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Abstract—We investigate possible improvements that can be
achieved in depth estimation by merging coded apertures and
stereo cameras. We analyze several stereo camera setups which
are equipped with different sets of coded apertures to explore
such possibilities. The demonstrated results of this analysis are
encouraging in the sense that coded apertures can provide
valuable complementary information to stereo vision based depth
estimation in some cases. In addition to that, we take advantage of
stereo camera arrangement to have a single shot multiple coded
aperture system. We show that with this system, it is possible
to extract depth information robustly, by utilizing the inherent
relation between the disparity and defocus cues, even for scene
regions which are problematic for stereo matching.

Index Terms—Depth estimation, stereo matching, depth from
defocus, coded aperture, point spread function

I. INTRODUCTION

The computer vision algorithms developed for the depth es-
timation problem usually utilize the binocular (disparity) depth
cue and/or monocular depth cues such as texture gradient
and defocus. Those which are based on stereo vision employ
the binocular cue and work effectively in most cases. The
fundamental stage of these algorithms is the stereo matching
in the sense that their performance mainly depends on the
success of finding pixel correspondences in stereo views.
Several stereo matching algorithms have been proposed in
the literature [1]. In spite of such variety that makes trading
off between the accuracy and the computation time possible,
stereo vision can not yet provide satisfactory depth estimates
for some problematic scene regions such as ones having
periodic textures, no textures, occluded parts or edges along
epipolar lines.

Among several monocular depth cues, the defocus cue is
the most exciting one. By using it, Pentland [2] initiated depth
from defocus (DfD), which then becomes a popular passive
depth estimation method. In DfD, depth estimation is done by
identifying the degree of blur, which is characterized by the
extent of point spread function (PSF), throughout the image.
In order to overcome the ill-posedness of the problem, usually
two or more defocused images are captured from the same
view with different but known camera settings, so the same
object is blurred to different degrees. The resulting different
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measurements, together with known camera parameters, are
sufficient to determine the amount of blur throughout the
image and the corresponding depth [3].

Coded aperture (CA), which refers to insertion of a special
mask in the aperture position, is another depth estimation
method which utilizes the defocus cue. CA was originally
used in astronomy to increase angular resolution and signal-
to-noise ratio (SNR). In computer vision, it has also been
utilized for different purposes such as light field capture [4]
and deblurring [5]. Here we emphasize its application in depth
estimation. The principle of CA for depth estimation is that
the inserted mask modifies the PSF of the imaging system so
that it becomes easier to discriminate different filter scales
(which correspond to different depths). Compared to DfD,
CA can relieve the burden of having at least two images
from the same view if a proper mask is in use, but better
results can be expected if a pair of complementary masks is
involved. Significant work has been done to find an optimal
aperture mask or a pair of complementary masks [6], [7], [8].
In addition to that, several depth estimation algorithms are
proposed for both single masks [6], [9] and mask pairs [8].

Based on the motivation that disparity cue and monocular
cues can provide complementary information, both cues have
also been used together in the same system [10] [11], to
improve depth estimation. With the same motivation, here
in this paper we investigate depth estimation from a stereo
camera equipped with CA. We particularly utilize CA to be
able to get defocus cue effectively. Recently, Takeda et al. [12]
presented a system employing a similar idea of merging CA
and stereo. In that work, the cameras are focused to different
depths to increase DfD performance. However, utilization of
CA is not optimized in the sense of depth estimation. Indeed,
the mask used in both cameras is chosen according to its
deblurring performance. Here we use two identical cameras
to avoid undesired effects (e.g. zooming) caused by using
different camera parameters on stereo matching and we utilize
aperture masks, either the same or not, which are optimized
for depth estimation.

II. CAMERA SETUPS AND METHODS

A camera records the projection of a three-dimensional (3D)
scene onto a sensor plane. Let us consider a Lambertian scene
without any occlusion that can be represented by a curved
surface S ⊂ R3 which is traced by the vector r, i.e. r ∈ S.



The captured image for such a 3D scene can be written as

f(x, y) =

∫∫
S

u(r)pr(x, y)dS, (1)

where u(r) is the light intensity at r on S and pr(x, y) is the
PSF which is determined by the aperture shape of the camera
as well as the distance of the point r to the camera plane.
Please note that Eq. 1 can be extended to more generic scenes
by specially treating occlusions.

Considering the imaging equation given by Eq. 1, DfD and
CA approaches obtain depth information by estimating the
correct PSFs throughout the image. In this paper, we employ
two of those approaches that are introduced in [8] and [9],
taking into account their demonstrated effectiveness. Zhou et
al. [8] impose the locally fronto-planar assumption on the
scene and thus model the imaging locally as a convolution

f = f0 ∗ pd + η, (2)

where ∗ is the convolution operation; f0 is the latent sharp
image, pd is the PSF corresponding to depth d and η is noise.
Then, depth information is obtained by using a deconvolution
based maximum a posteriori formulation where image prior
information is utilized. On the other hand, Favaro et al. [9]
employ a set of training image patches as input for Eq. 1
and estimate the range spaces of the linear imaging systems
corresponding to different depths. Depth estimation is then
achieved by comparing the projections of the captured image
patches onto these range spaces, without requiring inversion of
system matrices. In implementation, both approaches require
a set of PSFs sampled at discrete depths. While Favaro’s
approach can work with a single captured image, Zhou’s
approach is particularly effective with a pair of complementary
masks on a single view. Indeed, the pair of masks proposed
in [8] is designed to optimize both deconvolution and depth
discrimination performance, which is hard to achieve with a
single mask.

Fig. 1. Three camera setups. (a) two cameras with masks, e.g. the Levin’s
mask, in stereo setup; (b) two cameras with one of Zhou’s mask pair (denoted
as Zhou 1) in stereo setup, one more camera with other mask of Zhou’s pair
(denoted as Zhou 2) is used to capture one more image on the right view; (c)
two cameras with Zhou’s mask pair in stereo setup.

Based on the motivation of merging CA and stereo for
improved depth estimation performance, here in this paper
we discuss about three different camera setups that employ
Levin’s mask, as in Fig. 1(a), and Zhou’s pair of comple-
mentary masks, as in Fig. 1(b) and Fig. 1(c). Please note
that we choose to utilize Levin’s mask and Zhou’s mask
pair for their superb depth discrimination capability. Two
questions lead us to come up with the first two setups shown
in Fig. 1(a) and Fig. 1(b). One is whether using aperture

masks in a stereo camera seriously affects the performance
of ordinary stereo matching, the other is whether CA can
give us useful information where stereo matching fails. The
simulation results, presented in Sec. III, demonstrate that if the
captured stereo images are taken by cameras equipped with the
same mask, the performance of ordinary stereo matching is not
severely affected. In addition to that, more importantly, coded
aperture can provide complementary information to stereo in
some cases. These observations make the proposed setups
attractive for the depth estimation problem.

In the third setup shown in Fig. 1(c), each camera is
equipped with one of Zhou’s complementary masks. As it
is evident from using different masks in stereo cameras, the
motivation behind this setup is different from the one for the
first two setups mentioned above. Indeed, the purpose is to take
advantage of the effectiveness of Zhou’s complementary masks
without requiring additional cameras (other than a stereo
camera) as in the second setup, furthermore to have a single
shot system which does not require changing the camera or
mask as in Zhou’s approach [5]. For our proposed stereo setup
shown in Fig. 1(c), the images are not taken from the same
view as in the case of [5]. Therefore, we develop a variation
of Zhou’s approach that employs the inherent relation between
disparity and defocus on the stereo images. Intuitively, if the
shifting between stereo images is done by the correct disparity
value (for a particular depth), the corresponding pixels in two
images will be well aligned so that Zhou’s approach will be
able to be applied to them. Ideally, there exists a one-to-one
mapping between disparity and defocus, as employed in [12].
However, in most of practical cases the depth resolution that
can be achieved by CA is lower than the resolution provided
by stereo. As a consequence of this resolution mismatch, here
we set the relation between disparity and defocus as multi-to-
one. Theoretically, the correct disparity-defocus pair will give
the minimum error. The proposed approach is summarized in
Table I.

III. SIMULATION RESULTS

The synthetic scene that we use in our simulations includes
three fronto-parallel planes and a slanted plane as shown
in Fig. 2(a). Two cases are considered. One is problematic
textures including repetitive pattern and stripes. The other
includes gravel and rabbit’s fur which are good textures in
the sense of randomness. A virtual camera, with a 35mm lens
and 3.3 µm pixel pitch, is put in the middle of the baseline of a
normal stereo setup and focused at 1.5 m. The baseline length
is set to 5 cm. The left and right view images are generated
from the middle view image by means of shifting. For each
pixel, the amount of shift is calculated by triangulation. An
example of captured image, for the left view, with the ideal
pinhole camera model and the problematic texture is shown
in Fig. 2(b).

For a (physically valid) camera model having a physical
aperture, the parts of the scene that are out of focus are blurred
by a depth dependent PSF. Under thin lens and paraxial optics
approximations together with aberration free lens and perfectly



TABLE I
SUMMARY OF THE STEREO VERSION OF ZHOU’S APPROACH

INPUTS:
(fL, fR) : captured left and right images;
PSFs : a set of pre-sampled PSF pairs at different

depths; each pair is denoted as
(
pdL, p

d
R

)
;

STEPS:
1 : For each

(
pdL, p

d
R

)
in PSFs

2 : Find its associated disparity range S;
3 : For each s in S
4 : f ′L = fL (x− s, y)

5 : F̂0 =
F ′
LPd

L
+FRPd

R

|Pd
L|2+|Pd

R|2+|C|2

6 : E
(
pdL, p

d
R, s
)
=

∑
i=L,R

∣∣∣fi −F−1
{
F̂0P

d
i

}∣∣∣2
7 : End for
8 : End for
9 : (defocus, disparity) = argmin

pd
L
, pd

R
, s

E,∀pixel

NOTATIONS:
F : the Fourier transform of f ;
F : the complex conjugate of F ;
C : a matrix of noise to signal ratio [5];
F−1 : inverse Fourier transform operator.

Fig. 2. Simulation environment. (a) the arrangement of the virtual camera and
the scene; (b) a captured image on the left view with ideal pinhole aperture
and the problematic texture; (c) a captured image on the right view with the
Levin’s mask and the good texture, together with two example PSFs at depths
z=1.9m and z=2.2m (PSFs are scaled by a factor of 3 for visualization). Please
note that there are occluded regions in the scene.

incoherent light assumptions, we derive the PSF for a single
lens imaging system using wave optics [13] as

pd(x, y) =
1

d2

∣∣∣∣ ∫ ∫ a(ξ, η) exp
{
j
π

λ
zd(ξ

2 + η2)
}

× exp

{
−j 2π

λl
(xξ + yη)

}
dξdη

∣∣∣∣2, (3)

where a(ξ, η) is the lens aperture function or the mask for CA,
d is the depth of the point, l is the distance between lens and

sensor plane, zd = 1
d + 1

l −
1
f (f is the focal length) and λ is

the wavelength of the light. We work with the green channel
and thus take λ = 534nm. An example of right view image,
captured with the Levin’s mask for the good texture, together
with examples of two PSFs at different depths are shown in
Fig. 2(c). We use Eq. 3 to also determine the depth resolution
of CA. We set the resolution to 2.5 cm for which we observe
that two PSFs are discriminable enough and thus form the set
of PSFs to be used in depth estimation algorithms accordingly.

In order to observe whether using aperture masks in a stereo
camera seriously affects the performance of stereo matching,
we apply the same stereo matching algorithm [14], to different
stereo image pairs captured with identical aperture masks.
We consider pinhole, circular mask, Levin’s mask and one of
Zhou’s mask pair (at a time) cases. We also test the situation
that one camera is equipped with one of the Zhou’s mask
pair and the other camera is equipped with the other one. The
raw disparity maps are all compared with the ground truth
disparity map, and percentages of wrong disparity values are
given in Fig. 3, for both the problematic texture case and the
good texture case.

Fig. 3. The error percentages of stereo matching for different aperture masks,
for both the problematic texture case and the good texture case. Please note
that the pixels belonging to the black background are not considered in
comparisons.

As shown in Fig. 3, in the good texture case, the effects of
using the same aperture masks on the performance of stereo
matching are not severe; while in the problematic texture case,
stereo matching already fails even if no mask is used. In
the case that two cameras are equipped with different masks
(Zhou’s pair), the performance of stereo matching decreases
dramatically even with the good texture. That is actually
inevitable, since different mask shapes result in different
PSFs which affects the captured images differently and this
complicates stereo matching. These observations indicate that
if the same mask is employed in both cameras, we can have
integrated systems, as shown in Fig. 1(a) and Fig. 1(b), where
both stereo matching and CA can work independently with
acceptable performance.

In order to see whether CA can give useful information
where the stereo matching fails, we particularly consider the
problematic texture case. We test two cases: Favaro’s approach
with Levin’s mask and Zhou’s approach with Zhou’s mask



pair on the single view, as shown in Fig. 1(a) and Fig. 1(b),
respectively. The results, together with the result of stereo
matching in pinhole case, are shown in Fig. 4. Although the
depth resolution provided by CA is lower than that of stereo
matching, we get more reliable information as can be observed
in the figure.

Fig. 4. Three depth maps produced by three approaches on the problematic
texture case. (a) the defocus map obtained by the Favaro’s approach with the
Levin’s mask; (b) the defocus map obtained by the Zhou’s approach with
Zhou’s mask pair on the single view; (c) the disparity map obtained by stereo
matching with ideal pinhole aperture

Zhou’s approach gives the best result for the problematic
texture as shown in Fig. 4. However, it is worth to point out
that it takes two images from the same view, which might be
a limitation in practice. Therefore, the proposed setup shown
in Fig. 1(c) together with the algorithm given in Table I is of
critical importance. The disparity and defocus maps produced
by the proposed approach are shown in Fig. 5, for the prob-
lematic texture case. The results are promising. Comparing
Fig. 4(b) and Fig. 5(b), we can say that the proposed approach
does not degrade the performance of original Zhou’s approach.
Moreover, it simultaneously provides a disparity map which
has a significant improvement compared to the disparity map
produced by pure stereo matching shown in Fig. 4(c). In spite
of these improvements, it is worth to mention that the proposed
setup suffers from the occlusion problem introduced by the
stereo vision that is usually higher than the case in single view
CA (the extent of occlusion is determined by the baseline in
stereo, whereas it is determined by the aperture width in CA).

Fig. 5. The results of the proposed approach on the problematic texture case.
(a) the disparity map; (b) the defocus map.

IV. CONCLUSIONS

Based on the presented preliminary results, for the proposed
setups shown in Fig. 1(a) and Fig. 1(b), the degradation in
the performance of stereo matching (compared to the case
where no mask is used) is tolerable considering the superior

performance of CA approaches to stereo matching for prob-
lematic scene regions. Thus, having such two independently
working systems, it is possible to improve stereo vision based
depth estimation by merging the defocus and disparity maps
produced by CA and stereo matching, respectively. Although
it is not discussed in the paper, here it is worth to point out that
CA can also be utilized to provide complementary information
to stereo regarding occluded scene regions. Indeed, one of our
future plan is to develop a merging algorithm which com-
plements stereo based depth estimation with the information
produced by CA in problematic texture and occlusion cases.

For the setup shown in Fig. 1(c), we propose a stereo version
of Zhou’s CA approach that produces a disparity map and
a defocus map simultaneously. It provides convincing results
even for the problematic textures we tested, where ordinary
stereo matching fails. Furthermore, the setup possesses the
one shot property which removes the requirement of changing
cameras (or replacing masks) that presents in the case of single
view, multiple mask CA.

In conclusion, the demonstrated preliminary results are
promising and encourage further studies regarding the combi-
nation of stereo vision and CA for improved depth estimation.
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