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Abstract: In this article, we focused on developing the conditionally Gaussian hierarchical Bayesian
model (CG-HBM), which forms a superclass of several inversion methods for source localization of
brain activity using somatosensory evoked potential (SEP) and field (SEF) measurements. The goal
of this proof-of-concept study was to improve the applicability of the CG-HBM as a superclass
by proposing a robust approach for the parametrization of focal source scenarios. We aimed at a
parametrization that is invariant with respect to altering the noise level and the source space size.
The posterior difference between the gamma and inverse gamma hyperprior was minimized by
optimizing the shape parameter, while a suitable range for the scale parameter can be obtained via
the prior-over-measurement signal-to-noise ratio, which we introduce as a new concept in this study.
In the source localization experiments, the primary generator of the P20/N20 component was detected
in the Brodmann area 3b using the CG-HBM approach and a parameter range derived from the
existing knowledge of the Tikhonov-regularized minimum norm estimate, i.e., the classical Gaussian
prior model. Moreover, it seems that the detection of deep thalamic activity simultaneously with the
P20/N20 component with the gamma hyperprior can be enhanced while using a close-to-optimal
shape parameter value.

Keywords: electroencephalography (EEG); magnetoencephalography (MEG); somatosensory evoked
potentials; somatosensory evoked fields; P20/N20 component; hierarchical bayesian model;
parametrization; deep activity

1. Introduction

This article concerns computational source localization methods for the activity of the brain in
electro- and magnetoencephalography (EEG and MEG) [1–3]. Reconstructing the primary current
density of the neurons as a three-dimensional (3D) distribution restricted to the grey matter is an
ill-posed inverse problem, in which the prior model and reconstruction technique applied have a
major effect on the final result [3]. Consequently, a priori information, such as an anatomically and

Brain Sci. 2020, 10, 934; doi:10.3390/brainsci10120934 www.mdpi.com/journal/brainsci

http://www.mdpi.com/journal/brainsci
http://www.mdpi.com
https://orcid.org/0000-0002-8787-3984
https://orcid.org/0000-0001-6233-424X
http://dx.doi.org/10.3390/brainsci10120934
http://www.mdpi.com/journal/brainsci
https://www.mdpi.com/2076-3425/10/12/934?type=check_update&version=3


Brain Sci. 2020, 10, 934 2 of 22

physiologically accurate head model, is needed. When the inverse problem is formulated via Bayesian
statistics, the a priori knowledge can be rigorously modelled as a statistical prior distribution [4–8].

EEG and, particularly, MEG, are famously known to be more sensitive to the superficial parts
than to the deeper lying areas, e.g., the thalamus [9,10]. In this study, we focused on developing
the conditionally Gaussian hierarchical Bayesian model (CG-HBM) [11], which, based on numerical
simulations [4–8], has been suggested as a potential approach to reconstructing networks of focal
sources with variable depth. In CG-HBM, the prior has a hierarchical structure; the variance of a
Gaussian conditional prior is steered by a heavy-tailed hyperprior. This allows the primary current
density to have a considerably greater focal amplitude when compared to the background fluctuations
than what is otherwise possible with a Gaussian prior. CG-HBM forms a superclass for different
inversion methods as well as a potential platform for the development of new source localization
methods [12]. In clinical applications, focal reconstructions are needed, e.g., in epileptic focus
localization and in the analysis of epileptic networks during seizures for adults and paediatrics [13–15].

The aim and novelty of this proof-of-concept study is to improve the applicability of the CG-HBM
for localizing sources with variable depth by proposing a simple and robust parametrization approach
that has been designed to remain invariant with respect to alterations in the noise level [10,16–18]
and the size of the source space [5,19,20], with both these factors being essential with respect to the
localization outcome. An important goal is to obtain an appropriate localization performance with
different hypermodels and reconstruction techniques. Namely, one of the major challenges in using
CG-HBM is that the mutual differences between these models and techniques can be significant,
if the model parameters are not optimally set [6,7]. We referred to both simulated and experimental
somatosensory evoked potential (SEP) and field (SEF) datasets, and then selected the parameter
values with the aim of detecting the activity corresponding to the P20/N20 component, i.e., the 20 ms
post-stimulus response, occurring in the median nerve (wrist) stimulation [21–24]. The Brodmann area
3b activity in the hand-knob of the primary somatosensory cortex was reconstructed with a high-density
forward model. This stable and transient activity generally has an excellent signal-to-noise ratio (SNR),
especially in MEG, but also in EEG [22,25] and it is, therefore, well-suited for finding a high-density
reconstruction. Additionally, a sparse model [19] was applied in order to detect the deep thalamic
activity that is associated with the P20/N20 response.

We compared the gamma (G) and inverse gamma (IG) hyperprior in detecting the activity in
these regions. The previous numerical simulation studies [7,12] suggest that G and IG can lead to
two characteristically different reconstructions, if the shape and scale parameter, i.e., β and the θ0

determining the hyperprior are not ideally set. In particular, the shape parameter value β = 1.5
results in a suppressed deep activity with G hyperprior, as shown in [12]. We minimized the posterior
difference between G and IG by optimizing β, while an initial range for θ0 was obtained based
on the prior-over-measurement signal-to-noise ratio (PM-SNR), i.e., the relative weight of the prior
compared to the measurement noise. Here, we introduce PM-SNR as a new concept to allow for
balancing the θ0-value with respect to the source space size and the estimated level of the measurement
and modeling errors. The initial value for PM-SNR can be related to the existing knowledge of the
Tikhonov-regularized minimum norm estimate (MNE) [26,27] following from the classical Gaussian
prior model [28].

In our experiments, the iterative alternating sequential (IAS) and Markov chain Monte Carlo
(MCMC) sampling techniques presented in [7,29,30] were applied in order to reconstruct the activity.
We used a finite element method (FEM) that is based on the forward modeling approach [31,32],
which allows for creating an accurate volumetric discretization of a multi-compartment head
segmentation regarding its conductivity distribution and strongly folded tissue structures [33–37].
The source localization experiments were performed while using the Zeffiro interface (the source
code is available online at https://github.com/sampsapursiainen/zeffiro_interface) (ZI) software
pipeline [38], which couples the FEM forward model with CG-HBM.

https://github.com/sampsapursiainen/zeffiro_interface
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The results that were obtained for the known synthetic source suggest that, through maximum
a posteriori (MAP) estimation, one can reconstruct a simulated P20/N20 component without a priori
limiting the region of the activity. It was observed that MCMC sampling allowed for the posterior
to be adopted to the structure and resolution of the underlying numerical model and geometry,
thus avoiding numerical bias, e.g., overly focal results. We compared our CG-HBM reconstructions
to Tikhonov-regularized MNE [1] and the minimum current estimate (MCE) [39], which can be
interpreted as special cases of the IAS method in combination with the G hyperprior and with β = 1.5.
Based on our findings for three subjects, we suggest that, by choosing an optimization-based shape
parameter value β = 3 and a PM-SNR of 0–30 dB, with the exact value being determined by the
modeling accuracy assumed, the cortical generator of the P20/N20 component can be localized in the
Brodmann area 3b with both simulated and measured data. Moreover, it seems that the detection of
the correlated sub-cortical thalamic activity, simultaneously with the cortical one, could be enhanced
using the close-to-optimal shape parameter value, when the G hyperprior was used.

2. Methods

This section briefly reviews the mathematical CG-HBM approach and its implementation in
this study. The primary current density is denoted by x, which is the discretized approximation
of the primary current density |~Jp| in the brain, i.e., the unknown of the inverse problem, and the
measurement data vector is represented by y. In both EEG and MEG, the dependence of y on x,
i.e., the forward model can be formulated via the lead field matrix equation of the form y = Lx + n,
where n is a noise vector and L is the so-called lead field matrix [1]. Here, L is obtained via the FEM
discretization of the classical field equations following from the quasi-static approximation of the
Maxwell equations, as described in [31,40,41]. For the generality of the presentation, we assume that
L is obtained using SI-units, while y and n are normalized with respect to the amplitude A (here,
the `2-norm) of the measured or simulated signal.

2.1. Conditionally Gaussian Hierarchical Bayesian Model

For a single given dataset y, the classical Bayes formula for subjective conditional probabilities
can be written as

p(x | y) =
p(x) p(y | x)

p(y)
∝ p(x) p(y | x). (1)

That is, the posterior probability density p(x | y) of the unknown discretized primary current
density x in the brain is proportional to the product between the prior density p(x), i.e., the a priori
knowledge of x, and the likelihood function p(y | x) that follows from the measurement noise
model [42].

The measurement error is assumed here to be a Gaussian zero mean random vector n = y− Lx with
independent entries. Consequently, the likelihood is of the form p(y | x) ∝ exp(−(2σ2)−1‖Lx− y‖2),
where σ is the standard deviation of the noise. In the hierarchical Bayesian approach, one assumes the
prior to be a joint density p(x, θ) ∝ p(θ) p(x | θ) of x and a hyperparameter θ. That is, the posterior is
of the form

p(x, θ | y) ∝ p(θ) p(x | θ) p(y | x). (2)

In CG-HBM [7,11,43], the conditional part p(x | θ) is also a zero mean Gaussian density.
Its diagonal covariance matrix is predicted by a heavy-tailed hyperprior p(θ), which means that
the variance vector, i.e., the set of diagonal entries, is likely to contain outliers. Thus, it is implicitly
assumed that x is a sparse vector with a small subset of entries, which are noticeably large in absolute
value when compared to the other entries [6]. The number and intensity of these outliers are controlled
by the hyperprior [43]. The resulting impulse-like prior model for the unknown is particularly useful
in obtaining a focal reconstruction for the brain activity. The parameters determining the hyperprior
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allow for the level of the focality to be tuned, i.e., the rough relative portion of the x-entries that are
likely to a priori differ from zero.

2.1.1. Posterior Exploration

Given the posterior, the actual reconstruction can be found via several different approaches.
The most common ones can be divided into optimization and sampling techniques. The former
include the MAP algorithms, which are aimed at finding the maximizer of the posterior density,
i.e., xMAP = argmax ppost(x, θ | y). MAP estimation usually provides a faster, but less robust, way to
obtain a reconstruction than the sampling techniques, e.g., MCMC methods, which approximate the

conditional mean xCM = E(x, θ | y) =
∫
(x, θ)ppost(x, θ | y)dx dθ [28]. MCMC methods generate

samples from the posterior distribution by constructing a Markov chain that has the target posterior
distribution as its equilibrium distribution. A more detailed descriptions for the IAS MAP estimation
method and the MCMC sampler that was employed for conditional mean (CM) estimation can be
found in [7].

2.1.2. Gamma and Inverse Gamma Hyperprior

As the hyperprior, we use both the gamma G(θ | β, θ0) and inverse gamma IG(θ | β, θ0)

distributions, whose densities are supported on the set of non-negative real numbers with a structure
that is determined by the scale and shape parameter θ0 and β, respectively. In the present approach,
the scale parameter θ0 > 0 essentially sets the expected variance of the conditionally Gaussian prior.
It can be interpreted as the capability of the prior to detect brain activity growing along with the value
of θ0. The shape parameter steers the rate of the decay for the tail part. Finding a suitable value for θ0

and β is essential in avoiding an over- or under- sensitive prior, which might involve depth-bias or
emphasized noise-effects. Based on our earlier experience, this is especially important with regard
to G hyperprior, which might suppress deep activity, when β = 1.5 [12]. In order to make both the
G and IG hyperpriors perform similarly given θ0, we select β to be uniformly β = 3, which can be
interpreted as a close-to-optimal choice for minimizing the differences between the outcomes of G and
IG (Appendix A).

2.1.3. Total Scale

The source-wise scale parameter θ0 can be adapted to a given forward model by introducing
a total scale θ(tot)

0 , which gives the scale per distribution, while θ0 represents the scale per source.
This follows from the additivity of the Gaussian prior variance, i.e., that the nearby sources s1 and s2

with variances θ1 and θ2 have the total variance θ1 + θ2, if interpreted as a single source s = s1 + s2.
Thus, the relationship between the total and source-wise scale parameter can be written as

θ0 =
θ(tot)

0 σ2 A2

N
or θ(tot)

0 =
θ0N
σ2 A2 (3)

Namely, to have an invariant weight with respect to the likelihood, the scale θ(tot)
0 of the

conditionally Gaussian prior must be directly proportional to the source position count N of the
forward model and inversely proportional to the relative noise variance σ2 and the squared amplitude
A2. Because we assume θ(tot)

0 to be an application-specific constant, we introduce here, as a new concept,
the following prior-over-measurement signal-to-noise ratio

PM-SNR=dB(
√

θ(tot)
0 )=dB(

√
N)+dB(δ)+dB(A)−dB(δ(ref)) with δ=

√
θ0

σA
, δ(ref)=

|~Jp|
A

, (4)

and dB(x) = 20 log10 x. Here, δ(ref) is a reference level which is obtained as the ratio between the
a priori estimated norm of the primary current density |~Jp| and the signal amplitude A. The term
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dB(A) is included in (4), as we present θ0 and θ(tot)
0 with respect to normalized amplitude A = 1.

PM-SNR measures the relative weight of the prior as compared to the noise level and it is balanced
by the system size. At the reference level, when PM-SNR is 0 dB or δ

√
N = δ(ref),

√
θ0 matches

the a priori noise-induced fluctuation of the candidate solution normalized by A
√

N, which is,√
θ0 = σ|~Jp|/(A

√
N). In order to generalize these expressions for the case of a non-diagonal noise

covariance, one can interpret the relative noise variance σ2 as the largest eigenvalue, i.e., the `2-norm,
of the noise covariance matrix. The PM-SNR of the scale parameter values (Table 1) that were applied
in this study refer to the present EEG amplitude A = 10−6 V that was obtained as the `2-norm of the
measured P20/N20 component, relative noise standard deviation of σ = 0.03, and the typical 10 nAm
dipolar source strength in the brain [1,44,45], i.e., |~Jp| = 10−8 Am.

Because δ also represents the relative weight of a non-conditional Gaussian prior, it can be
associated with the Tikhonov regularization parameter of MNE [7,26,28]. In the Brainstorm software,
the default level of the relative prior weight is set to a constant value dB(δ)= 9 dB, as shown in the
tutorial [27]. Taking into account the source count of this tutorial, which is 15,000, this would result in
a PM-SNR of 10 dB. However, notice that a constant default level is not invariant under changing the
dimension of the source space.

Note that the current definition (4) of PM-SNR has been selected in order to obtain a uniform
representation with respect to G and IG hyperprior. Alternatively, PM-SNR can be defined with respect
to the mean of the hyperprior that is given by the total scale, i.e., θ(tot)

0 β and θ(tot)
0 /(β− 1) for G and IG,

resulting in a correction of +dB(
√

β) = +5 dB and−dB(
√

β− 1) = −3 dB, when β = 3, respectively.

2.1.4. Latent Noise Effects

We assume that the relative (total) noise standard deviation is of the form σ = sσ, where σ is the
standard deviation of the a priori known noise and s ≥ 1 is a correcting term due to latent noise effects,
such as forward modeling inaccuracies due to the quasi-static approximation, inter-individual head
tissue conductivity differences, and/or segmentation errors, see e.g., [46]. Denoting δ =

√
θ0/(σA), it

follows that the PM-SNR is of the form

PM-SNR = PM-SNR + dB(s), (5)

where dB(s) is the total contribution of the latent noise effects. Thus, PM-SNR will be greater than
PM-SNR for models including latent noise, i.e., when s > 1: the greater the latent noise, the greater
weight of the prior. When PM-SNR is 0 dB, PM-SNR is given by dB(s) and the explicit formula for the
scaling parameter is

√
θ0 = sσ|~Jp|/(A

√
N), where σ corresponds to the known noise level and s to the

a priori assumption of the latent noise strength.
The shape parameter choice defines the spread of the hyperprior that can be related to the

uncertainty of δ(ref) following from, e.g., the potentially varying source depth that affects the amplitude
of the measurement: the smaller the shape parameter value, the greater the spread. With the current
value β = 3, the interdecile range (Appendix B) of the hyperprior p(θ) obtains values from 0.4E(θ) to
1.8E(θ) with E(θ) denoting the hyperprior mean. Thus,

√
θ, i.e., the expected source strength given

θ, varies dB(
√

1.8/0.4) = 7 dB over the interdecile range. This matches our approximation for the
variation of δ(ref) that was obtained as the interquartile range of the lead field based simulated `2-norm
signal amplitude over the source space.

2.2. Numerical Model

2.2.1. Head Segmentation

The FE implementation approach that was presented in [47] was applied, including the formula for
the EEG and MEG lead field matrix. A tetrahedral finite element mesh was generated by subdividing
each voxel in a surface-based regular hexahedral segmentation into six tetrahedra. The FE meshes
were generated while using a six-layer surface segmentation based on T1-weighted and T2-weighted
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MRI sequences recorded with a 3T MRI scanner. The surfaces (level-sets) of skin, compact bone (skull),
spongious bone (skull), cerebrospinal fluid (CSF), grey matter, and white matter were included in the
model. An FE mesh was generated for both 1 and 2 mm resolution (voxel size). The first of these
included 3.8 M nodes and 22 M tetrahedra and the second one 0.47 M nodes and 2.7 M tetrahedra.

2.2.2. Source Space

In order to generate the source space of x, we used the FEM-based quadratic H(div) approach
presented in [31], employing the Position Based Optimization (PBO) interpolation with the 10-source
(eight-point) stencil. That is, a given dipolar current source was estimated via the four linear face
and six quadratic edge-based vector basis functions that are associated with the barycenter of the
tetrahedron containing the source position. The sources were placed in the interior part of the
grey matter compartment in the elements with a full set (four) of neighbors belonging to the same
compartment. The rest of the compartment forming the boundary layer of the grey matter contained
no sources, since the modeling accuracy is known to be reduced for the boundary layer [40].

A total of 105 points were distributed randomly in the grey matter for each FE mesh in order to
obtain a uniform (mesh-independent) source density for reconstructing the somatosensory 3b activity.
This initial source count was selected to allow the present source localization accuracy, in principle,
to surpass the a priori known maximum limit of EEG and MEG, which is about 9 mm and 2–4 mm,
respectively [22,48–51]. A uniform point spread was obtained through a straightforward random
permutation due to the uniform mesh structure.

The points that were placed on the boundary layer in the initial stage were filtered out of the
eventual distribution, which consisted of 7.6× 104 and 6.1× 104 positions for the 1 and 2 mm FE
meshes, respectively. The slightly lower source count for the 2 mm case was caused by the thicker
boundary layer that arose from the larger element size. Each position comprised three sources that were
oriented along the three Cartesian coordinate axes. Hence, the total number of sources was 2.28× 105

and 1.83× 105 for the 1 and 2 mm FE meshes, respectively. The source localization experiments were
primarily conducted with the 1 mm resolution, while the 2 mm accuracy was utilized in order to
examine the forward modeling effects on the source localization. In addition to the dense source space,
a sparse one was created to enhance the detectability [19] of the thalamic component simultaneously
with the Brodmann area 3b activity [21,52,53]. In the sparse distribution, the number of source positions
was 1/100 as compared to that of the dense one and so the 1 mm mesh was used in the forward
simulation. The Cartesian set of sources was used in inverting the data. After the inversion process,
the distribution obtained was projected in the cortical areas while using the normal constraint (Figure 1)
of the cortex. In other words, the vector field component parallel to the surface normal constituted the
final reconstruction. In the sub-cortical areas, the normal projection was not applied, as the sub-cortical
neurons are not generally oriented along the surface normal of the neuronal tissue.

Figure 1. Left: a schematic illustration depicting the sagittal cut of the primary somatosensory cortex.
The P20/N20 component of the somatosensory activity occurs in the Brodmann area 3b, which is
located in the posterior wall of the central sulcus [24]. Right: the orientation of the primary currents
(somatosensory evoked potential (SEP)/somatosensory evoked field (SEF) components) in the cerebral
cortex is normal with respect to the surface due to the normal alignment of the pyramidal cells [10].
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2.3. Measured Data

The source localization experiments were conducted while using a dataset that was obtained for
three healthy and right-handed adult male subjects (I), (II), and (III), who were 49, 32, and 27 years
old, respectively. The right median nerve was stimulated with the subject lying in a supine position
in a magnetically shielded room. Simultaneous SEP/SEF measurements were performed while
using 80 AgCl sintered ring electrodes (EASYCAP GmbH, Herrsching, Germany), including 74 EEG
channels with an additional six channels for detecting eye movements together with an MEG setup
(OMEGA2005, VSM MedTech Ltd). Four out of a total of 275 magnetometers and two out of 74 EEG
sensors were reported as defective channels. Therefore, the measurements from 72 electrodes and
271 magnetometers (Figure 2) were used in the eventual dataset. A total of 1200 stimuli were obtained
during a 10 min. measurement session. The electric pulse duration was 0.5 ms. In order to determine
the magnitude, the stimulus strength was increased until a clear movement of the thumb was visible.
Each measurement had a 300 ms total duration, which was subdivided into a 100 ms pre-stimulus and
200 ms post-stimulus sub-interval. The inter-stimulus interval varied between 350 and 450 ms to avoid
habituation. The measurements were averaged and pre-processed while using a notch filter for the
50 Hz frequency and its harmonics to remove the power-line noise. The responses measured for the
different stimuli were averaged to produce the SEP/SEF dataset (Figure 3) the amplitude of which
was normalized to one.

Figure 2. General overview of the P20/N20 component reconstruction for subject (I). The activity is
found in the posterior bank of the central sulcus, the Brodmann 3b area for electroencephalography
(EEG) (left) and magnetoencephalography (MEG) dataset (right). A MAP estimate of the global source
distribution is visualized on the surface of the white matter. The locations of 72 EEG electrodes and 271
magnetometers are shown in the left and right images, respectively.

The data were filtered while using a bandpass of 20–250 Hz [52]. The data vector y for the inversion
computation corresponded to the P20/N20 activity peak occurring at the 20 ms post-stimulus time
point (Figure 3).

2.4. Synthetic Data

In order to enable a comparison between the measured and synthetic data, a normally-oriented
synthetic dipolar source was placed in the hand-knob of the 3b area in the posterior wall of the central
sulcus (Figure 4). Its position in the MNI (Montreal Neurological Institute) coordinate system was
x = −38 mm, y = −28 mm, z = 56 mm with±2 mm accuracy. The data for the source were simulated
while using the present FEM-based forward model and additive zero mean Gaussian noise with 3%
standard deviation with respect to the maximal signal amplitude. The same noise model was also
applied in order to obtain the likelihood function for the measured data.
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Figure 3. A butterfly plot of the somatosensory evoked field (SEF) (upper left) and potential (SEP)
(lower left) from 0 to 80 ms post-stimulus with the 20 ms time point being indicated by the vertical line.
The P20/N20 peak topographies for SEF (upper, right) and SEP (lower right) are also visualized.

Figure 4. (Left) the hand knob (green Ω shape) is a part of the Brodmann area 3b in the central sulcus
(between the pre-central (blue) and post-central (red) areas) [10]. (Center) regions of interest (ROIs)
for the CM computations; the spherical region of interest (ROI) for detecting the 3b activity in the
hand-knob together with the ROI for the thalamic activity detection, including the post-central area
(red), thalamus (orange), and brainstem (cyan). (Right) the 24 mm diameter spherical ROI (grey)
approximately covers the hand-knob of the left hemisphere. A global MAP estimate for the synthetic
EEG data is visualized on the cortex.

2.5. Source Localization Estimates

The source localization tests were performed using the dense and sparse source distributions
(Table 1) that are described in Section 2.2.2. The first of these was applied to be as accurate as possible
in detecting the cortical source of the P20/N20 component in the 3b area using both measured and
synthethic data. The reason for using the sparse distribution was to enhance the detectability of the
thalamic activity [19], which occurs simultaneously with the cortical peak [52,53].

The MAP estimate was found via three IAS iteration steps. For CM, a sample of 10,000 points was
created with the MCMC sampler. Of these, 1000 points in the beginning of the sequence were neglected
as a burn-in phase. When examining the 3b area, the MCMC-based CM evaluation was due to the
high dimensionality of the source space, performed by limiting the activity within a relatively small
spherical ROI that was defined based on the MAP estimates (Figure 2). The placement of the ROI
(Figure 4) was selected according to the literature on the hand-knob within the Brodmann area 3b [10].
The difference vector pointing from the synthetic source position to the center point of the ROI was
∆x = 4 mm, ∆y = −1 mm, ∆z = 2 mm. Rather than being regarded as a complete reconstruction
approach, the spherical ROI is primarily regarded here as a tool for analyzing the peak of the posterior
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in the vicinity of the area where the activity is maximized. When reconstructing the thalamic source
via MCMC sampling, the ROI covered the somatosensory area together with the sub-cortical thalamus
and brainstem structures (Figure 4). In order to investigate the effects of the measurement noise,
the P20/N20 response was reconstructed with G hyperprior by averaging the EEG data for 300 and
100 epochs. When compared to the principal case of 1200 epochs, this can be estimated to lead to
+6 dB and +10 dB increments of the relative measurement noise level σ, based on the central limit
theorem, i.e., dB(

√
1200/300) ≈ +6 dB and dB(

√
1200/100) ≈ +10 dB. In the case of elevated noise,

the scale parameter was adjusted according to (4), while assuming that PM-SNR is unaffected by any
change in σ. Moreover, MNE and MCE were investigated as alternative reconstruction approaches for
EEG. These were obtained as the first and third step iterates of the IAS algorithm while using the G
hyperprior with β = 1.5, i.e., the value that yields the match between IAS, MNE, and MCE [7].

Table 1. The values of the prior-over-measurement signal-to-noise ratio (PM-SNR) for different
reconstructions specified by the type of data (Measured/Synthetic), measurement modality
(EEG/MEG), estimate (MAP/CM), and the hyperprior (G/IG). The source-wise θ0-value that was used
for the dense and sparse source distribution corresponds to the total scale. PM-SNR can be associated
with the a priori assumption on the latent noise strength, i.e., dB(s) (Section 2.1.4). When PM-SNR is 0
dB, the weight of the prior matches the a priori known noise level of 3%.

Data Modality Estimate Hyp. PM-SNR (dB) Sparse θ0 Dense θ0

Meas. EEG MAP G 20 10−10 10−12

IG 30 10−9 10−11

CM G 20 10−10 10−12

IG 20 10−10 10−12

MEG MAP G 20 10−10 10−12

IG 30 10−9 10−11

CM G 20 10−10 10−12

IG 20 10−10 10−12

Synth. EEG MAP G 20 10−10 10−12

IG 30 10−9 10−11

CM G 0 10−12 10−14

IG 0 10−12 10−14

MEG MAP G 30 10−9 10−11

IG 30 10−9 10−11

CM G 0 10−12 10−14

IG 0 10−12 10−14

Implementation in Zeffiro Interface

The present forward and inverse methods have been implemented in the Zeffiro interface (ZI) [38]
toolbox, which uses the Matlab (The MathWorks Inc., Natrick, MA 01760, USA) platform. ZI aims to
provide a user-friendly tool for advanced forward and inverse computations, e.g., accurate lead field
matrix construction, source localization, and time-lapse data analysis. ZI’s on-line code repository (see
Introduction) includes the methods that were used in the present study. To speed up the processing,
ZI utilizes a Graphics Processing Unit (GPU) in the following processes: (1) segmenting the FE
grid, (2) creating the lead field, (3) source space interpolation for visualizing the reconstructions,
and (4) inverting the data. The following computation times were obtained for a 1 mm resolution
six-compartment test mesh with 36 M elements, 6 M nodes, and 0.5 M sources while using a Lenovo
P910 ThinkStation (Lenovo, Hong Kong, China) that was equipped with 2 × Intel Xeon E5-2697A
v4 CPUs (Intel, Santa Clara, CA 95054, USA)(RAM 256 GB) and 2 ×NVIDIA Quadro P6000 GPUs
(NVIDIA,Santa Clara, CA 95051, USA)(RAM 24 GB): (1) FE mesh generation = 1329 s, (2) EEG lead
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field for 128 electrodes = 2362 s, (3) MEG lead field for 154 magnetometers = 4826 s, and (4) Source
space interpolation = 212 s.

3. Results

This section describes the results that were obtained with the data of subjects (I)–(III). An in-depth
source localization analysis was conducted in the case of (I). Additionally, the parameters that were
suggested by this analysis were tested with (II) and (III) in order to learn about the inter-subject
variability of the results. The results of the source localization analysis have been included in
Figures 5–10 and Table 2 shows the results of the additional tests.

Table 2. Subject (I). The spread of the current distribution reconstructed in the Brodmann area 3b
together with the position and orientation difference between the synthetic and reconstructed source.
The position and orientation of the reconstruction was obtained from its center of mass in the spherical
ROI. The MAP estimates were obtained without restricting the source space. In the case of CM,
the reconstruction process was limited to ROI.

FE MAP Spread Orientation Position
Mesh Data Model Data /CM Space Hyper. (mm2) ∆ (deg) ∆ (mm)

1 mm Meas. HBM EEG MAP Global G 44.7 9.7 3.4
Global IG 43.9 9.5 3.4

CM ROI G 71.8 13.3 3.8
ROI IG 37.7 14.4 3.8

MEG MAP Global G 32.0 10.8 3.4
Global IG 32.2 10.8 3.4

CM ROI G 48.8 11.7 3.7
ROI IG 42.0 12.5 3.8

Synth. EEG MAP Global G 42.0 5.8 3.5
Global IG 40.3 5.7 3.5

CM ROI G 64.8 11.5 3.7
ROI IG 69.9 12.1 3.7

MEG MAP Global G 22.0 12.8 3.5
Global IG 13.7 14.3 3.5

CM ROI G 52.5 12.8 3.7
ROI IG 52.6 12.6 3.7

+6 dB EEG MAP Global G 43.2 10.3 3.4
CM ROI G 68.9 14.8 3.7

+10 dB MAP Global G 26.8 11.1 3.4
CM ROI G 40.2 17.2 3.7

Regul. EEG MNE Global G 38.1 9.2 3.4
MCE Global G 12 8.8 3.6

2 mm Meas. EEG MAP Global G 34.8 9.7 3.4
Global IG 30.9 9.7 3.4

CM ROI G 43.4 10.8 3.5
ROI IG 67.7 7.0 3.4

MEG MAP Global G 87.9 11.5 3.5
Global IG 87.9 11.5 3.5

CM ROI G 99.4 15.8 3.5
ROI IG 115.9 15.6 3.5

Synth. EEG MAP Global G 64.2 6.7 3.3
Global IG 64.2 6.7 3.3

CM ROI G 39.1 13.7 3.5
ROI IG 8.3 14.2 3.3

MEG MAP Global G 60.2 10.2 3.5
Global IG 51.0 10.0 3.5

CM ROI G 109.0 16.1 3.5
ROI IG 110.2 16.1 3.5
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Figure 5. Subject (I). The MAP estimation results obtained with the iterative alternating sequential (IAS)
iteration corresponding to the measured and synthetic data and the 1 mm FE mesh. The placement and
orientation of the synthetic source is shown by the red pin and the mass center of the reconstruction by
the green one. The MAP estimates shown have been obtained using a global source space.

Figure 6. Subject (I). The CM estimation results that were obtained with the sampler corresponding
to the measured and synthetic data and the 1 mm FE mesh. The marginal density (histograms)
of the (volumetric) posterior mass centre is illustrated for each case and the Cartesian coordinate
component, including the median (red dashed line) and the 90% credibility interval, is conditional on
the subjectively selected parameters (solid blue line). The placement and orientation of the synthetic
source is shown by the red pin and mass center of the reconstruction by the green one. The CM
estimates shown have been obtained by limiting the source space within ROI
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Figure 7. Subject (I). The thalamic activity found with 1200 epochs and 1 mm FE mesh resolution.
The ventral posterolateral part of the left thalamus (contralateral to the stimulation side) can be observed
as having been activated in most reconstructions. The source space is global for the MAP estimates and
limited to ROI in the case of CM.

Figure 8. Subject (I). The results obtained with an EEG and G hypermodel while using 300 and 100
epochs, i.e., approximately +6 dB and +10 dB noise level, respectively. The source space is global for
the MAP estimates and limited to ROI in the case of CM.

Figure 9. Subject (I). Minimum norm estimation (MNE) and minimum current estimation (MCE) results
for the P20/N20 component network for surface activity (central sulcus) and deep activity (thalamus).
The source space is global for both MNE and MCE.
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Cortical overview
G hyperprior

Central sulcus
G hyperprior

Central sulcus
IG hyperprior

Deep part
G hyperprior

Deep part
IG hyperprior

Cortical overview
G hyperprior

Central sulcus
G hyperprior

Central sulcus
IG hyperprior

Deep part
G hyperprior

Deep part
IG hyperprior

Subject (II) Subject (III)

Figure 10. Visualization of the cortical and sub-cortical activity reconstructed for subjects (II) on the
left and (III) on the right using the EEG data corresponding to the P20/N20 component. In addition to
the cortical overview, showing the reconstruction that was obtained with G hyperprior, excerpts of
the cortical activity around the central sulcus and the sub-cortical (deep) activity are shown for G and
IG hyperprior.

3.1. Subject (I)

The proposed parametrization approach was found to perform appropriately in detecting the
peak of the P20/N20 component in the area 3b of the left hemisphere. In addition to the activity of the
3b area, the overlaid thalamic component was found to be detectable in the experiments that were
performed with the sparse source density. In each source localization test, the scale parameter value
was selected based on PM-SNR, whose case-specific value was within the range 0–30 dB depending
on the assumption of the latent noise level (Section 2.1.4): the greater the latent noise, the larger the
PM-SNR, i.e., the stronger the prior. PM-SNR was chosen to be 20 dB and 0 dB for the measured and
synthetic data, respectively, when assuming that the latent modeling errors that are related to the
measured data are emphasized by a +20 dB difference in PM-SNR as compared to the simulated case.
The PM-SNR value for the MAP estimation process was set to be larger than for the CM evaluation,
allowing +10 dB for the latent errors due to the a priori lower accuracy of the MAP as compared
to CM [28], if the gradient-based IAS algorithm did not otherwise find the peak of the posterior.
An important criterion in selecting PM-SNR was the shape of the posterior density, whose peak in the
3b area was assumed to be a few millimeters diameter w.r.t. the mass center of x, i.e., comparable to
the mutual distance of the lead field source space density. This was done in order to avoid the failure
of the sampling process due to an excessively peaked posterior structure.

3.1.1. Brodmann Area 3b

Table 2 includes a numeric measure for the spread (focality) of the reconstructed and normally
restricted activity (in the 3b area), defined as the area of the set, in which its intensity exceeds 80%
of the maximum value. The position and orientation differences between the synthetic source and
mass center of the reconstructed activity are also given. In the case of the measured data, the synthetic
source is regarded as a numerical reference point and it should not be confused with the actual activity
(ground truth). Figures 5, 6, 8, and 9 visualize the reconstructed activity on the white matter surface
(i.e. on the inner surface of the grey matter) in the vicinity of the ROI. Each distribution shows the
activity in the direction of the outward-pointing surface normal.
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3.1.2. MAP Estimation

The MAP estimates obtained for the 3b area are shown in Figures 5, 8, and 9. The CG-HBM
estimates obtained using 1200 epochs generally localize the activity in the sulcal wall with the
difference in position and orientation being less than 0.4 mm and 10.4 degrees. In the 1 mm case,
they were a maximum 3.8 mm and 14.4 degrees, respectively. MEG provided slightly more focal
reconstructions than EEG, and the IG hyperprior led to more focal outcomes than G for three out of
the four reconstructions. The 1 mm FE mesh resolution yielded a greater similarity between the MAP
estimates obtained with both the measured and synthetic data than the 2 mm mesh did, as shown
by Table 2. In the 2 mm case, the reconstructions were less intense and more spread out than those
that were obtained with the 1 mm mesh. The estimates obtained with 300 and 100 epochs (Figure 8),
i.e., with +6 dB and +10 dB noise levels, show that the distinguishability of the 3b activity decreases as
the noise increases as; the activity is clearly visible in the +6 dB case, but barely detectable with +10
dB noise. The estimates that were obtained with MNE and MCE (Figure 9) show a clear difference
in the 3b area, suggesting that the stronger tendency of the MCE to find a focal estimate results in a
clearer source distinction than with MNE, while the peak of both estimates is less intense than with
the CG-HBM estimates.

3.1.3. CM Estimation

Figures 6 and 8 illustrate the CM estimates that were obtained for the spherical ROI together
with the corresponding marginal densities (histograms) for the volumetric mass center of the posterior.
Overall, CM had a higher maximum intensity in a mutual comparison to MAP for both real and
synthetic data. This is particularly clear for the estimates with the elevated measurement noise
(Figure 8). However, the location of the maximum was virtually the same. The marginal densities
obtained show that, in the case of 1200 epochs, the maximum length of the 90% credibility interval for
the marginal posterior’s mass center, conditional to the subjectively selected parameters, was in the
range 0.9–1.4 and 1.2–2.3 mm, respectively, for the 1 and 2 mm FE mesh resolutions, thus matching the
targeted range. The mutual differences in the median, for each coordinate direction, were less than
0.2 and 1.1 mm, respectively. As with the MAP, the spread of the CM that was obtained with the 2
mm FE mesh resolution varied more between the different reconstructions than in the case of the 1
mm mesh, while the maximal intensity of the CM was observed to vary less than that of the MAP.
The marginal densities are clearly more spread out in the case of the elevated noise (Figure 8), i.e., with
300 and 100 epochs.

3.1.4. Thalamic Component

The results for reconstructing the thalamic activity in the case of the sparse source space can be
found in Figures 7–9. Overall, when compared to the estimates obtained for the 3b area, the thalamic
activity is less well-localized in its a priori expected location, which we expect to be primarily the
ventral posterolateral nucleus [21] of the left thalamus contralateral to the stimulation side. This can be
observed in the form of a greater variation between the estimates that were obtained for the thalamic
component when compared to the 3b source localization. Some of these estimates were spread over the
brainstem as well as the thalamic area [52,54]. Based on Figure 7, EEG has a greater tendency to find the
deep activity than MEG. The CM estimate that is obtained with IG hyperprior is similar for both EEG
and MEG, which suggests that the posterior exploration technique (here, MAP or CM) had a significant
effect on detecting deep fluctuations. The reconstruction quality seems to be diminished when the
noise level is elevated, as was the case for the 3b area (Figure 8). Nevertheless, the thalamic component
was distinguishable with each noise level. Regarding the MNE and MCE estimates, MNE localized the
deep activity, while MCE led to a strongly suppressed reconstruction (Figure 9).
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3.2. Subject (II) and (III)

The results that were obtained for subjects (II) and (III) are visualized in Figure 10 in the case
of the P20/N20 component and the EEG data. The results obtained show that the parameters used
for subject (I) result in a largely appropriate reconstruction around the cortical (Brodmann 3b) and
thalamic areas. The results are somewhat less focal than in the case of subject (I), which is obviously
due to the measurement or head model creation process, while the activity is found with a uniform
parameter choice for (I)–(III).

4. Discussion

In this proof-of-concept study, we proposed an approach for parametrizing the conditionally
Gaussian hierarchical Bayesian model (CG-HBM) [7,8] and applied it to invert the P20/N20 response
of the median nerve somatosensory evoked potentials and fields (SEP and SEF). We introduced
an approach for parameter selection and analyzed its performance in source localization tests.
The activity that corresponds to the P20/N20 response was detected in the Brodmann area 3b
and the thalamus [21,22,52,53,55] while using both a dense and sparse source space [19], respectively.
The source localization experiments were performed while using the Zeffiro interface (ZI) software
tool [38].

In our approach, the shape and scale parameter determining the hyperprior and, thereby,
also the conditionally Gaussian prior of the CG-HBM, were chosen based on optimization and a priori
knowledge of the prior-over-measurement signal-to-noise ratio (PM-SNR), respectively. The shape
parameter value β = 3 was found to be close-to-optimal in minimizing the posterior differences
between the gamma (G) and inverse gamma (IG) hyperprior (Appendix A). PM-SNR is a model
specific constant which determines the scale parameter θ0 given the dimension and noise level of
the forward model. The noise can consist of both a known and latent component. In this study,
PM-SNR varied between 0 dB and 30 dB, depending on the assumption of the latent errors; the greater
the errors, the higher the PM-SNR, i.e., the stronger the prior. As potential factors causing latent
noise, we recognized (1) the forward modeling inaccuracies that are related to the measured data,
e.g., the potential deviations of the conductivity distribution [46], which are absent for the simulated
data, and also (2) the performance differences between the IAS and CM posterior estimation method.
The value range applied in this study is in agreement with the Brainstorm software’s default MNE
regularization value [27], which we estimated to match a PM-SNR of 10 dB with respect to EEG data.

The range that is proposed here is also supported by our recent studies [38] and [12]. In the first of
these, IAS was shown to reconstruct a cortical epileptic (gyral) activity in EEG with both the G and IG
hyperpriors, when the PM-SNR was set to 20 dB (following from θ0 = 10−12, σ = 0.03, N = 100,000).
In the other study, a scale parameter range from 10−10 to 10−8 was found to be applicable for IAS
MAP estimation of numerically simulated deep activity with the IG hyperprior and a sparse source
space (N from 100 to 400), converting to PM-SNR of 30 dB and 20 dB for θ0 = 10−8, N = 100 and
θ0 = 10−10, N = 400, respectively.

The results obtained suggest that PM-SNR might also be applicable with elevated measurement
noise levels, i.e., fewer averaged epochs, as both the 3b and thalamic activity components were
found to be detectable in the cases of +6 dB and +10 dB noise. This result cannot be generalized,
because the distinguishability of the responses is not obvious with fewer than the recommended
minimum number of averaged epochs, which is 1000–4000 for SEPs [16–18] regarding the investigated
20 ms latency. Nevertheless, a lower number of averaged trials can be relevant in other EEG and
MEG applications. For example, in [38], the reconstructions obtained with CG-HBM correspond to
58 averaged epileptiform discharges.

Comparing the performance of IAS obtained with the proposed settings and with those
corresponding to MNE and MCE suggests that the present parametrization of CG-HBM can be
related to, and also explain the performance of, classical regularization approaches. MNE was shown
to find the thalamic activity with the selected PM-SNR, while it led to a visually less focal estimate in
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the 3b area than CG-HBM. In the case of β = 1.5, MCE was observed to result in a suppressed deep
activity, which suggested that the choice β = 3 is advantageous with respect to MAP estimation with
the G hyperprior. In particular, it seems that, with β = 3, both the G and IG hyperpriors can find the
deep source, supporting our approach of selecting β, so that it minimizes the difference between the
hyperpriors. This difference is obvious, when β = 1.5, which is, when the posterior maximizer of the
prior variance θ will be zero for G and θ0/3 for IG (see Equation (A1)), suggesting that any weakly
distinguishable (close-to-zero) fluctuations, especially the deep ones, will be suppressed by G.

The estimates that were obtained for the deep part varied more than those for the 3b area. This was
expected, since the accuracy of both EEG and MEG is known to be limited with regard to far-field
activity. Indeed, it has only recently been proposed that the localization of the deep sources is feasible
based on non-invasive measurements [56,57]. In order to obtain an appropriate reconstruction for the
thalamus, we applied a sparse source space, as it has recently been suggested that this can improve the
detectability of the deep components [19]. Based on the results, it is obvious that the method applied
in the posterior exploration has a major effect on the deep part of the reconstruction. As indicated by
the numerical results of [7], the CM provided a more focal estimate for the thalamic activity than MAP
in the case of MEG, which, in turn, is generally regarded as having less advantageous modality for
depth-localization than EEG [10].

While the activity of the thalamus is generally known to overlap with that of the 3b area [21,22,53],
there is less exact knowledge about the deep response network compared to that of the cortical one,
and its activity varies subject-wise. For example, in [53], the activity that corrresponds to the P20/N20
peak was exclusively limited to the 3b area in ten subjects, while the thalamus was only found to be
additionally activated in two subjects. In contrast, the somatosensory 3b component, i.e., the first
cortical contribution in the median nerve SEP/SEF, is known to be well-localized in the posterior wall
of the sulcus, while the gyral components will be visible a few milliseconds after 20 ms [21,52,58].
In order to obtain the best possible source localization outcome for both the superficial and deep areas,
CG-HBM can be adapted to utilize multiple source space densities in finding a single reconstruction.
An example of such a method is the recently proposed randomized multiresolution scanning (RAMUS)
algorithm [12], which finds a reconstruction without imposing any restrictions regarding active brain
areas or the source depth. The present restrictions (ROIs) have been introduced, as, here, our focus
is on CG-HBM as a superclass of methods, rather than on the individual reconstruction techniques
originating from it. That is why, here, we have restricted the number of moving parameters, other than
the ones describing the statistical model.

Based on the present results, especially the position difference with respect to the mass center,
it seems that a source localization accuracy of around 4 mm could be achieved in the 3b area.
This coincides with the maximal spatial accuracy found for the MEG, i.e., 2–4 mm for the superficial
areas [48,49], and even surpasses that of EEG, whose accuracy for superior locations was estimated to
be, on average, approximately 9 mm [22,50,51]. A significant factor affecting the accuracy of EEG is the
uncertainty related to the conductivity distribution [46,59]. However, while taking the total estimated
32–116 mm2 areal spread of the estimates obtained for the 3b area into account, the accuracy found
here does not exceed the suggested maximal accuracy limits. The spread of the estimates arises from
the current numerical framework as the maximal achievable focality without a potential numerical
bias. The relationship between the estimates found and the actual physiological spread of the source is
not evaluated here and it would necessitate further work.

CG-HBM might be advantageous as a statistical model for obtaining robust sampling-based
inverse estimates, as suggested by the present results. When the parameters are chosen appropriately,
the sampler-based approach seems to provide a robust technique for estimating the marginal posterior
and the CM, giving information about the posterior distribution, shape and structure. Here, it allowed
us to adapt it according to the underlying numerical model and geometry, whereas the IAS MAP
estimation technique alone did not completely reveal the posterior shape, thereby increasing the
risk of obtaining, e.g., overly focal estimates. It also seems that estimating the CM via a sampling
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approach and defining a ROI for the sampler is beneficial with respect to the distinguishability of the
activity obtained. Because the IAS MAP estimation technique can be associated with many classical
regularization methods, including MNE and MCE [7], sampling-based CG-HBM can also be seen as a
potential way to enhance the outcome that was obtained with these classical methods.

The present forward simulation approach was found to perform adequately with both 1 and
2 mm resolution. Agreeing with the existing knowledge of physiologically accurate volumetric
head modeling and forward simulation [32,60], the FE mesh resolution of 1 mm was observed to be
advantageous for obtaining a satisfactorily consistent reconstruction quality. The present GPU-based
approach to the forward simulation was found to be essential in order to achieve a suitably short
computation time for the 1 mm mesh generation and lead field matrix evaluation processes with our ZI
implementation. The approach of finding the reconstruction while using Cartesian source orientations
was found to be suitable in the present modeling context, since it allows slight orientation changes
during the source localization process, thereby resulting in a smooth posterior distribution. However,
ZI also allows the normal orientations for cortical areas (Section 1) to be applied directly, as the
differences between the directly normal and present normally-projected reconstructions seem minor.

More work will need to be done in order to optimize the outcome of CG-HBM for a given subject
and dataset, as the present results mainly provide a proof-of-concept for a potentially applicable
parametrization together with rough estimates for the parameter ranges. Therefore, an important
objective of any future work will be to apply the present hyperprior parametrization technique
for more datasets, e.g., including temporal correlations and combined E/MEG data, (see [12] for
preliminary numerical simulation results, and subjects), in order to learn more about the practical
localization capability of the CG-HBM. Potential directions for the development of mathematical
method include, e.g., incorporating physiological knowledge to the hyperprior [61,62] and/or the
source space that can be adapted to the properties of the active neural tissue: e.g., many brain structures
have the primary current density of approximately 1 nAm/mm2 when active [63]. The development
of source localization techniques for the multiple resolution levels [12], e.g., a full MCMC sampler
implementation, provides a further potential application for the current parametrization approach.
Finally, while our present focus is on CG-HBM and the corresponding reconstruction methods,
i.e., IAS, MCMC sampling, MCE, and MNE, further research would be necessary in order to relate the
performance of CG-HBM with that of the most promising alternative methods that do not belong to
the CG-HBM superclass, such as the beamformer techniques [64–66].
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Appendix A. Shape Parameter Optimization

In HBM, the i-th entry x, is assumed to have an independent zero mean Gaussian distribution with
variance θi determined by the G or the IG hyperprior. Given a shape and scale parameter β ≥ 3/2 and
θ0 > 0, the G and IG are maximized at the points θ(G)

i,max
= (β− 1)θ0 and θ(IG)

i,max
= θ0/(β + 1) and the mean

is at θ(G)

i,mean
= βθ0 and θ(IG)

i,mean
= θ0/(β− 1), respectively. Assuming that θ � β� 1/θ0, the magnitude

of these follows essentially from that of θ0. That is, the scale parameter sets the initial informativeness



Brain Sci. 2020, 10, 934 18 of 22

of the prior or the initial sensitivity of the hypermodel to localized brain activity. Generally, the smaller
the value, the less informative is the prior, whose effect is slighter than the likelihood.

Given the i-th entry xi, the maximizer of the joint prior p(θ, x) and of the conditional posterior
p(θ | x) w.r.t. θ, independent of the measurements y [7], is of the form

θ̃(G)

i,max
=

1
2

θ0(β− 3
2
) +

1
2

θ0

√
(β− 3

2
)2 +

2x2
i

θ0
and θ̃(IG)

i,max
=

1
β + 3

2
(θ0 +

x2
i

2
). (A1)

In order to obtain comparable results with G and IG hyperprior and, thereby, to avoid any
depth-localization bias of the G hyperprior [7,12], we optimize β so that the corresponding conditional
posterior distributions are locally equally sensitive to the increment of x2

i . That is, we optimize
the shape parameter so that θ̃(G)

i,max
≈ c θ̃(IG)

i,max
locally with some constant c corresponding to a given

x2
i . We require that, following from the form θ̃(IG)

i,max
(s, β) = ν + νs, ν = θ0/(β + 3/2), s = x2

i /(2θ0),
there is a match between the zeroth and first-order coefficient of the first-order Taylor polynomial
F(s, β) ≈ F(s0, β) + ∂F(s0,β)

∂s (s− s0) with F(s, β) = θ̃(G)

i,max
(s, β), resulting in the equation

F(s0, β)− ∂F(s0, β)

∂s
(s0 + 1) = 0 (A2)

with respect to β. Furthermore, we set the point of linearization proportional to the mean of the IG
hyperprior, i.e., s0 = α/[2(β− 1)] or x2

i = α θ(IG)

i,mean
. That is, x2

i is assumed to be proportional to the
expected variance of the conditional Gaussian prior. We make this choice, since a zero-mean Gaussian
density is invariant with respect to a scale proportional to its variance.

(Figure A1) illustrates the results obtained by solving the Equation (A2) numerically with respect
to β for each integer α from α = 1 to α = 1000. For α = 100, the solution and the corresponding
scaling constant satisfy β ≈ 3 and c ≈ 1, meaning that θ(IG)

i,mean
≈ θ(G)

i,mean
at the point of linearization.

For this match, we interpret β = 3 as a close-to-optimal shape parameter value to minimize the
differences between the G and IG hyperprior. As can be observed from (Figure A1), an IG hyperprior
generally leads to a heavier-tailed conditional posterior distribution than G at the point of linearization,
meaning that, in principle, it allows a higher probability for outliers such as focal activity spots.

Figure A1. (Left) The i-th component of the conditional posterior p(θi | xi) optimized with respect to
the shape parameter β so that θ̃(G)

i,max
≈ c θ̃(IG)

i,max
close to the point of linearization x2

i = αθ0/(β− 1) with
some constant c (Appendix A). The gray curves correspond to IG and the black ones to G hyperprior.
The solid, dashed and dash-dotted curves have been obtained with α = 100, α = 10 and α = 1000,
respectively. In each case the scale parameter is θ0 = 1. The maximizers match approximately,
i.e., c ≈ 1, when α = 100 (solid) and the optimizer is β ≈ 3. (Center) The relative scale deviation
|c− 1|/c w.r.t. c = 1 as a function of the optimizer β, vanishing when β ≈ 3. (Right) The optimizer β

as the function of α.

Appendix B. Effect of the Shape Parameter

The effect of the shape parameter on the hyperprior is visualized in Figure A2. The weight of the
tail is the greater the smaller the shape parameter which is shown by the interdecile range (the interval
between 10 and 90% quantile).



Brain Sci. 2020, 10, 934 19 of 22

Figure A2. The effect of the shape parameter on the IG (left) and G (right) hyperprior. The black
(solid), shows the hyperprior density p(θ) for β = 3 and θ0 = 1× 10−12 (see Table 1). The blue (dashed)
and red (dotted) curves correspond to the same expectation E(θ) with β = 2 and β = 4, respectively.
The greater the weight of the tail is, the smaller the shape parameter is. This is shown by the colored
interdecile range (IDR), i.e., the interval between 10 and 90% quantile, which is presented here with
respect to E(θ). The colors correspond to those of the curves.
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