Instruction Buffer with Limited Control Flow and
Loop Nest Support

Vladimir Guzma, Teemu Pitkinen, Jarmo Takala
Department of Computer Systems
Tampere University of Technology
FI-33720 Tampere, Finland
Email: name.surname @tut.fi

Abstract—In this work, we present a minimalistic, energy effi-
cient implementation of instruction buffer. We use loop detection
and execution trace analysis to find most commonly executed
loops in already scheduled application and tailor instruction
buffer size to the size of most commonly executed loop(s). In
addition to our previous work, we allow buffering of loops with
limited control flow (early exit from the loop or early return to
the beginning of the loop). We also show how analysis of loop
nests can decrease the number of times loop body is copied from
memory into the buffer. Our results show that in case of favorable
loop nest, we can execute all but initial loop iterations from the
instruction buffer, keeping instruction memory in the deselect
mode.

I. INTRODUCTION

Repeat buffers and instruction caches are known meth-
ods to improve performance of computing systems, avoiding
penalties introduced by memory hierarchies. In the area of
embedded systems, buffers and caches can also contribute to
reduction of overall energy requirements of the memories.
In particular, many DSP applications exhibits large amount
of instruction level parallelism with relatively simple control
structures. This, when compiled for wide parallel processor
(VLIW [1] or TTA [2] for example) often results in relatively
small loops executed for most of the algorithm execution.

Different methods for extending memory hierarchies, lead-
ing to reduction in energy requirements were surveyed in [3].
In particular, with growing size of the memory energy re-
quirements increase. Therefore, storing bodies of loops in
smaller memories reduces energy requirements of the hierar-
chy. Instruction buffers, as present in AT&T DSP16X series,
are an example of such method. In order to use such an
instruction buffer with size fixed in architecture, compiler
needs to be aware of the presence of instruction buffer. Also,
loop transformations may be required to fit the loops into
the buffer. Natural extension of this mechanism is storing
already decoded instructions in the buffer [4]. This saves cost
of repeated decoding of the instructions in loop body.

In [5], the energy consumption of processor is analyzed,
when using addressed, compiler controlled, fixed size instruc-
tion register file. Another approach to the problem is the
use of loop caches, such as [6]. Used as a LO cache, they
can store typical small loops. Typical use of caches does
not require assistance from the compiler or the designer.
Although in case of embedded system, customizing loop cache

size for particular application leads to better results. As with
the instruction buffers, loop caches can also be extended to
store cached instructions already decoded, such as Decode
Filter Cache described in [7], and Decoded Instruction Buffer
described in [4].

Another popular method is use of instruction scratch pad
memories [8]. Their use, unlike with caches, require mapping
of program parts by the compiler or the user.

Difference between instruction repeat buffer and simple
cache is in how the instruction to be executed from cache
or buffer are selected. Cache entries hold their instruction
addresses, and during execution the address is compared with
program counter and instruction is executed from cache, if
address matches. This process happens automatically, unless
the cache is locked via special instruction. In case of buffer, the
addresses of individual instructions are not stored. Therefore,
all the content of buffer is executed, unless control is informed
to leave the buffer and continue from specific instruction
memory address. This result in lower energy consumption of
instruction buffer implementation.

In our previous proof of the concept work [9], we considered
only the simplest loops without control flow and without
giving consideration to the loop nests.

In this paper, we extend the instruction buffer control to
allow for early exit of the buffer, or early return to the
beginning of the buffer. This addition allows for certain loop
structures to be executed from the buffer (as described in
Section II), increasing percentage of application instructions
executed from the instruction buffer.

We also address another recurring problem of our early
implementation. In case of nested loops, the body of the
most nested loop was stored in the buffer. However, when
the program execution finally left the loop body, returned to
the outer loop and execution eventually returned to the most
nested loop, copying of the loop body from memory into the
buffer was performed again, wasting energy. In this work we
show situations when this waste of energy can be avoided, and
loop content invalidated only after exiting outer loop(s).

The rest of this paper is organized as follows: in Section II
we show types of loops we find favorable for storing in the
instruction buffer. Section III outlines our implementation of
the control of the instruction buffer. Section IV describes our
approach for detecting loops to be stored in buffer. Section V

provides information of our experimental setup and Section VI
shows our results. Finally, Section VII provides final words
and outlines possibilities for future work.

II. CHARACTERISTIC LOOP TYPES

The optimizing compilers provide wide range of code trans-
formations to increase performance of resulting code. We use
Low Level Virtual Machine (LLVM) [10] as the compiler front-
end. The resulting binaries, when reverse engineered using
Control Dependence Graph (CDG) [11], shows presence of
several typical loop types. By constructing the CDG of the
already scheduled binary, we get advantage of knowledge of
loop positions in the generated binary.

In the Control Dependence Graph (static representation
of the code, unlike Control Flow Graph that is dynamic
representation), there are several types of nodes. The most
basic type contains single basic block, without a control flow.
In the Figures 1, 2 and 3, the nodes containing the range of
numbers indicate a range of instruction addresses that the node
representing the basic block contains.

Another type of node, denoted as Predicate with range of
instruction numbers, indicate the basic block ending with a
predicate. Based on the evaluation of the predicate, either True
or False branch will be taken, if the execution of some part
of the code depends on the predicate.

Remaining types of nodes do not have direct correspondence
to the instructions in the code. Nodes denoted as Region
(and specific type of Region node denoted as Start) are
placeholders, grouping together subtrees with the same control
dependence.

Their meaning is as follows: If execution reaches the Region
node, all of the child nodes (and subtrees rooted at child nodes)
will be executed, in no predefined order. Therefore, in the
Figure 1 for example, control starts at node Start, and nodes
0-6, 107-115 and Entry 1 will be executed.

Another of the helper nodes is denoted as Entry. This node
is specific type of Region node. The subtree rooted at node
Entry forms a loop. The last of the node types presented in
our graphs is denoted as Close. This is virtual placeholder for
the loop repeat. In presence of the loop with several continue
statements, all the predicates that leads to repeat of the loop
has edge towards the Close node, which then has loop close
edge back to the respective Entry node.

In our earlier work [9] we explored benefits of introducing
instruction buffer sized specifically for the most often used
simple loop. This loop type, visible in Figure 1 as starting
from node Entry 3, contained only single basic block, ending
with the loop predicate test. When test evaluated to be False,
the loop was repeated. After exiting the loop, we invalidated
the content of the buffer, so the next candidate loop can be
buffered.

This approach has some disadvantages. One, clearly visible
from the Figure 1 is that in presence of the loop nest, with
single loop at the deepest level, the content of the loop will
be repeatedly copied, after leaving the loop starting at Entry
3, the control will return to the outer loop starting with Entry

2 and the loop at Entry 3 will be re-entered. This provides
unnecessary lost of energy, as each time the loop is entered, the
first iteration will be executed from the memory while content
of the loop will be copied to the buffer. Similar situation can
be seen also on the Figure 2, with loop starting with Entry
3 inside the loop starting with Entry 2, without any sibling
loops.

Therefore, this particular type of loop nests needs to be
detected and handled differently. Once the simplest loop is
found, the parent node of the loop Entry node is tested. If the
node is Entry as well we check whether or not our simple loop
has sibling node denoted as Entry too. This would indicate two
loops side by side inside the outer loop. If this is not the case,
we can avoid unnecessary copying, the buffer invalidate flag
can be moved further away from the loop. In case pictured in
the Figure 1, there are three possible locations for invalidate
flag.

1) The invalidate flag can be placed right after the end
of the most nested loop, virtually in the basic block
succeeding execution of the loop (Entry 3) present in
the outer loop (Entry 2).

2) The invalidate flag can be placed outside the middle
loop. In this case, the flag can be placed in the body
of loop denoted with Entry 1, after exiting loop starting
with Entry 3.

3) The invalidate flag can be placed outside the outer loop,
effectively in the wind up code in the main function of
the program.

In case pictured in the Figure 2, only first two choices are
available. With placing the invalidate marker in the body of
loop starting with Entry 2, or in the basic block succeeding
the loop with Entry 2.

Another, often generated loop type, contains limited control
flow. In practical terms, the loop is often written as to be
executed infinitely, but it contains one or more tests which
provide early exit of the loop, or it is executed for limited
number of iterations with early continue statements. Example
of such a loop can be seen on Figure 3, with the loop starting
at node Entry 9, containing two basic blocks ending with
predicate.

This type of loop can also be buffered, pending buffer
control ability to evaluate if the branch inside the loop buffer
points to the instruction at the beginning of the buffer or other
address. Our implementation of this mechanism is presented
in Section III on Figure 4.

The case pictured on Figure 3 show two additional loops.
Starting with Entry 7 and Entry 8. Both those loops can be
buffered as was presented in our earlier work [9]. Adding
loop starting with Entry 9 therefore increases the number of
instruction executed from the buffer.

III. INSTRUCTION BUFFER CONTROL

The Figure 4 outlines our implementation of state machine
controlling instruction buffer. For controlling of instruction
buffer, we choose to add two bits to the instruction word.

Fig. 1. Simple loop nest in DCT 8x8.

Predicate(144 - 204) ’

Fig. 2. Structure of Viterbi.

Predicate(202 - 242) Close Predicate(249 - 260) lose Predicate(313 - 317)

rue

“lose

Predicate(318 - 337)

Region 64

=
2
&

Fig. 3. Part of structure of ADPCM.

jump ‘1’
[(jump ‘0"and counter =0
counter = buffer_valid_counter)
or
(jump ‘1"and
next_pc != buffer_start)]

buffer valid ‘1’

counter < max

Run from buffer

Run From Memory
»| buffer_en="0’
mem_en="1"

buffer valid ‘0’

(jump ‘0" and
counter = max)

A A

run_out_of_buffer ‘1’

copy to buffer and

buffer_en="1" (jump ‘1’and >| run from memory
mem _en =0 run‘1’and buffer_en="1"
B invalidate ='1") mem_en="1"

counter =

0

(jump ‘1"and
next_pc = buffer_start)
counter =0

Fig. 4.

The default option is to execute from memory. The instruc-
tions that should be stored in the instruction buffer are marked
with different flag, execute and copy. If the content of the
buffer is invalid, executing such an instruction from memory
triggers simultaneous copying of the instruction into the in-
struction buffer. Once buffer is full, all further execution comes
from the buffer, until it is exited. Another flag, invalidate, is to
indicate that the content of the buffer becomes invalid. On the
next occasion when the execute and copy marked instruction
is fetched from the memory, it will be stored in the buffer
again. Finally, the execute and invalidate flag will force buffer
to invalidate the content if exiting the buffer. This allows
for successive loop to be stored without any instructions in
between.

This approach together with our state machine allows for
several possible scenarios.

« Simple loop ending with conditional jump to the begin-
ning of the loop is fully stored in the buffer

« Simple loop ending with conditional jump to the begin-
ning of the loop is larger then the buffer and only part of
it is stored in buffer

o Loop contains several conditional jumps, either causing
loop to repeat before reaching end of the loop or exit the
loop

In order to allow for conditional jumps to the beginning of
the loop, or exiting loop, the starting address of the loop is
stored when the buffer is entered. Upon detecting the jump,
the destination address of jump is compared with the address
of the beginning of the loop.

Possible alternative for controlling the buffer is to add
buffer control register to the global control unit. Visible to
the compiler and programmer, control of the buffer could
be implementing by simply writing control commands to
this register as simple moves within the desired instruction.
However, in the presence of tightly scheduled loops, there
may not be free move slot to fill in with dedicated command in
required instructions. In particular, the beginning instruction of
the loop is often fully packed. In such case, recompilation of

(jump “1’and next_pc = buffer_start)
buffer_valid_counter = counter
counter =0

buffer valid =1

State machine controlling instruction buffer.

the application would be necessary, possibly leading to altered
schedule, with different loop size and need for repeated anal-
ysis and profiling. This approach may be worth considering
in case of compressed instructions, where the addition of two
bits is significant compared to compressed instruction width.

IV. DETECTION OF LOOPS AND PROFILING

In order to find loops most likely to benefit from the
use of instruction buffer, we combine analysis with trace
information. We start with application binary, compiled for the
selected architecture. By analyzing it, we obtain first Control
Flow Graph [12], from which in turn we construct Control
Dependence Graph (CDG) [11]. We favor CDG as it provides
easy way how to detect loops, by recursive application of
strongly connected components detection, and simple way how
to detect favorable loops.

The simplest kind of loop that can be stored in instruction
buffer contains only three nodes. Node Entry, which is virtual
node without actual equivalent in the application code, denotes
the location of the loop. Another member of the loop is the
Predicate node. In our implementation, the basic block and
predicate are combined. Therefore, the Predicate node contains
the body of the loop and ends with computation of loop
predicate and the jump. Third node we find in the simplest
loop is the Close node. Which again is the virtual node.

In order for loop to be without any additional control, there
can only be one outgoing edge from the Entry to the Predicate.
And upon evaluation of Predicate, there is one edge from
Predicate to the Close node and back edge from the Close
to the Entry. Cases with more than single outgoing edge from
Predicate node indicate if/else statement inside the loop body,
not the early exit or return to the beginning of the loop we
look for. Examples of such a loops are visible on Figure 1
with Entry 3, Figure 2 with Entry 3 and Entry 4, as well as
on Figure 3 with Entry 7 and Entry 8.

More complex loop type we look for, containing early exits
from the loop or early returns to the loop beginning, have
slightly more complex structure. Again, only one edge out of
the Entry node is allowed, leading to a first Predicate. From the

Predicate however, there can be only edge to the Region node
with child nodes with body of basic block and Close node, or
another Predicate with only one outgoing edge. Example of
such a loop is shown on Figure 3, starting with node Entry
9. Detection of such a loops allows for storing them in the
instruction buffer.

Another feature we look for in the generated CDG is the
presence of favorable loop nests. In case of loop nest, the Entry
node of the most nested loop is child node of the Entry node
of the outer loop. In order for most nested loop to be stored in
the instruction buffer, and the buffer invalidate marker to be
present outside the outer loop, the outer loop must be without
any additional control. In practice, this transfer to outer loop’s
Entry node to have only one child node with the Entry (only
one loop nested in the outer loop). Presence of more than
single Predicate as the child of the Entry node of the outer
loop does not create a problem. This kind of loops are present
in Figure 1, marked with Entry 2, and even Entry 1, as well
as in Figure 2 marked with Entry 2.

Once we have detected the favored loops, most deeply
nested as well as ones containing limited control flow, we can
find loop starting instruction address, as well as instructions
in which the conditional jumps are present.

All loops, however, are of no equal importance to our
effort to decrease energy consumption of the memory. Only
loops with sufficient high repeat count are good candidates for
storing in the instruction buffer since the process of storing
the instructions into the instruction buffer while reading them
from memory and executing, as it needs to be done in the first
iteration of the loop, brings additional energy cost of writing
into the buffer.

Therefore, we use instruction trace obtained by running
the application in the simulator to collect information about
how often the jump instruction detected in the loop body
is followed by the starting instruction of the loop - loop
iteration, and vice versa, how many times the jump instruction
is followed by the instruction outside the loop body - loop exit.

Collecting such information for all of the detected loops,
allows us to select the loops with higher percentage of exe-
cuted instructions as candidates for storing in the buffer, and
informs us of the average number of times loop is executed
before it is exited.

The accuracy of the collected information of course depends
on the quality of the input provided when collected the
execution trace. It is, however, possible to select a range of
possible inputs and collect a range of separate execution traces,
to improve accuracy of the collected loop iteration statistics.

V. EXPERIMENTAL SETUP

To demonstrate our approach for use of the instruction
buffer with limited control flow as well as advantage of
invalidating buffer after the exit of the outer loop, we picked
three example applications with favorable structures of the
CDG, as show in the Figure 1, 2 and 3. In case of DCT8x8 and
Viterbi we show the impact of delaying the buffer invalidation,
reducing number of copying into the buffer, and in the case

TABLE I
COLLECTED STATISTICS FOR DCT 8X8. NUMBER OF EXECUTED
INSTRUCTION IN WHOLE APPLICATION AS WELL AS NUMBER OF
INSTRUCTIONS EXECUTED INSIDE LOOP BODY AND NUMBER OF
INSTRUCTION COPIED INTO THE BUFFER.

Total Loop Loop Loop Loop

cycles | iteration | iteration (%) | copying | copying (%)

20033 17024 84.9 % 2432 12.1 %
TABLE II

ENERGY RESULTS FOR DCT 8X8, WITH MEMORY OF 128 INSTRUCTIONS
270 BITS WIDE AND INSTRUCTION BUFFER OF 76 INSTRUCTIONS.

Buffer Buffer Buffer | Memory All
status Control (mW) (mW) (mW) (mW)
No buffer 0 0 65.23 65.23
Simple buffer 3.19 10.5 15.69 29.38
2 loops buffer 3.19 10.9 11.33 25.42
3 loops buffer 3.19 11.3 7.24 21.73

of adpcm we insert into the loop buffer loop with two early
exits.

We used publicly available TCE toolset [13], which allows
for processor designs based on Transport Triggered Architec-
ture template [2]. This allowed us to easily modify control of
the previously designed TTA processor, adding the instruction
buffer of required size for particular application, as well as
state machine to implement control of the buffer. We also
added two bits to the instruction word binary for controlling
the buffer, as outlined in Section III.

To collect the actual power data, we synthesized the proces-
sor with Synopsys Design Compiler and ran gate level simula-
tion with Mentor Modelsim, from which the gate activity was
acquired for the Synopsys Power compiler. We used 130nm
technology library.

VI. RESULTS

We used the same baseline processor architecture in all of
our tests. The number of resources, in particular intercon-
nection network, required instruction width of 268 bits, 270
with additional buffer control bits. In Table I we present the
results of the collected statistics for the DCT8x8 application,
as outlined in Section IV. The fact that 84.9 % of the executed
instructions during a test run are from within the most deeply
nested loop gives us indication that the use of instruction buffer
can bring significant energy savings.

In Table II, we show collected results from the gate level
simulation. The line denoted No buffer indicate our baseline
case, where no instruction buffer is in use. In this case, only
the power consumed by the memories is shown.

The line denoted as Simple buffer show results for our most
simple control mechanism of the instruction buffer, with size
of 76 instructions. In this case, loop body is stored in the buffer
and once the loop is exited, content of the buffer is invalidated.
Therefore, if the application enters loop again, later in the
execution, the content of the loop will need to be copied into
the buffer again.

TABLE III
COLLECTED STATISTICS FOR VITERBI. NUMBER OF EXECUTED
INSTRUCTION IN WHOLE APPLICATION AS WELL AS NUMBER OF
INSTRUCTIONS EXECUTED INSIDE LOOP BODY AND NUMBER OF
INSTRUCTION COPIED INTO THE BUFFER.

Total Loop Loop Loop Loop
cycles iteration | iteration (%) | copying | copying (%)
1536148 | 1456752 94.8 % 46992 3 %
TABLE IV

ENERGY RESULTS FOR VITERBI, WITH MEMORY OF 2048 INSTRUCTIONS
270 BITS WIDE AND INSTRUCTION BUFFER OF 89 INSTRUCTIONS.

Buffer Buffer Buffer | Memory All
status Control (mW) (mW) (mW) (mW)
No buffer 0 0 77.26 77.26
Simple buffer 4.27 10.34 8.73 23.34
2 loops buffer 4.31 10.5 6.55 21.36

We can already see from our results that the addition of
the buffer requires additional power for the control logic of
the buffer, as well as for buffer itself. However, the power
required by the memory dropped dramatically, from 65.23 mW
to 15.69 mW. As a result, the overall power required dropped
from the 65.23 mW to the 29.38 mW, some 45 % of power
without the buffer.

We utilize advantage of favorable loop structure in this case
and provide two more test cases. In line denoted with 2 loops
buffer, we store again most nested loop into the same buffer
of 76 instructions, but we invalidate the buffer content only
after the outer loop is exited. Eventually reducing number
of times the content of the loop is copied into the buffer.
Our results show that in this case, the power required by
buffer control remains same as previously, while buffer power
increases slightly since the buffer content is read more often.
Memory power requirement, however, drops compared to the
simple buffer case to 11.33 mW, resulting in whole power of
25.42 mW, some 38 % of our baseline.

Since our approach of issuing invalidate buffer marker
outside the outer loop can be pushed up through loop nest,
as long as the structure of loop nest allows it, we provide
another case. In the line denoted 3 loops buffer we move buffer
invalidate marker outside the outer loop. This is essentially
situation that mimics single loop in the main program. The
content of the most nested loop will be copied into the buffer
just once and invalidated after exit of the outer most loop.
This case brings highest reduction in the memory energy with
7.24 mW, compared to 65.23 mW when no buffer is used at
all. Overall power required drops to 21.73 mW, some 33 %
of the baseline.

In the Table III we present collected information about the
most often executed loop in the Viterbi case. The Table IV
shows the results of a gate level simulation. In the line marked
as No buffer we show results of architecture without the buffer
implemented, providing for baseline case. In the line marked
as Simple buffer, only single most nested loop is stored in

TABLE V
COLLECTED STATISTICS FOR ADPCM. NUMBER OF EXECUTED
INSTRUCTION IN WHOLE APPLICATION AS WELL AS NUMBER OF
INSTRUCTIONS EXECUTED INSIDE LOOP BODY AND NUMBER OF
INSTRUCTION COPIED INTO THE BUFFER.

Total Loop Loop Loop Loop

cycles | iteration | iteration (%) | copying | copying (%)

84108 13082 155 % 1600 2 %
TABLE VI

ENERGY RESULTS FOR ADPCM WITH MEMORY OF 2048 INSTRUCTIONS
270 BITS WIDE AND INSTRUCTION BUFFER WITH 32 INSTRUCTIONS.

Buffer Buffer Buffer | Memory All
status Control (mW) (mW) (mW) (mW)
No buffer 0 0 77.26 77.26
Early exit buffer 2.26 1.25 70.00 73.51

the buffer of 89 instructions, and its content is invalidated
once the loop is exited. Due to fact that the loop is executed
for some 94.8 % of all instruction, this case already provides
significant savings. Memory power drops from 77.26 mW to
some 8.73 mW, some 11 % of former. With added cost of
buffer control and buffer, the sum of power required grows to
23.34 mW, some 30 % of the baseline case.

As in case of DCT8x8, Viterbi also contains nested loop of
favorable structure. Therefore, we provide results for another
test, line marked with 2 loops buffer, where the buffer inval-
idate marker is pushed outside the outer loop. This reduces
number of copies into the buffer. Results show slight im-
provement compared to previous case, with power of memory
dropping to 6.55 mW compared to Simple buffer’s 8.73 mW.
This result in overall power of 21.36 mW, some 27 % of the
baseline case.

Above two cases show how our approach to invalidate buffer
content further away from the buffered inner loop contributed
to lowering of the power required by the memory. In particular,
the DCT8x8 case allows for all, except first, executions of the
inner loop of the loop nest from the buffer. The Tables V
and VI provides example of another approach presented in
this paper. First, Table V shows collected statistics about the
loop containing two early exits. This loop, however, provides
relative small coverage; only 15.5 % of program execution is
from within this loop. The Table VI show results of our gate
level simulation of this case. The No buffer shows baseline
case, with a memory power of 77.26 mW. The line Early
exit buffer shows the power of the memory dropping to some
70 mW. Buffer size in this case was 32 instructions. This
relative small drop is worsened by additional power required
for a buffer control and a buffer itself. Total power therefore
is 73.51 mW, some 95 % of the baseline case.

While this case shows that approach of storing the loop
with specific type of control flow in the buffer, it also shows
the borderline case. The small coverage of buffered loop, just
some 15 %, provide some drop in the memory power, but the
increase of the power for the buffer control and the buffer

makes overall saving minimal.

VII. CONCLUSION

In this work, we show two methods how to improve
utilization of the instruction buffer and reduce the memory
power. When favorable loop structures are detected, the trace
information can be used to collect information about how often
the particular loops are executed. This allows us to select
the loops with most coverage, and create instruction buffer
specifically sized for the given loops. While storing loops with
limited control flow structures, early exit or early return to
the beginning of the loop requires slightly more complicated
buffer control in order to compare the address of a jump with
the address of first instruction in the buffer. Second approach
of careful positioning of loop invalidate marker do not require
storing of the loop start address in the buffer control.

Our results show, that for loops with favorable structure,
large portion of copying the body of the loop into the buffer
can be eliminated, reducing power required by the memory to
minimum.

Furthermore, the instruction buffer may store instructions
in the decoded form, saving instruction decoding step when
executing from the buffer and consequently, saving power.
Another possibility is tied with instruction compression. In-
structions can be decompressed before storing in the buffer,
saving additional power required for repeated decompression
of the loop body.

REFERENCES

[1] J. A. Fisher, “Very long instruction word architectures and the ELI-512,”
in ISCA ’83: Proc. 10th int. symp. on Computer architecture. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1983, pp. 140-150.
[Online]. Available: http://portal.acm.org/citation.cfm?id=801649

[2] H. Corporaal, Microprocessor Architectures: From VLIW to TTA. John
Wiley & Sons, 1997.

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

L. Benini, A. Macii, and M. Poncino, “Energy-aware design of embed-
ded memories: A survey of technologies, architectures, and optimization
techniques,” ACM Trans. Embed. Comput. Syst., vol. 2, no. 1, pp. 5-32,
2003.

R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K. Nitta, A. Shridhar,
K. Seki, and K. Sasaki, “Instruction buffering to reduce power in
processors for signal processing,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 5, no. 4, pp. 417424, 1997.

W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient embedded computing,”
Computer, vol. 41, pp. 27-32, 2008.

J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an
energy efficient memory structure,” in MICRO 30: Proceedings of the
30th annual ACM/IEEE international symposium on Microarchitecture.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 184-193.
W. Tang, R. Gupta, and A. Nicolau, “Power savings in embedded
processors through decode filer cache,” in DATE ’'02: Proceedings of
the conference on Design, automation and test in Europe. Washington,
DC, USA: IEEE Computer Society, 2002, p. 443.

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in CODES ’02: Proceedings of the tenth interna-
tional symposium on Hardware/software codesign. ~New York, NY,
USA: ACM, 2002, pp. 73-78.

V. Guzma, T. Pitkdnen, and J. Takala, “Reducing instruction memory
energy consumption by using instruction buffer and after scheduling
analysis,” in Proc. Int. Symp. System-on-Chip, Tampere, Finland, Sep.
29-30 2010, pp. 99-102.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Genera-
tion Optimization, Palo Alto, CA, March 20-24 2004, p. 75.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4,
pp. 451-490, 1991.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
August 2006. [Online]. Available: http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20\ &path=ASIN/0321486811

P. Jddskeldinen, V. Guzma, A. Cilio, and J. Takala, “Codesign toolset for
application-specific instruction-set processors,” in Proc. SPIE Multime-
dia on Mobile Devices, San Jose, CA, Jan. 29-30 2007, pp. 65 070X-1
- 65070X~11.

