Turbo Decoding on Tailored OpenCL Processor

Heikki Kultala, Otto Esko, Pekka Jaidskeldinen,
Vladimir Guzma, Jarmo Takala
Tampere University of Technology

Tampere, Finland
Email: firstname.lastname @tut.fi

Abstract—Turbo coding is commonly used in the current
wireless standards such as 3G and 4G. However, due to the high
computational requirements, its software-defined implementation
is challenging. This paper proposes a static multi-issue exposed
datapath processor design tailored for turbo decoding. In order
to utilize the parallel processor datapath efficiently without
resorting to low level assembly programming, the turbo decoder
is implemented using OpenCL, a parallel programming standard
for heterogeneous devices. The proposed implementation includes
only a small set of Turbo-specific custom operations to accelerate
the most critical parts of the algorithm. Most of the computation
is performed using general-purpose integer operations. Thus,
the processor design can be used as a general-purpose OpenCL
accelerator for arbitrary integer workloads as well. The proposed
processor design was evaluated both by implementing it using a
Xilinx Virtex 6 FPGA and by ASIC synthesis using 130 nm and
40 nm technology libraries. The implementation achieves over
63 Mbps Turbo decoding throughput on a single low-power core.
According to the ASIC synthesis, the maximum operating clock
frequency is 344 MHz/1 050 MHz (130 nm/40 nm).

I. INTRODUCTION

Turbo code has been widely used in wireless communica-
tion standards such as CDMA2000, WCDMA, LTE and LTE-
A. Around the time the turbo code was invented, its high
decoding complexity and latency made it impossible to be used
in real time communications. Parallel turbo decoding [1], [2]
broke the limitation of sequential traversal across all trellis
stages, improving the decoding throughput dramatically. This
enabled more and more standards to adopt the turbo code as
their Forward Error Correction (FEC) scheme.

Because of the high computational complexity, turbo de-
coding in mobile baseband processors has been usually imple-
mented with customized fixed-function hardware blocks [3].
However, increasing fraction of the radio signal processing
functions in baseband are being implemented using software
running in Digital Signal Processors (DSP). The benefits of the
so-called Software Defined Radio (SDR) include the fast time
to market, multi-standard flexibility and the ability to update
the functionality after the product manufacture.

In this work we propose a Turbo decoder-optimized clus-
tered OpenCL accelerator processor based on the Transport
Triggered Architecture (TTA) design paradigm. The proposed
design includes only a small set of Turbo-specific custom
operations to accelerate the most critical parts of the algorithm.
Most of the computation is performed using general-purpose
integer operations using the OpenCL parallel programming

978-1-4673-2480-9/13/$31.00 (© 2013 IEEE

Jiao Xianjun
Nokia Research Center
Beijing, China
Email: ryan.jiao@nokia.com

Tommi Zetterman, Heikki Berg
Radio Systems Laboratory
Nokia Research Center
Espoo, Finland
Email: firstname.lastname @nokia.com

Infoy: ti

>
encoderl
interleaver
RSC Parity;: c1 s
Infoy: (t;,) encoder2

(a)

multiplexer

info bits: Uj,——=s

—>channel

Parity, Info,
channel— 9
L(c0;)] [L(t)
Extrinsic infog: L Apriori infog: L}z (u k)
demultiplexer|
Extrinsic|infos: Lg (n(uk))
12 (Tl'(uk) Posteriori info;
Deinterleaved.
Parity; l;rr(fizgtk))
info bits: il
(b)
Fig. 1. Structures of (a) turbo encoder and (b) turbo decoder.

standard [4]. Thus, the processor design can be used as a
general-purpose OpenCL accelerator for other integer work-
loads as well.

II. SOFTWARE ARCHITECTURE

Turbo encoder and decoder structures are depicted in
Fig. 1. At encoder side, information bits and its interleaved
version are encoded by two identical Recursive System-
atic Convolutional (RSC) encoders. K Systematic informa-
tion bits infoy = {to,...tk, ...tk —1}, parity bits parity, =
{c0g, ...c0, ...c0x _1} (from the first encoder) and parity bits
parityy = {clo,...cl,...clx_1} (from the second encoder)
are multiplexed and sent to the channel. At the decoder
side, noise corrupted {in foo, parityo} and {info1, parity:}
(info; produced by interleaving infoy) are fed into two
Maximum a Posteriori (MAP) decoders. Extrinsic information
on systematic bits is exchanged between two MAP decoders
via interleaver/deinterleaver in the iterative decoding process.
In the second half (MAP decoder2) of the last iteration,
estimates of the bits are produced based on hard decision of
posteriori information.

A. Fixed Point Max-Log-Map Algorithm

The Max-Log-Map algorithm [1], [5] is used to calculate
extrinsic information in each MAP decoder. The algorithm in-
puts are Log-Likelyhood Ratio (LLR) on the channel systematic
bit L(tx), the parity bit L(ck) and the priori systematic bit

Trellis stage

Sub-decoder P-1 Forward
trellis range transversal
| e ~seo”

b ><7 '
N - \ Backward
' transversal
)

Ss< Ss<
Read initial
------ _E states from
memory

1 <

T =~ Write end
Sub-decoder0 O> statesto
trellis range memory

1) I) 1 ' ;
1 1 t t T 1 time
MAP decoderl MAP decoder2 MAP decoderl | _ _ _MAP decoder2

(first half (second half (first half (second half

iteration) iteration) iteration) iteration)

Sub-decoderl
trellis range

Fig. 2. Trellis progresses and state metrics read/written.

Lo (ug) from the other MAP decoder. The algorithm output is
extrinsic LLR L (uy) on the systematic bit, which is calculated
by:

Le(ur) = (max{op—1(sk-1) + (2cx = 1)L{ck) + Bi(sr)}
— max{ag—1(sk-1) + (2cx — 1) L(cx) + Br(sx)})/2

where sy, is the state index at stage k; ai—1(sk—1) and Bk (sk)
are forward and backward state metrics; ¢, € {0, 1} is parity
bit generated by state transition s;_1 — Sj; max,, —,{-} finds
the maximum value from all possible state transitions sx_; —
sg driven by input u; = x. A scale factor 0.7 [5] is used on
L. (ug) before exchanging it with the other MAP decoder. The
forward and backward state metrics are calculated recursively
by:
ai(sk) = max{ar—1(Sk—1) + Ye(sSk—1 = sk)}

Sk—1

Br(sk) = glki)f{ﬁk+l(3k+l) + vk (sk = Sk+1)}

Branch metric v (sg_1 — sk) = (2ur —1)(L(tx)+ La(ug)) +
(2¢,, — 1)L(cx), where ug,c, € {0,1} are state transition
related systematic and parity bits.

We used 8-bit signed numbers (char type in the OpenCL
C language) as the basic type. Modulo selection on maximum
metric [6], [7] is used to avoid overflow detection in trellis
traversal. In order to avoid ambiguity, branch metric v is
saturated into [—14, 14]. By using the fixed point parameters
above, the code word error rate performance loss in terms of
required signal to noise ratio is only 0.5 dB compared to a
floating point implementation.

B. Farallel OpenCL Program Design

Multiple subdecoders are used to process different portions
of input bits concurrently, and there is one subdecoder running
per one OpenCL Work Item (WI). All the WIs run in the
same OpenCL Work Group and can use local memory for
communication. All data except constants and the input and
output buffers are put into the local or the private memory.

In each subdecoder, forward and backward traversal are
performed concurrently [8]. The initial state metrics of the
subdecoder are taken from the ending state of adjacent MAP
subdecoder in the previous iteration [8]. The trellis-time pro-
gressing of subdecoders is depicted in Fig. 2 assuming P
subdecoders.

L(ck), L(t) and L,(uy) are divided into P subblocks (of
size¢ N = K/P) to be fed into P parallel subdecoders.

In the beginning of the kernel code, the data is rearranged
to achive coalesced memory accesses, i.e., each WI accesses
memory from the form of L[Nd + t] (stride) to L[tP + d]
(block), where d € {0,1,...P — 1} is subdecoder/WI index
returned by function get_local_id(0). ¢t € {0,1,...N —1} is the
trellis stage index used in the traversal/loop inside of a WI.
Besides input data rearrangement, the intermediate memory
used in the calculation is also arranged in block manner. This
arrangement ensures that the adjacent WIs access adjacent
memory addresses and therefore vector memory access is
easily achieved. Interleaving infoy elements to get info;
(also in coalesced form) is also performed in all WIs. These
conversions are integrated to the routines which copy data
from the global memory input buffers to the local mem-
ory. Corresponding reverse arrangement and interleaving are
merged into the copy back routines at the end of the kernel
code. Interleaving addresses are pre-calculated during compile
time into constant tables. In addition, the state metrics of the
subdecoders are initialized appropriately.

Both the forward and the backward trellis traversals of
length N are done simultaneously in each WI. Traversal is split
into two loops (both of size N/2). Before the first loop, the
initial state metrics needed by the forward and the backward
traversals are read from the local memory. In the first loop,
the forward and the backward state metrics are calculated
and stored in WI private memory recursively from stage 0
to (IV/2) — 1 and stage N — 1 to N/2, respectively. In the
second loop, besides the forward and backward recursive state
metrics calculation (stage N/2 to N — 1 and stage (N/2) — 1
to 0 respectively), extrinsic LLRs are calculated according to
new calculated state metrics and stored state metrics in the first
loop, and stored into local memory in an interleaved manner to
have second half iteration access a priori LLR in a streaming
manner. After the second loop, a priori state metrics of forward
and backward are saved into local memory which will be read
by adjacent WIs in the next iteration.

The second half iteration has almost the same processing
with the first half iteration except that extrinsic LLRs are stored
in a non-interleaved manner to have the first half iteration
access a priori LLR in streaming manner in the next itera-
tion. Because of the conflict-free character of LTE Quadratic
Permutation Polynomial (QPP) interleaver, accessing extrincs
LLRs is either dynamically coalesced or statically vectorized
(explained in the next section).

III. PROCESSOR ARCHITECTURE

The processor architecture was tailored using the 77TA-
based Co-design Environment (TCE) tools and its retargetable
OpenCL compiler [9], [10] based on the Transport Triggered
Architecture (TTA) paradigm [11]. In transport triggered pro-
cessors, the datapath buses are exposed to the programmer:
the processor is programmed by scheduling the data transfers
that take place. Actual operations (e.g., arithmetic or memory
operations) are executed when a transport is made to specific
“trigger port” of a function unit implementing the operation.

Compared to traditional “operation-programmed” Very
Long Instruction Word (VLIW) architectures, where the instruc-

DMA connection from
Host PC via PCle

[Global Globall
MMO MM1

Parallel memory
conflict detection
‘ Parallel memory arbiter ‘

P

Vector LSU ‘ ‘

Global Local

Vector LSU
Private

Vector LSU ‘

‘ Interconnect ‘

Interconnect

Lane 0 Extras

‘ Lane 2

i ‘ ¢ Lane N

[Internode connect |

[TTA Instruction |

Fig. 3. Processor architecture and the memory hierarchy. Per-lane vector
Load Store Unit (LSU) data connections are only drawn from Lane O for
clarity. The data memory is divided into three separate address spaces
matching the OpenCL standard: global, local and private. Each address space
is implemented with multiple parallel 32-bit wide memory modules (MM).

tion set specifies operations, and data transfers occur as part of
operations, the TTA programming model has the benefit that
the register file bypasses are explicitly programmed (‘“software
bypassing”), and all the operands of operations do not have to
be read in the same clock cycle. Similarly, the computed results
do not have to be read to the destination register file on the
same cycle they are produced, and the result write to a register
can be totally omitted of the result is bypassed directly to some
another operation. This allows using smaller register files with
less read and write ports [12].

Because in TTA processors the register files and function
units are fully decoupled from the rest of the architecture due to
the customizable interconnection network, it is easy to design
new processors in a “component based” manner.

A. Clustered Static Multi-Issue Exposed Datapath

The high-level structure of the proposed processor resem-
bles a common clustered-VLIW architecture with nine clusters.
Each cluster contains a set of function units, register files and
interconnect buses as listed in Table I. Eight of these clusters
are symmetric “lanes” dedicated to executing code in different
OpenCL work items in a data parallel fashion. The lanes can
execute code from multiple work items if there are more work
items than clusters, in order to get higher utilization of the
resources. All the resources in all of the clusters are explicitly
programmed with a single wide instruction to maximize the
utilization potential of the datapath resources. The architecture
along with its memory hierarchy (explained in the next section)
is illustrated in Fig. 3.

Each lane contains multiple function units and register
files with adequate connectivity for an additional degree of

ﬁ- LSUs and bcast -r
J|-|-|

Fig. 4. The clusters and their connectivity.

instruction-level parallelism. There is no hard limit on how
many work items can be scheduled on one lane. However, the
amount of live variables in comparison to the available general
purpose registers introduce the practical upper limit: If all the
private scalar variables do not fit into the registers of the lane,
they have to be spilled into the memory and the performance
drops dramatically.

The ninth cluster (called the “extras cluster”) is for exe-
cuting code common to all work items, such as calculating
memory addresses for vector memory operations, calculating
loop indices and handling control flow operations. There are
two interconnect buses connecting the extras cluster into the
lane clusters. Four lane clusters share each bus, and a separate
broadcast unit was added for transferring the data that is the
same for all work items from the extras cluster to all the lanes.

Multiple datapath interconnect topologies were explored
during the design of the processor before settling to the one
depicted in Fig. 4. The reasoning behind the chosen topology
is that there is no expected data traffic between the different
lanes. OpenCL work items are by definition independent, thus
their data should reside within a lane. All the Inter-cluster
traffic is between a lane cluster and the extras cluster, or from
the extras cluster to some or all of the lanes. A “star topology”
around the extras cluster was originally selected as the basis
for the interconnect as it allows fast transfers from the extras
cluster to the lanes and from the lanes to the extras. A full star
topology would have added eight transport buses just for the
lane interconnections, and most of the time these buses would
have stayed unused. Simulations showed that the “split bar
topology” that shares one bus between four lane interconnects
did not cause any performance degradation, but allowed the
processor to have six buses less than in a full star topology.

TABLE 1. RESOURCES IN THE CLUSTERS OF THE PROCESSOR. (*) =
SHARED WITH LANE 0 (**) = ONE SHARED WITH LANE 0. ALL SHARED
WITH VECTOR LSU.

Resource lanes | extras | total
Integer register files (2rd+2wr ports, 16 regs each) 4 4 36
Boolean register files (1rd+1wr port, 2 regs each) 0 1 1

Integer ALUs 2 3 19
Adders/subtractors 2 3 19
Multiplier 1 0 8

Turbo-specific Special Function Units 2 0 16
Pack/Unpack Function Units 2 0 16
Vector LSU data ports 3 3(%) 24
Scatter-gather/scalar LSU 1 3(k*) 10
Transport bus 8 10 76

B. Memory Architecture

The OpenCL standard defines an abstract memory model
hierarchy with multiple address spaces for OpenCL devices.

The global address space is shared among work groups and
the host processor. The local memory is shared between work
items within a single work group, and the private memory
contains the private variables of the work items. The mapping
of these address spaces to actual memories is left to the
implementation, which allows device specific optimizations.
The memory bandwidth utilization can be maximized by
carefully deciding the address space mapping and writing the
application to take the full advantage of it, or vice versa. [4]

The memory architecture of the proposed processor is
divided into three independent address spaces according to the
OpenCL address space division as depicted in Fig. 3. In our
test setup, a personal computer host had DMA access to the
global memory via PCI Express bus. The local and the private
memories were not directly accessible from the processor host.

In order to satisfy the high bandwidth requirements of the
turbo decoder, vector memory operations were implemented
to access each address space. A common way to increase
memory bandwidth without expensive multiport memories is
to use a parallel memory architecture consisting of multiple
parallel single port memory modules [13]. In our architecture,
the number of 32-bit parallel memory modules per local and
private address spaces matches the number of lane clusters.
This setup allows each lane to have conflict free 32-bit access
to local and private memories in parallel per clock cycle in a
conflict free situation. The width of the global memory is 64-
bit, i.e. two memory modules, which matches the data width
of the x4 PCI Express bus used in the test setup. The access to
global memory is performed with an interleaving vector LSU
which also supports scalar operations. This vector LSU can
perform a maximum of 64-bit memory access per clock cycle.
Wider accesses are internally pipelined and interleaved.

Private memory vector LSU is interfaced with the same
number of memory modules as there are lane clusters. Like the
global memory vector LSU, the private memory vector LSU
assumes low order scheme and provides vector accesses for
multiples of 32-bit words. Scalar accesses are also supported.
The differentiating feature compared to the global memory
vector LSU is that the private memory vector LSU implements
wider vector accesses without interleaving.

The access to the local address space differs from the
other address spaces. As seen in the Fig. 3, there are scalar
LSUs and a vector LSU connected to the the local memory
modules through a memory arbiter and a parallel memory
conflict detection hardware. The purpose of the memory arbiter
is to serialize the potential concurrent accesses from the local
memory vector LSU and the scalar LSUs. That is, the memory
hierarchy supports both dynamically coalesced and statically
scheduled parallel memory accesses.

The conflict detection hardware is a refined version of the
implementation proposed by Tanskanen et al. [13] This hard-
ware unit includes runtime memory access conflict detection
and conflict resolution logic which are used to provide scatter-
gather access to the parallel memory using the scalar LSUs.
The most important new features in the updated hardware unit
include support for subword accesses and merging of non-
conflicting subword writes to a same bank into a single write
operation.

The parallel memory conflict detection hardware also in-

cludes the data and the address crossbars which simplify the
design of the local memory vector LSU. This vector LSU
has to only take care of the address calculations for the
vector access and the sign extension of the loaded data. The
reason for including the local memory vector LSU lies in the
static address calculations: whenever the vector access can be
determined during the compile time it saves the lane clusters
the burden of calculating all of the addresses explicitly.

C. Mapping the Algorithm to the Memory Architecture

Ideally, the address calculations for the vector LSUs are
performed in the extras cluster. For this reason, the vector
LSU address ports are only connected to the extras cluster.
The address port connections are drawn with dashed arrows
in Fig. 3. Each of the input and the output data ports are
connected to a single lane, e.g. , the second ports are connected
to the second lane cluster. The first ports are the exception to
this rule as they are also connected to the extras cluster in
addition to the first lane cluster. This allows extras cluster to
perform scalar accesses through the vector LSU.

All the other memory operations in the inner loops except
the extrinsic values which are used to transfer data between
the first half (MAP decoderl) and the second half (MAP
decoder2) of the turbo decoder are trivially compile-time
vectorizable. The interleaving, on the other hand, makes the
memory addresses dynamic and prevent vectorization of these
memory operations. Each extrinsic value in both halves is
written once per iteration, but read twice per iteration, once
for forward metrics and one for backward metrics. By storing
the first decoder extrinsic buffer in an interleaved format, and
the second decoder extrinsic buffer in a non-interleaved format,
all stores to both extrinsic stores are dynamic (scatter) stores
without bank conflict (character of the LTE QPP interleaver),
and all the loads from both buffers become streaming loads
which can be vectorized and perfectly parallelized. As loads
make up two thirds of the total memory operations, this saves
address calculation operations.

In order to utilize the full bandwidth of the load-store units,
four 8-bit values are packed together in SIMD-like fashion on
many data buffers. This allows accessing 32 8-bit values with
one 256-bit vector memory operation.

D. Special Function Units

Recursive state metrics calculation is a group of operations
consisting of consecutive sum and max, or difference and max
operations. There are eight of these operation pairs running
four times for every iteration of each produced bit. A Special
Function Unit (SFU) that can execute these operations quickly
was added to the design. A similar SFU was proposed in [14]
and [15]. Our implementation does not include the branch
metric 7y value calculation, which is done by general purpose
integer FUs outside SFU, so the same custom operation can
be used for both the forward and the backward metrics.

Using 8-bit arithmetic precision allows additional optimiza-
tion for this SFU: the input and output data can be kept in a
4x8b SIMD format, which reduces the need for I/O ports in
the function unit, register read and write ports in the register
files and the number of programmable transport buses. The
SFU implements saturating arithmetic on the branch metric

v in order to avoid the ambiguity of modulo selection. For
constructing and deconstructing the 4x8b SIMD words, we
added the PACK and UNPACK operations.

Extrinsic LLRs calculation is handled by another SFU.
This SFU uses the same 4x8b SIMD format to read 17 input
values (8 forward state metrics, 8 backward state metrics and 1
parity LLR) by using only 5 input ports. The metric data can
stay in the SIMD format whole time from the state metrics
calculations to the Extrinsic LLRs.

IV. EVALUATION

The processor design space was explored by varying the
number of lane clusters, the subdecoder count, and the set
of custom operations (SFUs) to include. For all experiments,
aggressive compiler-based loop unrolling was used, the in-
struction memory size limiting the unroll threshold. Instruction
memory sizes of 2 048 and 4 096 instructions words were
benchmarked, though 4 096 is assumed to be too big for
realistic implementation.

Table II shows the throughput with different number of
processor lanes and subdecoder counts with the clock speed
scaled down to 100 MHz for the LTE 6 144 bits long codeblock
with 6 decoder iterations. The numbers are produced using the
instruction cycle accurate simulator of the TCE toolset which
does not model the memory conflicts. The FPGA implemen-
tation verified the number of conflicts to be insignificant. The
minor conflicts came from copy in and back routines in the
beginning and the end of the kernel, where the stride-block
arrangement and interleaving-deinterleaving are merged.

TABLE II. THROUGHPUT WITH DIFFERENT OPTIONS. SCALED DOWN

TO 100MHZ OPERATING FREQUENCY.

Lanes Subdecoders Performance (2k imem.) Performance (4k imem.)
2 1 087 kbps 1 108 kbps
2 4 1 539 kbps 1 583 kbps
8 1 633 kbps 1 700 kbps
4 2 128 kbps 2 157 kbps
4 8 2 889 kbps 3 024 kbps
16 3 561 kbps 3 887 kbps
8 4 058 kbps 4 136 kbps
8 16 6 344 Kkbps 6 717 kbps
32 6 149 kbps 7 253 kbps

Table II shows that with a small number of lanes, multiple
subdecoders in one vector lane gave better performance than
a single subdecoder in a vector lane. There are two reasons
for this. Firstly, the subdecoders have limited instruction-
level parallelism and having multiple of them allows better
utilization of all the processor hardware resources. Second,
there are too many data dependencies between successive
loop iterations that the loop unrolling does not expose enough
parallelism between the unrolled iterations. With the final 8-
lane machine with instruction memory size of 2048, however,
16 subdecoders gives better performance than 32 subdecoders.
This is because the smaller work groups allow more aggressive
unrolling while still keeping the instruction memory size under
the desired 2 048 instruction limit. With bigger instruction
memory the program scales much better with 32 subdecoders
than 16 subdecoders, and a speed of over 70 kbps/MHz can
be reached.

The processor design was first implemented with a Virtex 6
SX FPGA. This FPGA implementation was used to verify that

the design is reasonable for a real hardware implementation
and to get the accurate number of stall cycles due to memory
bank conflicts. The final FPGA implementation consumed
72 % of the slices and 22 % of the on-chip RAM blocks of the
chip. Executing the fastest version that fits in 2 048 instructions
on the FPGA revealed there were total of 4 151 stall cycles
during the execution resulting in a total of 101 023 cycles. This
means that the stall cycles increased the cycle count by 4.3 %,
resulting in performance of approximately 60.82 kbps/MHz.
Thus, the FPGA implementation running at 65 MHz reaches
performance of 3 953 kbps.

The processor core was also synthesized for 130 nm
and 40 nm ASIC processes. On the 130 nm process the
synthesis tools reported that 344 MHz clock speed would be
achievable, which results in the throughput of 20.92 Mbps
for the whole turbo decoder. The size of the processor core
size was 703 088 gates. Out of these the turbo-specific SFUs
consumed 51 643 gates, which is 7.3% of the total gate count
of the processor core. On the 40nm process the maximum
clock speed of 1 050 MHz was achived which results in
the maximum decoding throughput of 63.86 Mbps. Dynamic
power consumption was simulated to be 261 mW for the core
only, not including memories.

V. RELATED WORK

In the recent years, there have been promising efforts on
Software Defined Decoders (SDD) on DSPs [19]-[21] but to
our knowledge a solution which meets the demanding and
contradicting high throughput and low power consumption
requirements of mobile devices hasn’t been proposed.

Several SDD implementations that exploit the vast amounts
of parallelism available in Graphics Processing Units (GPU)
have been proposed recently [18], [22]-[24]. Of these so called
General Purpose computing on Graphics Processing Units
(GPGPU) efforts, the best we could find achieves 7.97 Mbps
throughput when decoding a single LTE turbo 6 144 bits
codeblock using an Nvidia C1060 GPU [18]. The C1060 has
total of 240 lanes on 10 processor cores and a 1.3 GHz clock
rate. In [24], 25 Mbps thoughput is achieved by decoding 2 048
codeblocks in parallel on an Nvidia GTX470 GPU. However,
this result is not comparable to the one proposed in this paper
because decoding multiple codeblocks in parallel does not help
in reducing the decoding latency of a single codeblock, and
the 187.8W power consumption of the C1060 GPU rules out
its use in mobile devices.

Salmela et al. proposed a high-performance turbo decoder
which also uses a TTA-based processor design [15]. Its
throughput of 22.7 Mbps on 130 nm ASIC technology is only
slightly faster than with the proposed design (20.92 Mbps) on
the same technology. Their software, however, is implemented
with manually optimized assembly.

Shahabuddin et al. have also proposed a turbo decoder
TTA processor [14]. Their processor is programmed using
the high-level C language. The authors report a throughput
of 31.78 Mbps for a single iteration, which translates to
5.30 Mbps for the full decode with 6 iterations, thus produces
significantly lower throughput than our proposal.

Vogt et al. proposed a turbo decoder running on a cus-
tomized SIMD-based processor [16]. Their design achieves

TABLE IIL.

PERFORMANCE COMPARISON WITH OTHER TURBO DECODERS

Category | Ref. HW Implementation SW language | clock rate (MHz) | performance (Mbps) | Normalized (kbps/MHz)
[14] TTA Processor C 200 5.30 26.50
[15] TTA Processor on 130 nm Assembly 277 22.7 81.92
[16] SIMD ASIP on 65nm 400 17 42.5
ASIP [16] SIMD ASIP on Virtex 4 109 4.6 422
[17] | FlexFEC(SIMD ASIP on 65nm) 320 233 7291
Proposed on Virtex 6 FPGA OpenCL 65 3.95 60.82
Proposed on 130nm OpenCL 344 20.92 60.82
Proposed on 40nm OpenCL 1 050 63.86 60.82
GPU [18] Nvidia C1060 CUDA 1 300 7.97 6.13

only slightly lower througput per clock rate than ours. How-
ever, although on FPGA they can reach higher clock speeds
than our proposed design, their design cannot reach as high
clock speeds on ASIC as ours. The general purpose pro-
grammability, however, is assumed to be similar to ours.

Naessens et al. proposed a turbo decoder running on a cus-
tomized 96-lane SIMD-based processor called FlexFEC [17].
The authors report a throughput of 140 Mbps for a single
iteration, which translates to 23.33 Mbps for the full decode
with 6 iterations while running at only 320 MHz. Their design
achieves slightly higher throughput per cycle than ours, but it
cannot reach as high clock frequencies than our design, and as
it only has 10-bit datapaths and memories, the general purpose
programmability of their design is assumed to be lower than
ours, though they have demonstrated that that they can execute
also LDPC codes in addition to turbo codes.

VI. CONCLUSIONS

We showed that an OpenCL-programmable clustered single
core TTA processor with a limited set of custom operations
can reach the latency requirements of Category 4 LTE and
well over third of the maximum bandwidth required by LTE.
The proposed processor is designed to be scalable to multiple
cores when decoding multiple codeblocks, thus a three-core
version of the design could be used to implement turbo
decoding on a SDR-based LTE implementation, while the same
processor can be used for other integer workloads. The ASIC
implementation synthesized on a 40 nm process achieves the
maximum clock frequency of 1 050 MHz which provides the
decoding throughput of 63 Mbps with a single core. To the best
of our knowledge, this throughput is better than any mostly
software-based implementation of the turbo decoder.

Acknowledgements. The work has been financially supported
by Academy of Finland (funding decision 253087).

REFERENCES
[1] A.J. Viterbi, “An intuitive justification and a simplified implementation
of the map decoder for convolutional codes,” IEEE Journal on Selected
Areas in Communications, vol. 16, pp. 260-264, Feb. 1998.

J.-M. Hsu, “A parallel decoding scheme for turbo codes,” in /IEEE Int.
Symp. Circ. Syst., 1998, vol. 4, pp. 445-448.

E. Tell, A. Nilsson, and D. Liu, “A low area and low power pro-
grammable baseband processor architecture,” in Int. Workshop System-
on-Chip for Real-Time Applications, 2005, pp. 347-351.

Khronos Group, OpenCL Specification vi1.2r15, Nov. 2011.

J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,”
Electronic Letters, vol. 36, pp. 1937-1939, 2000.

A.P. Hekstra, “An alternative to metric rescaling in viterbi decoders,”
IEEE Transactions on Communications, vol. 37, pp. 1220-1222, 1989.

[2]

[3]

[4]

[5]

[6]

(71

(8]

(91

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Worm, H. Michel, G. Kreiselmaier, M. Thul, and N. Wehn, “Ad-
vanced implementation issues of turbo-decoders,” in Proc. Int. Symp.
Turbo-Codes and Related Topics, 2000, pp. 351-354.

Y. Sun and J.R. Cavallaro, “Efficient hardware implementation of a
highly-parallel 3GPP LTE/LTE-advance turbo decoder,” Integration,
the VLSI Journal, vol. 44, pp. 305-315, Sept. 2011.

P.O. Jidskeldinen, C.S. de La Lama, P. Huerta, and J.H. Takala,
“OpenCL-based design methodology for application-specific proces-
sors,” in Int. Conf. Embedded Comput. Syst., July 2010, pp. 223 -230.

O. Esko, P. Jiidskeldinen, P. Huerta, C. S. de La Lama, J. Takala,
and J. Ignacio Martinez, “Customized exposed datapath soft-core
design flow with compiler support,” International Conference on Field
Programmable Logic and Applications, pp. 217-222, 2010.

H. Corporaal and M. Arnold, “Using Transport Triggered Architectures
for embedded processor design,” Integrated Computer-Aided Eng., vol.
5, no. 1, pp. 19-38, 1998.

J. Hoogerbrugge and H. Corporaal, “Register file port requirements of
Transport Triggered Architectures,” in Proc. Annual Int. Symposium
Microarchitecture, Nov. 30 - Dec. 2 1994, pp. 191-195.

J K. Tanskanen, T. Pitkiinen, R. Mikinen, and J. Takala, ‘Parallel
memory architecture for TTA processor,” in Embedded Computer
Systems: Architectures, Modeling, and Simulation, vol. 4599 of Lecture
Notes in Computer Science, pp. 273-282. Springer Berlin Heidelberg,
2007.

S. Shahabuddin, J. Janhunen, and M. Juntti, “Design of a transport
triggered architecture processor for flexible iterative turbo decoder,”
in Proc. Wireless Innovation Forum Conf. Wireless Commun. Tech.
Software Defined Radio, 2013, pp. 16-21.

P. Salmela, H. Sorokin, and J. Takala, “A programmable max-log-map
turbo decoder implementation,” VLSI Design, vol. 2008, 2008.

T. Vogt and N. Wehn, “A reconfigurable application specific instruction
set processor for convolutional and turbo decoding in a sdr environ-
ment,” in Proc. Design Automation Test in Europe, 2008, pp. 38—43.

F. Naessens et al., “A 10.37 mm2 675 mw reconfigurable Idpc and
turbo encoder and decoder for 802.11n, 802.16e and 3gpp-lte,” in VLSI
Circuits (VLSIC), 2010 IEEE Symposium on, 2010, pp. 213-214.

M. Wu, Y. Sun, and J.R. Cavallaro, “Implementation of a 3GPP LTE
Turbo Decoder Accelerator on GPU,” in IEEE Workshop on Signal
Processing Systems, Oct. 2010, pp. 192-197.

T. Ngo and I. Verbauwhede, “Turbo codes on the fixed point DSP
TMS320C55%,” in IEEE Workshop on Signal Processing Systems, 2000,
pp. 255-264.

L. Zhang and Y. Li, “Implementing and Optimizing a Turbo Decoder
on a TI TMS320C64x Device,” in International Conference on
Computational Problem-Solving (ICCP), Oct. 2011, pp. 401-404.
M.-C. Shin and I-C. Park, “SIMD Processor-Based Turbo Decoder
Supporting Multiple Third-Generation Wireless Standards,” [EEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15,
no. 7, pp. 801-810, Oct. 2007.

D. Lee, M. Wolf, and H. Kim, “Design Space Exploration of the Turbo
Decoding Algorithm on GPUs,” in CASES, 2010, pp. 217-226.
D.R.N. Yoge and N. Chandrachoodan, “GPU Implementation of a Pro-
grammable Turbo Decoder for Software Defined Radio Applications,”
in International Conference on VLSI Design, Jan. 2012, pp. 149-154.
M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, “Implementation of a
High Throughput 3GPP Turbo Decoder on GPU,” J Sign Process Syst,
Springer, Sept. 2011.

