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ABSTRACT
We study a one-dimensional model of a dislocation pileup driven by an external stress and interacting with random quenched disorder,
focusing on the predictability of the plastic deformation process. Upon quasistatically ramping up the externally applied stress from zero, the
system responds by exhibiting an irregular stress–strain curve consisting of a sequence of strain bursts, i.e., critical-like dislocation avalanches.
The strain bursts are power-law distributed up to a cutoff scale that increases with the stress level up to a critical flow stress value. There, the
system undergoes a depinning phase transition and the dislocations start moving indefinitely, i.e., the strain burst size diverges. Using sample-
specific information about the pinning landscape as well as the initial dislocation configuration as input, we employ predictive models such as
linear regression, simple neural networks, and convolutional neural networks to study the predictability of the simulated stress–strain curves
of individual samples. Our results show that the response of the system—including the flow stress value—can be predicted quite well, with
the correlation coefficient between the predicted and actual stress exhibiting a non-monotonic dependence on strain. We also discuss our
attempts to predict the individual strain bursts.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020376., s

I. INTRODUCTION

One of the key ideas of many disciplines including materials
science in particular is that the structure and properties of materials
tend to be related.1,2 For instance, much of metallurgy is about tun-
ing the materials’ microstructure to design materials with desired
mechanical properties.2 Typically, the relation between, say, the
precipitate content of a precipitation-hardened alloy3 and its yield
strength is understood as an average property, and indeed, in the
case of macroscopic bulk samples, the sample-to-sample variations
in the yield stress of identically prepared samples tend to be small.
However, this changes when dealing with samples with sizes down
to the micrometer range and below: Recent micropillar compression
experiments have revealed the fluctuating, irregular nature of small-
scale crystal plasticity,4,5 originating from the collective, critical-like
dynamics of interacting dislocations mediating the deformation pro-
cess. The fact that the plasticity of small crystals proceeds via an
irregular sequence of strain bursts with a broad size distribution

implies also that sample-to-sample variations of the plastic response
or the stress–strain curves might be considerable6 even if the samples
have been prepared and the deformation experiments performed
using the same protocol.

This raises the important general question of what can be said
about the relation between the initial structure and mechanical prop-
erties for individual samples of small crystals, when random vari-
ations in the initial (micro)structure become important. One way
of framing the issue is to consider what we refer to as deforma-
tion predictability: Given a small crystalline sample with a specific
arrangement of pre-existing dislocations and the possibility of some
other defects interfering with dislocation motion, how well can one
use such information to predict the plastic response of that sam-
ple. A key challenge here is the high dimensionality of any reason-
able description of the disordered initial state, combined with the
possibility of non-linearities in the mapping from the initial state
properties to the ensuing response. This likely implies that simple
empirical laws relating sample properties to its plastic response may
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be difficult to formulate. Challenges of this type are a key factor
behind the recent emergence of machine learning (ML) algorithms
as an important part of the toolbox of scientists in a wide range of
fields including also physics and materials science.7,8 ML has been
demonstrated to be an efficient approach to address a wide spec-
trum of problems including materials’ property prediction, discov-
ery of novel materials, etc.9–15 These developments have led to the
emergence of a novel research field referred to as materials infor-
matics,16 where informatics methods—including ML—are used to
determine material properties that are hard to measure or compute
using traditional methods.

In general, many supervised ML algorithms including neu-
ral networks are capable of learning non-linear mappings from a
high-dimensional feature vector to a desired output, and hence,
these methods should be useful tools when addressing the question
of deformation predictability. An important opening in this direc-
tion was recently achieved by Salmenjoki et al.,17 who applied ML
to study the deformation predictability in the case of simple two-
dimensional discrete dislocation dynamics (DDD) simulations. The
key idea of Ref. 17 was that exploiting ML algorithms provides a use-
ful set of methods to quantify the predictability of complex systems
such as plastically deforming crystals. This was achieved by training
ML models including neural networks and support vector machines
to infer the mapping from the initial dislocation microstructure to
the response of the system to applied stresses, characterized by the
stress–strain curve. Following Ref. 17, ML has been further applied
to predicting stress–strain curves of plastically deforming crystals18

and learning the interaction kernel of dislocations.19 Recently, ML
has also been applied to the closely related problems of, e.g., predict-
ing the local yielding dynamics of dry foams,20 the creep failure time
of disordered materials,21 and the occurrence times of “laboratory
earthquakes.”22

By its nature, the problem of predicting the plastic defor-
mation process of crystalline samples depends on details such as
whether the crystal only contains pre-existing glissile dislocations
(this was the case in Ref. 17) or if other defect populations inter-
acting with the dislocations are present. The latter could include
solute atoms, precipitates, voids, or even grain boundaries in the
case of polycrystals. If present, a description of these additional
defects needs to be included in the initial state of the system used
as input for the predictive ML models. The presence of such static
defects within the crystal may also change the response of the crys-
tal to applied stresses and, thus, the process to be predicted in
a fundamental manner. It has been shown that the deformation
dynamics of “pure” dislocation systems are governed by dislocation
jamming,23,24 resulting in glassy dislocation dynamics characterized
by “extended criticality,” with the cutoff scale of the size distribu-
tion of dislocation avalanches diverging with the system size at any
stress level.25–27 This can be contrasted with systems where signifi-
cant pinning of dislocations due to other defects within the crystal
may instead induce a depinning phase transition of the dislocation
assembly, resulting in critical-like dislocation dynamics only in the
immediate proximity of the critical point (stress) of the depinning
transition.28,29

In this paper, we study deformation predictability in a one-
dimensional periodic model of a dislocation pileup, interacting with
a quenched (frozen) random pinning landscape. The model is per-
haps the simplest possible system including both interacting mobile

dislocations and a quenched random pinning field interfering with
dislocation motion, and therefore, it serves as a useful playground
to explore the ideas of ML-based deformation predictability dis-
cussed above. It is known to exhibit a depinning phase transition
at a critical flow stress value σflow, separating pinned and mov-
ing phases of the dislocation system.30 While the general topic of
applying ML in the context of disordered materials has recently
gained some momentum,17,18,20–22,31 to our knowledge, no study
addressing the question of deformation predictability in a dislo-
cation system interacting with quenched disorder and exhibiting
a depinning phase transition has been performed before. To this
end, we generate a large database of stress–strain curves, each cor-
responding to a unique randomly generated initial microstructure,
by simulating the model with a quasistatically increasing applied
stress for different system sizes (or different numbers of disloca-
tions, N). First, the statistical properties of the stress–strain curves
and the strain bursts are analyzed, followed by training and testing
of various predictive models ranging from linear regression to con-
volutional neural networks (CNNs; considering these different ML
models allows us to assess the possible model dependence of defor-
mation predictability) to establish mappings from the initial random
microstructure (defined by both the static pinning landscape and
the initial configuration of the dislocations) to the response of the
system to applied stresses (i.e., the stress–strain curve). Notice that
the deformation predictability as defined above is in general depen-
dent on the ML model considered, but by studying the problem
using multiple different ML models allows one to use the results
from the one with the best predictive power as measures of the
lower limit of the more general, ML model independent deformation
predictability.

Our results show that the different predictive models employed
are capable of learning the relation between the input and the stress–
strain curves quite well, as measured by the correlation coefficient
between the predicted and simulated stress values at a given strain.
In particular, the sample flow stress (i.e., the sample-dependent
finite size critical point of the depinning transition) can be predicted
surprisingly well with the correlation coefficient reaching values
as high as 0.89 for a regularized CNN. We also explore the pre-
dictability of individual strain bursts taking place during the defor-
mation process. Critical avalanches are expected to be inherently
unpredictable, and indeed, we find approximately zero predictabil-
ity for most of the strain bursts belonging to the power-law scal-
ing regime of their size distribution. Interestingly, we also find that
strain bursts belonging to the cutoffs of the distributions as well as
those taking place very close to the flow stress exhibit non-vanishing
predictability.

II. THE MODEL: EDGE DISLOCATION PILEUP
WITH QUENCHED DISORDER

The dislocation pileup model we study here is similar to the one
in Refs. 30 and 32. It describes a system of N straight, parallel edge
dislocations subject to an external shear stress σ gliding along the
direction set by their Burgers vector (here, the x direction) within
a given glide plane. By neglecting the roughness of the dislocation
lines, the system may be described by a set of point dislocations with
coordinates xi representing the cross sections of the dislocation lines
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moving in one dimension. The dislocations interact repulsively with
each other via long-range stress fields with the stress field magnitude
inversely proportional to their mutual distance.30 In addition, the
dislocations are taken to interact via short-range forces with a set
of Np randomly positioned Gaussian pinning centers, playing here
the role of quenched disorder. In real crystals, these pinning centers
could be solute atoms or immobile forest dislocations threading the
plane of the pileup. The overdamped equations of motion of the N
point dislocations thus read

χ
dxi

dt
= μb2

∑
j≠i

1
xi − xj

+ bσ + F(xi), (1)

where χ is the effective viscosity, xi is the position of the ith dislo-
cation, μ is the shear modulus, b is the Burgers vector magnitude,
and F is the pinning force landscape. We choose a pinning force
consisting of Gaussian potential wells centered at pinning sites {xp},
given by

F(x) = −
dE
dx

, E(x) = −
Np

∑
p=1

Epe
− 1

2 (
x−xp

sp
)

2

, (2)

where xp is the position of the pth pinning point, Ep is a pinning
energy scale, and sp is the standard deviation of the Gaussian. For
simplicity, we set χ = μ = b = 1 and Ep = s2

p = 0.5. The periodic
boundary conditions within a system of size L are employed by per-
forming an infinite sum over the stress fields of the periodic images
of each dislocation,30

∞
∑

k=−∞

1
x + kL

=
π

L tan(πx/L)
. (3)

The average spacing between dislocations is set to L/N = 16 and that
between pinning sites is set to L/Np = 2. The sum over pinning sites
is truncated so that only pinning sites that are closer than a cutoff
distance of 8 are included in the sum.

The simulations are carried out by first choosing the positions
of the Np pinning sites at random from a uniform distribution along
the one-dimensional system of length L. N dislocations are then
placed in the system with the constant spacing of L/N = 16; this
equally spaced dislocation configuration would be the minimum
energy state of the pileup in the absence of pinning sites. The dis-
locations are initially allowed to relax to a metastable configuration
with σ = 0; see Fig. 1(a) for an example of a relaxed configuration
with N = 4, showing also the pinning energy landscape. Then, σ is
increased quasistatically from zero with the rate

dσ
dt
=

mσ

e
r[v̄(t)−vth]

vth + 1
, (4)

where mσ = 10−4 is the maximum stress rate, vth = 2 ⋅ 10−4 is a thresh-
old velocity value, v̄(t) = (1/N)∑N

i=1 vi (with vi = dxi/dt) is the
spatially averaged dislocation velocity, and r = 100 is a shape param-
eter. In practice, this amounts to a continuous, smooth approxima-
tion of the step function, with dσ/dt ≈ mσ for v̄ < vth and dσ/dt
≈ 0 for v̄ > vth, such that σ is increased only in between strain
bursts and kept constant during them. The strain ε is accumulated
by dislocation motion,

ε(t) =
1
N

N

∑
i=1
[xi(t) − xi(0)]. (5)

FIG. 1. (a) An example of a relaxed dislocation configuration in the simulation
model with N = 4 (and hence of linear size L = 16N = 64). The randomly posi-
tioned pinning sites (there are Np = L/2 = 32 of them) are shown as circles, and
the resulting pinning energy landscape E(x) is shown with the solid line. (b) Exam-
ple stress–strain curves σ(ε) for three different system sizes (N = 4, 16, and 64),
illustrating the characteristic irregular staircase shape of the curves as well as the
size effect where smaller systems exhibit fewer but larger strain bursts.

The simulations are run until the dislocations start to flow indef-
initely, i.e., the strain burst size diverges, which happens at a
sample-dependent flow stress σflow. The stress–strain curves σ(ε) are
recorded by storing σ(t) and ε(t) every 20 dimensionless time unit
during the simulations. Example stress–strain curves are shown in
Fig. 1(b) for three different system sizes. Notice the characteristic
irregular staircase-like structure of the curves as well as the larger
size of strain bursts for smaller systems.

The resulting stress–strain curves, each corresponding to a dif-
ferent realization of the random pinning landscape and relaxed
initial dislocation positions, are stored in a database consisting
of 10 000 stress–strain curves for each system size to be used as
training and testing data for the predictive models. For the largest
systems (N = 64, . . ., 512), we also generate a separate dataset
of 1000 stress–strain curves stored at a finer time resolution of
Δt = 2 in order to better detect individual strain bursts. This
latter dataset is used to analyze the statistical properties of the
strain bursts as well as to train and test ML models for predicting
strain bursts.

III. PREDICTIVE MODELS: FROM LINEAR REGRESSION
TO CONVOLUTIONAL NEURAL NETWORKS

In what follows, we will introduce the predictive models used
in this study. These encompass both linear and non-linear models
using hand-picked features as input as well as a CNN that requires
less feature engineering as it uses a complete description of the sys-
tem’s initial state as input. Using these different models allows us to
assess the dependence of our results on any particular model.
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Before training, each input feature (each input channel in the
CNN case) is standardized by subtracting the mean and dividing by
the standard deviation, and the dataset is divided randomly into a
training set containing 80% of the data points and a testing set con-
taining the remaining 20%. Predictability is measured by calculating
the correlation coefficient between the predicted and target outputs
of the testing set and averaging the result over five training instances.
Predictive models are implemented using the Python libraries scikit-
learn33 for linear absolute shrinkage and selection operator (LASSO)
and Keras34 for simple neural networks and CNNs.

The prediction models work by minimizing the loss, which
mainly consists of the mean squared error. In addition, most models
are L1-regularized, which adds a penalty term to the loss to prevent
overfitting. L1 regularization often improves the result and encour-
ages the model to focus on the most useful/promising input features
while discarding the unimportant, and as a byproduct, it allows us to
determine which input features are used by the model.

A. Linear regression: LASSO
A linear regression model performs an affine transformation,

where input features are first linearly combined by multiplication
with a (weight) matrix and then biased by adding a translation vec-
tor. If the model is optimized using L1-regularization for the weight
matrix, it is commonly called LASSO (linear absolute shrinkage and
selection operator35). In this study, this model is applied by using
sklearn.linear_model.Lasso, which has a built-in optimizer and only
requires the user to choose the regularization parameter α. We found
that values of α in the range 10−3

≲ α ≲ 10−2 gave good results and
chose α = 10−2.

B. Simple neural networks
When two linear regression models are stacked in such a way

that the intermediate result is activated by applying a non-linear
activation function, such as the rectified linear unit (ReLU), the com-
bined model becomes a simple neural network that can, to some
extent, learn general non-linear mappings. An intermediate result
of such a model is called a hidden layer, and elements of the inter-
mediate result are referred to as hidden units. L1-regularization is
applied to each layer with a parameter αn describing the strength of
regularization at each layer.

Tested variants for stress–strain curve prediction differ by the
number of hidden units, hidden layers, and regularization. Most
have one hidden layer with 64 hidden units and use α1 = 10−2 for
the first weight matrix and αn = 10−5 for the rest. All models use
ReLU-activations for the hidden layers. One variant has less regular-
ization, meaning that α1 = 10−3 instead of 10−2. Theoretically, one
hidden layer is enough for reproducing any continuous mapping
given enough hidden units, but a model with three hidden layers
is employed here as well for comparison to other studies.17,36 The
models are trained using the Adam optimizer37 with learning rate
10−3 for 100 epochs.

The predictability of strain bursts is studied using a simple
neural network having one hidden layer with 64 hidden units. The
model output is in this case very big, consisting of a vectorized (one-
dimensional) version of an avalanche map that is originally two-
dimensional (see Sec. IV for details). We found that all parameters

collapsed to 0 if α is too high, so a value of 10−5 is used for all weight
matrices. A lower α parameter makes the model susceptible to over-
fitting. Therefore, models are trained only for 10 epochs but with a
higher learning rate of 10−2.

1. Selecting features for prediction
The LASSO and simple neural network models require hand-

picked features for predicting stress–strain curves and strain bursts.
It turns out that good, information-rich features for flow stress pre-
diction are given by quantiles of distributions derived from the
sample-specific pinning landscapes. Figure 2(a) shows the correla-
tion of the flow stress with quantiles of the pinning energy E, the
pinning force F, and DF = dF

dx and D2F = d2F
dx2 . In a non-interacting

system, the flow stress would be controlled by the most negative pin-
ning force F, which provides the strongest obstacle for dislocation
motion. In an interacting system, it is possible for the dislocations
to push on each other and overcome the strongest pinning force at a
smaller applied stress. As a result, the correlation between the most
negative value of F [given by the 0% quantile of F in Fig. 2(a)] and the
flow stress is quite small. Interestingly, the 5% quantile of F exhibits
a much larger negative correlation of ∼−0.8 with σflow, independent
of the system size [Fig. 2(b)]. Other quantiles of the pinning force as
well as of the other quantities listed in Fig. 2(a) also appear to con-
tain useful information for flow stress prediction. We, therefore, give
the entire quantile curve (sampled on 64 uniformly chosen points)
of each field as input features.

In addition to these input features describing the pinning land-
scape, we also give input features that describe the initial relaxed
configuration of dislocations {xj}

N
j=1. In particular, we use the

FIG. 2. (a) Correlation between the flow stress and quantiles of pinning potential
energy E, pinning force F, derivative of the pinning force D(F), and second deriva-
tive of the pinning force D2(F) for a system of N = 64 dislocations. The dotted lines
show the absolute value of the correlation for easier comparison of magnitudes. (b)
demonstrates that the correlations of the pinning force quantiles are not dependent
on the system size N (legend). These quantiles are used as hand-picked features
for linear regression and simple neural networks. Notice that the 5% quantile of
the pinning force exhibits a high (negative) correlation of ≈0.8 with the flow stress.
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values E(xj), F(xj), DF(xj), and D2F(xj) as well as the distances
between successive dislocations, Dxj = xj+1 − xj (with xN +1 = x1 +
L). These features are given as sorted lists, so they can be interpreted
as quantiles.

Finally, we choose a set of features given by local extrema of E
and F, as well as the successive differences in energy extrema D(E
extrema), also given as 64 uniformly spaced quantiles.

C. Convolutional neural networks
These models take discretized fields as input and have the abil-

ity to find out if the target output depends on the spatial varia-
tions within the input fields. The CNN structure used in this study
is adapted for periodic input signals by applying a convolution-
activation-pooling scheme that continues to down sample the input
array down to a single spatial element. Initially, an input field has
1024 = 210 spatial elements, so there are ten convolutional lay-
ers (each layer halves the number of spatial elements). This makes
the result effectively independent of the particular choice of the
origin of the input fields. Therefore, by contrast to more stan-
dard CNNs using fewer convolutional layers, this model’s final spa-
tial element’s receptive field covers the whole system, and trans-
lational invariance is complete because the ten pooling opera-
tions leave no information left about the absolute locations of
where the previous convolutional layers have activated. This is
desirable in the case of periodic inputs, where circular shifting
does not change the properties (such as the plastic response) of
the system.

All convolutional layers employed here use a window size
of 3, periodic boundary conditions, ReLU-activation, and non-
overlapping max-pooling of size 2 (taking the maximum value
within non-overlapping bins) and have 16 hidden units. The result
from the final pooling layer is fed into a linear regression layer
to obtain the model output. When predicting a single output fea-
ture from two input fields (channels), the CNN has 7185 learnable
parameters.

The CNN is trained using the same Adam optimizer as for other
neural network models, with a learning rate of 10−3, a learning rate
decay of 10−5, and 50 training epochs. We found that even weak L1-
regularization caused the parameters to collapse to 0 in most cases,
so we do not regularize these models. However, in the case of pre-
dicting flow stress only, a kernel regularization value of 5 ⋅ 10−4 for
the convolutional layers is found to work.

The input to the CNNs consists of the pinning landscape fields
E, F, DF, and D2F (although we found that giving one pinning field,
such as E or F, suffices because the CNN can compute the higher
derivatives by differentiation) as well as a field J defined as a sum of
Gaussians centered on the relaxed dislocation positions xi,

J(x) =
N

∑
i=1

1
√

2π
e−

(x−xi)2

2 . (6)

This field J serves to describe the dislocation positions in terms of an
input field with a similar structure as the pinning landscape, which
is independent of the spatial resolution [see Fig. 7(a) for examples of
these input fields]. Notice that by contrast to the case of hand-picked
features, these fields are given in order rather than sorted.

IV. RESULTS
In this section, we first consider the statistical properties of

our dataset of stress–strain curves. Then, we report our results for
training the predictive models and employ them to explore the pre-
dictability of the deformation dynamics of the pileup model. Finally,
we also discuss our results on the problem of predicting individual
strain bursts.

A. Statistical properties of the stress–strain curves
We start by quantifying the system size dependent sample-to-

sample variations in the plastic response of the system. Figures 3(a)–
3(c) show the bivariate histograms of the stress–strain curves for
three system sizes (with N = 16, 64, and 256, respectively), illus-
trating that the sample-to-sample variability in the plastic response
is more pronounced in smaller systems. The same applies to the
probability densities of the sample flow stresses σflow, as shown in
Fig. 3(d): The distributions are quite broad for small systems and get
narrower upon increasing the system size, presumably approaching
a delta peak in the thermodynamic limit. The average magnitude of
the σflow-values is in agreement with previous results.30

As the stress–strain curves consist of a sequence of discrete
strain bursts or dislocation avalanches Δε, we also consider their
stress-dependent size distributions P(Δε, σ). Quite generally, for sys-
tems exhibiting a depinning phase transition, one expects them to
obey the scaling form

P(Δε, σ) = (Δε)−τf(
Δε

Δε∗(σ)
), (7)

where τ is the critical exponent of the avalanche size distribution,
f (x) is a scaling function that obeys f (x) = const. for x≪ 1 and f (x)
→ 0 for x ≫ 1, and Δε∗(σ) is a stress-dependent cutoff avalanche
size. The left panels of Figs. 4(a)–4(d) show the bivariate histograms

FIG. 3. (a)–(c) show the bivariate histograms of the stress–strain curves for differ-
ent system sizes [N = 16 in (a), N = 64 in (b), and N = 256 in (c)]. (d) displays
the probability distributions of the sample flow stresses σflow, showing how the
distributions get increasingly narrow upon increasing the system size.
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FIG. 4. Left panels: Bivariate avalanche histograms (avalanche counts) as a func-
tion of the stress σ and avalanche size Δε. Right panels: The stress-resolved
probability distributions of the strain bursts sizes P(Δε, σ), considering three stress
bins: 0.59–0.60 (blue), 0.63–0.64 (red), and 0.67–0.68 (yellow). The average flow
stress is around 0.69. (a) N = 64, (b) N = 128, (c) N = 256, and (d) N = 512. The
right panel of (d) shows that the highest stress bin data in the largest system size
exhibit a power-law part consistent with an exponent τ ≈ 1.0 [see Eq. (7)].

of the avalanche count as a function of σ and avalanche size Δε for
different system sizes (with N = 64, 128, 256, and 512, respectively).
These illustrate that, indeed, the maximum strain burst size increases
upon approaching the flow stress from below, and the increase close
to the flow stress is more clear-cut for larger systems. Notice also that
these histograms show an excess of strain bursts around σ ≈ 0.4. This
feature is likely related to the characteristic pinning force magnitude
due to an isolated pinning point given by Eq. (2). The right pan-
els of Figs. 4(a)–4(d) show the corresponding stress-resolved strain
burst size distributions P(Δε, σ), considering three different stress
bins below the flow stress for each system size. For the largest system
sizes considered, the data appear to be consistent with a power-law
part characterized by an exponent τ ≈ 1.0 [see the right panels of
Figs. 4(c) and 4(d)]. This value is somewhat lower than the expec-
tation of τ ≈ 1.25 based on the scaling of the elastic energy of the
pileup in the Fourier space,30 suggesting that the pileup model would
be in the same universality class with depinning of contact lines38

and planar cracks.39,40 As we focus here on studying rather small
systems, this difference is likely due to finite size effects.

Overall, the statistical properties of the plastic response of the
pileup model show two key features relevant for deformation pre-
dictability: (i) there are sample-to-sample variations in the response
(that we will try to predict using machine learning) and (ii) the dis-
tribution of strain bursts Δε displays the characteristics of a critical
system, suggesting that individual strain bursts may be inherently
unpredictable. In what follows, we will use our trained predictive
models to explore how well (i) the sample stress–strain curves and
(ii) individual strain bursts can be predicted.

B. Predictability of the sample stress–strain curves
1. LASSO and simple neural networks

Figure 5 shows the mean correlation coefficient between the
predicted and actual stress values as a function of strain for N =
64, using linear regression (LASSO) and different variants of sim-
ple neural networks. First, we note that the flow stress prediction
is only slightly better than the magnitude of the correlation with
the 5% quantile of the pinning force landscape found above (∼0.8,
see Fig. 2), with the correlation coefficient assuming values in the
range of 0.825–0.84 depending on the model used (the large-strain
plateau in Fig. 5). Second, the correlation clearly depends on strain,
exhibiting a rather pronounced dip reaching values as low as 0.65
or so for intermediate strains, along with two additional, lesser dips
for smaller strains, before reaching a value close to 1 as the strain
goes to zero. The latter is true especially for LASSO, while the neural
network models seem to struggle a bit in capturing the deforma-
tion dynamics for very small strains. The reduced predictability for
intermediate strains could be related to the importance of inherently
unpredictable dislocation avalanches in analogy with the results of
Ref. 17.

It is interesting to analyze which features the predictive models
end up using for prediction and how that might depend on strain.

FIG. 5. Predictability of the stress–strain curves for the system size N = 64 using
hand-picked features, measured by the correlation between the predicted and
actual stresses in the test set. The shown result is a sample mean over five
trained models, each using their own random division into training and testing sets.
Each line corresponds to a given predictive model, as indicated in the caption. The
plateau at large strains corresponds to the predictability of the flow stress.
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Since the models utilize heavy L1-regularization, the analysis of the
learned weights becomes straightforward. Features that contribute
to predictability are allowed to have a high regularization penalty
in exchange for decreasing loss, while unimportant features will
not decrease loss sufficiently to justify a high regularization penalty.
Therefore, if we were to omit features with a small L1 penalty, the
loss would not be affected and the model would presumably do just
as well, so this analysis is closely related to studying feature ablations.
Figure 6 shows how much penalty is generated by the weights cor-
responding to each feature category for the LASSO model. At the
start, the pinning force derivative at the relaxed dislocation posi-
tions, DF(xj), is the most active feature, but also the pinning energy
at the initial dislocation positions, E(xj), is used. This is reason-
able as such quantities could be used to estimate the initial linear
response of the dislocations. Interestingly, and perhaps somewhat
counter-intuitively, the pinning energy at the initial dislocation posi-
tions becomes even more important for intermediate strains in addi-
tion to a larger diversity of features used. The flow stress prediction
uses mainly the quantiles of the pinning force F as well as its local
extrema points. This dependence of the important features on strain
indicates that predicting the response of the system to infinites-
imal stresses is of a different nature compared to predicting the
flow stress.

2. Predictability of stress–strain curves:
Convolutional neural networks

We then proceed to employ CNNs as predictive models. Fig-
ure 7(b) shows the mean correlation as a function of strain as
obtained using three different types of CNNs along with the LASSO
result for reference. Here, the system size N = 16 is considered. First,
we consider a CNN that predicts the entire stress–strain curve at
once [a “generalist” CNN, shown as a red line in Fig. 7(b)]. This
model actually underperforms the simple linear regression model
for the majority of the strain values. This could be due to the

FIG. 6. Weight analysis of the trained LASSO model for the N = 64 system. Color
indicates the total L1 penalty (L1 norm) from each feature category’s weights as
a function of strain, averaged over five training instances. Feature categories are
explained in Sec. III B 1. A high penalty can be interpreted to indicate the high
importance/usefulness of the corresponding feature category for predicting the
stress at the specific strain. Notice that the properties of the initial dislocation posi-
tions are most useful at small strains, while more generic features of the force
landscape become more useful at larger strains.

FIG. 7. (a) Example input fields for a CNN with N = 16. Dot markers show the spa-
tial resolution. (b) Stress–strain curve predictability at N = 16 for different models:
LASSO (blue line), a “generalist” CNN predicting the entire stress–strain curve at
once (red line), individual “specialist” CNNs trained specifically to predict the stress
at a single strain (yellow circles), and an L1-regularized CNN trained to only predict
the flow stress (purple circle).

fundamentally different nature of the problem for different strain
values, as illustrated by Fig. 6, showing that different features are
important for different strains. Hence, the “generalist” CNN might
get exhausted and not be able to optimally learn the entire stress–
strain curve at once.

Thus, we also consider a “specialist” CNN that is trained sep-
arately for each strain value to learn the corresponding value of
stress. The result is shown as yellow circles in Fig. 7(b). Indeed,
as compared to the generalist model, the specialist model is able
to learn the deformation dynamics of the pileup model much
better, especially for intermediate strains, where the generalist
CNN exhibits a deep dip in the correlation coefficient, presumably
due to the importance of hard to predict dislocation avalanches
for those strains. It is interesting that the specialist model is
able to reach a correlation coefficient exceeding 0.8 also in this
regime.

Notably, neither of the models discussed above is able to predict
the flow stress much better than by just considering the correla-
tion with the 5% quantile of the pinning force F (see Fig. 2). We,
therefore, try to further improve the specialist CNN by switching on
L1-regularization and using only the pinning force F as the input
field (this was shown above to be the most informative quantity for
flow stress prediction). The individual purple point at a large strain
value in Fig. 7(b) is the resulting flow stress prediction with a cor-
relation coefficient of 0.89, i.e., significantly better correlation than
using any of the other models considered.

C. Predictability of strain bursts
We also explore the possibility of predicting individual strain

bursts along the stress–strain curves. First, we need to formulate
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a problem that is suitable for analysis using the predictive mod-
els at hand. To this end, we generalize the bivariate avalanche his-
tograms (left panels of Fig. 4) to the case of individual samples.
As such, these would be rather sparse sets of points in the space
spanned by the avalanche size and stress. We, therefore, smooth out
these maps by convolving with a Gaussian with a standard devia-
tion of 0.03 units of stress in the vertical direction and 0.15 units of
log10(avalanche size) in the horizontal direction; both correspond to
three times the bin size used in Figs. 4 and 8. The studied region
is limited to bins where at least one avalanche appears within the
dataset so that the Gaussian smoothing does not cause distribu-
tion boundaries to extend to impossible areas. Finally, the maps
are standardized by removing the mean and dividing by the stan-
dard deviation at each bin. We then employ a simple neural net-
work with 64 hidden units to find a mapping from the hand-picked
input features to the smoothed sample-specific bivariate avalanche
histograms.

Three different examples of smoothed avalanche maps are
shown in the left column of Fig. 8 with the corresponding pre-
dicted avalanche maps in the right column. While the predictions
are clearly not perfect, the algorithm is able to capture some key fea-
tures of these avalanche maps. Figure 9 shows the correlation maps
between the predicted and actual avalanche densities at four differ-
ent system sizes, averaged over five training instances. These show a
number of interesting features: (i) Large parts of the sample-specific

FIG. 8. Three examples (rows) of strain burst maps of individual systems for N
= 512. The left column (a) shows three target maps, and on the right (b) are the
corresponding predictions of a simple neural network.

FIG. 9. Correlation maps between the predicted and actual sample-specific
avalanche maps for different system sizes, (a) N = 64, (b) N = 128, (c) N = 256,
and (d) N = 512. Notice the positive correlations for the largest avalanches for each
stress value (avalanche cutoff) and for most of the avalanches very close to the
flow stress, as well as the approximately zero correlation for avalanches belonging
to the power-law scaling regime (see Fig. 4).

avalanche histograms appear to be completely unpredictable, with
the correlation coefficient assuming a value very close to zero (shown
in black in Fig. 9). This is especially true for most of the regions
corresponding to the power-law scaling regime of the avalanche
size distribution in agreement with the idea that critical avalanches
should be intrinsically hard to predict.41 (ii) Avalanches with the
largest size for each stress value (i.e., those belonging to the cut-
off of the stress-resolved avalanche size distribution) appear to
exhibit some degree of predictability, although the related corre-
lation coefficient values are somewhat lower than those found for
the predictability of the stress–strain curves. This is in agreement
with the idea that avalanches in the cutoff are not critical and
hence somewhat predictable. (iii) Surprisingly, we also find the
non-vanishing predictability of avalanches of any size occurring in
the immediate proximity of the flow stress (bright horizontal seg-
ments in the upper parts of the panels of Fig. 9). This is surprising
because those events are expected to be critical and hence should
be unpredictable.

In order to shed some light on the origin of the key features
of avalanche predictability discussed above, we finish by consider-
ing the correlation between the avalanche count and flow stress. The
logic here is that since we have demonstrated above that the sample-
specific flow stress can be predicted quite well, if the avalanche maps
are correlated with the flow stress, these should be predictable as
well. Figure 10 reveals the two stand-out features: (i) The avalanches
taking place in the immediate proximity of the flow stress exhibit
clear positive correlation with the flow stress and (ii) the largest
avalanches for stresses smaller than the flow stress (i.e., avalanches
belonging to the stress-dependent cutoff of the avalanche size dis-
tribution) are negatively correlated with the flow stress. This means
that both a higher than average number of avalanches very close to
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FIG. 10. Correlation maps between the avalanche count and flow stress for the
avalanche maps considered in Fig. 8. (a) N = 64, (b) N = 128, (c) N = 256, and (d)
N = 512. Notice the positive correlation between the flow stress and avalanches
close to the flow stress, as well as the negative correlation between the flow stress
and the largest avalanches occurring for smaller stresses.

the flow stress and a lower than average number of large avalanches
at smaller stresses imply a higher than average flow stress value. The
good level of predictability of the flow stress demonstrated above
thus translates into the reasonable predictability of these features of
the sample-specific bivariate avalanche histograms. Notice that the
widths of the predictable bands in the avalanche maps (Fig. 9) appear
to become thinner with increasing system size, so we cannot exclude
the possibility that this avalanche predictability would be a finite size
effect.

D. Robustness of the pileup model
against small perturbations

We finish by considering the effect of small perturbations of the
pinning point positions on the flow stress value. Notice that these
perturbations also affect important features such as the extreme
quantiles of the pinning force landscape as large pinning force val-
ues originate from overlapping force fields of more than one pinning
point. This, therefore, serves as a measure of the robustness of our
results on deformation predictability in situations where the initial
microstructure can be characterized with only a finite precision. To
that end, we perturb the initial pinning point positions by random
amounts drawn from a normal distribution with mean 0 and stan-
dard deviation δx. Figure 11 compares the resulting flow stress with
the unperturbed one as a function of δx, by measuring the relative
difference [Fig. 11(a)] and the correlation between the perturbed
and unperturbed flow stress [Fig. 11(b)]. The results are calculated
for the system of 64 dislocations using a set of 100 reference cases,
which are compared with the corresponding perturbed systems with
varying δx. Although slightly noisy, the overall shape of the curves is
clearly visible.

Figure 11 shows that perturbing the pinning point positions
has essentially no effect below a standard error of δx ∼ 10−2, and a

FIG. 11. (a) Relative error of the flow stress (standard error relative to the theoret-
ical upper limit that is the expected error between two uncorrelated samples from
the flow stress distribution) and (b) correlation of the flow stress with a reference
(unperturbed) flow stress value as a function of δx, the standard error of pinning
point positions (the standard deviation of the normal distribution from which the
perturbations are drawn from).

significant effect of perturbing the pinning point positions becomes
visible only when the perturbation magnitude clearly exceeds that
threshold value. This suggests that the dislocation pileup model
and hence our results concerning deformation predictability in that
model are essentially unchanged even if the pinning point positions
(or, more generally, the features describing the pinning potential)
are perturbed a little.

V. DISCUSSION AND CONCLUSIONS
We have established that predictive models ranging from linear

regression to CNNs can be used to predict the stress–strain curves of
the pileup model with a good accuracy. While the different models
employed give rise to somewhat different results, a practical conclu-
sion is that the model giving the highest correlation coefficient for a
given strain provides a lower limit for the deformation predictability
of the pileup system. Notably the “specialist” CNN discussed above
results in correlation coefficients exceeding 0.8 over the entire range
of strains considered, and adding regularization further improves
the correlation coefficient of the flow stress prediction to 0.89. These
should be interpreted as lower limits of deformation predictability
as we obviously cannot exclude the possibility that a hypothetical
predictive model not considered here might outperform our mod-
els. For flow stress prediction, the 5% quantile of the pinning force
landscape turned out to be a surprisingly information-rich feature,
highlighting the fact that our method of using quantiles as features
might be useful also in other contexts.

While the predictability of the stress–strain curves turns out
to be quite good, it is not perfect. This is to be expected because
the stress–strain curves consist of critical-like strain bursts that are
expected to be inherently hard to predict. Indeed, our attempts
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to predict the sample-level bivariate avalanche count resulted in
essentially zero predictability for most of the critical dislocation
avalanches belonging to the power-law distributed part of the
avalanche size distribution. On the other hand, these sample-level
avalanche distributions also showed an interesting regularity: A
larger than average flow stress value indicates a lower than average
number of the largest avalanches for stresses below the flow stress
and a larger than average number of avalanches in the immediate
vicinity of the flow stress. It would be interesting to extend such an
analysis from our stress-controlled simulations to strain-controlled
ones. One should point out that because of the unpredictable nature
of critical dislocation avalanches, the ML models cannot fully replace
the integration of the equations of motion as they are unable to
fully resolve such strain bursts. However, the fact that the overall
shape of the stress–strain curve is still predictable to some degree
suggests that the trained ML models could be used for simple clas-
sification tasks like determining if a given sample is “weak” or
“strong” compared to the average, using significantly less computa-
tional resources than what is required for integrating the equations
of motion.

An interesting issue that is also of practical relevance has to do
with the accuracy of the input data used for prediction. Here, we
have access to the precise microscopic information of the pinning
force landscape, and indeed, the features we use have been con-
structed from such precise information that might not be available
in real experimental systems. However, our robustness analysis of
the pileup model suggests that extreme precision is not needed for
good predictions, and the same conclusion can be made by remem-
bering that our hand-picked features are constructed in a way that
does not preserve the information of the precise locations of the
pinning points. Thus, we expect our general methodology to be
applicable also in situations where the initial microstructure can be
characterized with a finite precision only.

To put our work in the context of the broader literature on
applying ML to physics problems, let us point out some details:
First, incorporating the inductive biases from different physical sys-
tems into machine learning architectures has recently received atten-
tion,42–44 the key idea being to use ML to learn missing physical
relations from data by constructing models that mimic the equations
of motion and then applying them to interpolate or extrapolate the
original data. One should note that our aim here is simply to find
a mapping from features characterizing the initial microstructure
to the plastic response of the sample, without explicitly incorporat-
ing information about the laws of physics in the predictive models.
When constructing the CNN, we make use of the fact that the sys-
tem we study is periodic, but otherwise it is up to the ML model(s)
to learn the above-mentioned mapping without explicit input related
to the physics of the system. A second relevant development in ML
has to do with incorporating the domain knowledge in ML mod-
els.45 In the context of our study, the feature engineering process
that resulted in the features we use for LASSO and simple neural
networks can be argued to incorporate some “domain knowledge,”
as the features used reflect, at least to some extent, our physical
intuition as to what the important features might be. Third, our
study dealing with a rather simple dislocation pileup model allow-
ing us to calculate an extensive training database with relative ease
could perhaps serve as a “sister system” for related systems such
as more realistic/complicated models as well as experiments where

data are scarce, in analogy to the approach of Hoffmann et al.31

For instance, in systems with a higher dimensionality than the one
considered here, such an approach might work well especially for
small strains, where the dislocation dynamics is governed by the lin-
ear response independent of the system’s spatial dimensionality. For
larger strains, the formation of tangled dislocation structures result-
ing in strain hardening might, however, complicate the situation,
as such features are not captured by our one-dimensional pileup
model.

We finish by noting that the pileup model studied here has the
advantage that the dislocation system will sample the entire one-
dimensional random energy landscape, and hence, extracting rele-
vant descriptors of the sample-specific quenched disorder is straight-
forward. This is in contrast to other systems exhibiting a depinning
phase transition such as magnetic domain walls in disordered ferro-
magnetic thin films,46 planar crack fronts in disordered solids,39,40,47

or individual dislocation lines interacting with point defects.48 In
such systems, driven by an external force in a direction perpendicu-
lar to the average elastic line direction, the disorder sampled by a
given realization is not known a priori. Nevertheless, it would be
interesting to extend the present study to consider the predictabil-
ity of depinning dynamics in such systems. Finally, we point out two
crucial outstanding questions related to deformation predictability:
The problem remains to be addressed in realistic three-dimensional
DDD simulations, with29,49 or without26 additional defects interfer-
ing with dislocation motion, as well as in experiments where descrip-
tors of the initial sample microstructure could be extracted, e.g., by
x-ray measurement techniques.50–52
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