
is tracked using RSS signals from 6 nearby WiFi access points. The
simulated test track is 175 time steps long and the WiFi signals are
received only once every 6–9 time steps. The simulated test track is
illustrated in Figure 3.

In the simulation we used following non-linear measurement model
to illustrate the captured measurement from the j-th access point at
time t

yj,t = 10 log10

(
P0

‖rt − sj‖α

)
+ ut, j = 1 . . . 6

where sj is the location of the j-th access point, P0 is the power
of the transmitted signal and the exponent α > 1 is the path loss
exponent. The measurement noise ut ∼ N(0, σ2

uI).
The filter parameters were chosen such that the process noise σ2

q =
0.1 and measurement model noise σ2

u = 2. Initial uncertainty for the
position and velocity were σ2

r = 1 and σ2
v = 0.01 respectively.

START END

Figure 3. The simulated test track is shown by a black dash line. Grey area
illustrates an inaccessible region and red triangles locations of the access
points.

The MAP estimate stays in the feasible region because particles
that were in the inaccessible region were eliminated. There were some
time steps where the MAP estimate was closer to the true position
than the unconstrained mean of the particles, but most of the time
MAP estimate was jumping between the particles and that is not an
ideal property in a real time positioning.

Figure 4. Simulated test track case where the unconstrained mean (blue circle)
of the cyan particles is in the inaccessible region. A black circle is the true
position and red circle is the constrained mean. A green star is the MAP
estimate which performed slightly better at this instant.

The unconstrained mean of the particle cloud was inside the
corridor most of time, but there were a few time steps in the middle of
the track where the wall constraints became active. In straight parts of
the corridor the unconstrained mean remained nicely in the feasible
region as expected, but in some cases near turnings the particle
cloud spread widely around the corner and caused the unconstrained
mean drifted into the inaccessible region (Fig. 4). In those cases the
constrained minimisation problem solution was nicely in the feasible
region.

B. Real data

In the real data test presented methods are tested in one floor of
a building in Tampere University of Technology. Data was collected
using Acer Iconia tablet which was carried in hand while collecting
measurements. The real data test track is shown in Figure 5. During
the test track data collection the device collected WiFi measurements
at 45 different time instants and each time approximately 25 WiFi
access points were heard.
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Figure 5. Real test track in a university building.

WiFi learning data was collected off-line from all over the building.
These fingerprints were used to estimate path loss parameters as well
as locations of the heard access points [4].

In the real data tests the unconstrained mean performed well and
only occasionally it drifted into the inaccessible region. However,
in those rare cases the constrained mean worked as expected and
stayed in the feasible region in the corridor. In the straight parts of
the corridor the constrained and unconstrained mean performed well
and most of the time it was closer to the true position than the MAP
estimate (Fig. 6).
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Figure 6. The mean of the particle cloud performed better than the MAP
estimate most of the time.
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Figure 7. Last turning in the real data test where the MAP estimate (a green
star) is closer to the true position than the constrained mean (a red circle) at
the specific time instant.

The MAP estimate was again jumping between the particles but
it stayed in the corridor because particles in the inaccessible region
were eliminated. Like in the simulations, at a few time instants the
MAP estimate was closer to the true position than the constrained
mean as shown in Figure 7.

VI. CONCLUSION

In this work we proposed a method to enforce map constraints to
a particle filter’s position estimate. This method for ensuring that the

mean sequence does not cross walls is admittedly more complicated
than an ad-hoc remedy, but it is a principled solution with attractive
theoretical properties, and it is straightforward to compute using
standard numerical algorithms.

The constrained mean of the particle cloud gave better results com-
pared to the MAP estimate. At least in real time indoor positioning
the jumpiness of the MAP estimate is not ideal despite the fact that
the MAP estimate was closer to the true position at some specific time
instants. Computationally the constrained mean is slightly faster than
the MAP estimate and most of the time calculation of the constrained
mean is not even necessary if the unconstrained mean of the particle
cloud lies inside the feasible region.
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