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Abstract: Understanding the characteristics of public attention and sentiment is an essential
prerequisite for appropriate crisis management during adverse health events. This is even more
crucial during a pandemic such as COVID-19, as primary responsibility of risk management is not
centralized to a single institution, but distributed across society. While numerous studies utilize
Twitter data in descriptive or predictive context during COVID-19 pandemic, causal modeling of
public attention has not been investigated. In this study, we propose a causal inference approach
to discover and quantify causal relationships between pandemic characteristics (e.g., number of
infections and deaths) and Twitter activity as well as public sentiment. Our results show that the
proposed method can successfully capture the epidemiological domain knowledge and identify
variables that affect public attention and sentiment. We believe our work contributes to the field of
infodemiology by distinguishing events that correlate with public attention from events that cause
public attention.
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1. Introduction

On 11 March 2020, Coronavirus disease 2019 (COVID-19) was declared a pandemic by the World
Health Organization [1] and more than 30 million people have been infected by it as of 19 September
2020 [2]. During such crises, capturing the dissemination of information, monitoring public opinion,
observing compliance to measures, preventing disinformation, and relaying timely information is
crucial for risk communication and decision-making about public health [3]. Previous national and
global adverse health events show that social media surveillance can be utilized successfully for
systematic monitoring of public perception in real-time due to its instantaneous global coverage [4–9].

Due to its large number of users, Twitter has been the primary social media platform for
acquiring, sharing, and spreading information during global adverse events, including the COVID-19
pandemic [10]. Especially during the early stages of the COVID-19 pandemic, millions of posts
have been tweeted in a span of couple of weeks by users, that is, citizens, politicians, corporations,
and governmental institutions [11–14]. Consequently, numerous studies proposed and utilized Twitter
as a data source for extracting insights on public health as well as insights on public attention during
the COVID-19 pandemic. Focus of these studies include content analysis [15], topic modeling [16],
sentiment analysis [17], nowcasting or forecasting of the disease [18], early detection of the
outbreak [19], quantifying and detecting misinformation, disinformation, or conspiracies [20],
and measuring public attitude towards relevant health concepts (e.g., social distancing or working
from home) [21].

Despite such abundance of studies on manual or automatic analysis of social media data during
COVID-19, causal modeling of relationships between characteristics of the pandemic and social
media activity has not been investigated at all, as of September 2020. While descriptive statistical
analysis (e.g., correlation, cluster, or exploratory analysis) is beneficial for pattern and hypothesis
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discovery, and standard machine learning methods are effective in predictive modeling of those
patterns, causal inference of relevant phenomena will not be possible without causal computational
modeling. Causal modeling in the context of social media and pandemic can enable the optimization of
onset of risk communication interventions to increase dissemination of accurate information. Similarly,
it can be utilized to prevent acute propagation of negative sentiment with timely interventions.
Consequently, such causal modeling can help risk communication policies to shift from alerting people
to reassuring them. Furthermore, causal modeling enables simulation of what-if scenarios to enhance
disaster preparedness. Therefore, as public decision-making can benefit from adequate assessment of
public attention and correct understanding of underlying causes affecting it, we hereby propose causal
modeling of Twitter activity.

We hypothesize that daily Twitter activity and sentiment during the COVID-19 pandemic has a
causal relationship with the characteristics of the pandemic as well as with certain country statistics.
We propose a structural causal modeling approach for discovering causal relationships and quantifying
likelihood of events under various conditions (i.e., causal queries). To validate our approach, we collect
close to 1 million tweets with location information spanning 57 days and identify several attributes of
COVID-19 pandemic that might affect Twitter activity. We first employ a structure learning method to
automatically construct a graphical causal structure in a data-driven manner. Then, we utilize Bayesian
Networks (BNs) to learn conditional probability distributions of daily Twitter activity (number of
daily tweets) and average public sentiment with respect to several pandemic characteristics such as
total number of deaths and number of new infections. Our results show that the proposed structure
discovery method can successfully capture the epidemiological domain knowledge. Furthermore,
causal inference of daily Twitter activity with cross-validation across 12 countries show that our
approach provides accurate predictions of Twitter activity with interpretable and intuitive results.
We have released the full source code of our study (https://github.com/ogencoglu/causal_twitter_
modeling_covid19). We believe our study contributes to the field of infodemiology by proposing
causal modeling of public attention during the crisis of COVID-19 pandemic.

2. Going Beyond Correlations

Use of observational data from social media was proven to be beneficial in systematic monitoring
of public opinion during adverse health events [4–9]. Such utilization of large, publicly available
data becomes even more relevant during a global pandemic such as COVID-19, as neither enough
time nor a practical way to run variety of randomized control trials for quantifying public opinion
exist. Furthermore, as disease containment measures (e.g., lockdowns, quarantines, and curfews),
associated financial issues (e.g., due to inability to work), and changes in social dynamics may impact
mental health negatively [22–24], opinion surveillance methods that do not carry the risk of further
stressing of the participants are pertinent.

Themes of previous studies that focus on exploration of, description of, correlation
of, or predictive modeling with Twitter data during COVID-19 pandemic include sentiment
analysis [17,25–28], public attitude/interest measurement [21,29–31], content analysis [15,32–36],
topic modeling [16,26,27,37–40], analysis of misinformation, disinformation, or conspiracies [20,41–46],
outbreak detection or disease nowcasting/forecasting [18,19], and more [47–52]. Similarly, data from
other social media channels (e.g., Weibo, Reddit, Facebook) or search engine statistics are utilized
for parallel analyses related to COVID-19 pandemic as well [53–69]. While these studies reveal
important information and patterns, they do not attempt to uncover or model causal relationships
between the attributes of COVID-19 pandemic and social media activity. As correlation does not
imply causation (e.g., spurious correlations), the ability to identify truly causal relationships between
pandemic characteristics and public behaviour (online or not) remains crucial for devising public
policies that are more impactful. Without causal understanding, our efforts and decisions on risk
communication, public health engagement, health intervention timing, and adjustment of resources
for fighting disinformation, fearmongering, and alarmism will stay subpar.

https://github.com/ogencoglu/causal_twitter_modeling_covid19
https://github.com/ogencoglu/causal_twitter_modeling_covid19
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The task of forging causal models comes with numerous challenges in various domains
because, typically, domain knowledge and significant amount of time from the experts is required.
For substantially complex phenomena such as a pandemic due to a novel virus, diagnosing causal
attributions becomes even harder. Therefore, learning causal relationships automatically from
observational data has been studied in machine learning. One of the primary challenges for this
pursuit is that numerous latent variables that we can not observe exist in real world problems. In fact,
numerous other latent variables that we are not even aware of may exist as well. As latent variables
can induce statistical correlations between observed variables that do not have a causal relationship,
confounding factors arise. While this phenomenon may not exhibit a considerable problem in standard
probabilistic models, causal modeling suffers from it immensely.

Several machine learning methods are proposed for learning causal structures from observational
data and some allow combination of statistical information (learned from the data) and domain
expertise [70,71]. Bayesian networks are frequently utilized frameworks for learning models once
the causal structure is fixed. As probabilistic graphical models, BNs flexibly unify graphical models,
structural equations, and counterfactual logic [71–74]. A causal BN consists of a directed acyclic
graph (DAG) in which nodes correspond to random variables and edges correspond to direct
causal influence of one node on another [71]. This compact representation of high-dimensional
probability spaces (e.g., joint probability distributions) provides intuitive and explainable models for
us. In addition, BNs allow not only straightforward observational computations (e.g., calculation of
marginal probabilities) but also interventional ones (e.g., do-calculus), enabling simulations of various
what-if scenarios.

3. Methods

3.1. Data

We primarily utilized two data sources for our study, that is, daily number of officially reported
COVID-19 infections and deaths from “COVID-19 Data Repository” by the Center for Systems Science
and Engineering at Johns Hopkins University [2] and daily count of COVID-19 related tweets from
Twitter [75]. A 57 day period between 22 January–18 March 2020 is chosen for this study to represent
the early stages of the pandemic when disease characteristics are less known and public panic is
elevated. We collected 954,902 tweets that have location information from Twitter by searching for
#covid19 and #coronavirus hashtags. Similar to other studies [18,20,46], geolocation of the tweets is
inferred either by using user geo-tagging or geo-coding the information available in users’ profiles.
Timeline of daily log-distribution of collected tweet counts among 177 countries can be examined from
Figure 1. The trend shows an increasing prevalence of high daily number of tweets as the pandemic
spreads across the globe with time.

We select the following 12 countries for our causal modeling analysis: Italy, Spain, Germany,
France, Switzerland, United Kingdom, Netherlands, Norway, Austria, Belgium, Sweden, and Denmark.
These are the countries with substantial number of reported COVID-19 cases (listed in descending
order) in Europe as of 18 March 2020, yet still exhibiting a high diversity in terms of the timeline of the
pandemic. For instance, while Italy located further in the pandemic timeline due to being hit first in
Europe, United Kingdom could be considered in the very initial stages of it for the analysis period of
our study. Figure 2 depicts the cumulative number of tweet counts alongside with that of reported
infections and deaths for the selected countries. Evident correlations between these variables can be
noticed. A sharp increase in Twitter activity is observed after 28–29 February, which corresponds to
the period of each country having at least one confirmed COVID-19 case.
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Figure 1. Evolution of COVID-19 related Twitter activity between 22 January–18 March 2020.
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Figure 2. Cumulative counts of Twitter activity and COVID-19 statistics for the selected countries
during the study period.

3.2. Feature Selection

In order to characterize the pandemic straightforwardly, we calculate the following six features
(attributes) from the official COVID-19 incident statistics for each day for 12 selected countries: (1) total
number of infections up to that day (normalized by the country’s population), (2) number of new infections
(normalized by the country’s population), (3) percentage increase in infections (with respect to previous
day), and the same three statistics for deaths (4-5-6).

Recent epidemiological studies on COVID-19 reveal the following: people over the age 65 are the
primary risk group both for infection and mortality [76–79] and human-to-human transmission of the
virus is largely occurring among family members or among people who co-reside [77,80,81]. In order
to be able to test whether our approach can capture this scientific domain knowledge or not, we collect
the following two features for each country: (7) percentage of population over the age of 65 [82] and (8)
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percentage of single-person households [83]. Finally, as we know that popularity of Twitter in a country
and announcement of national lockdown (e.g., closing of schools, banning of gatherings) unequivocally
affect the Twitter activity in that country, we add (9) percentage of population using Twitter [84] and (10)
is_lockdown_announced? (3 day period is encoded as Yes if government restriction is announced [85],
No otherwise) features as well. We represent Twitter activity by simply counting the (11) number of daily
tweets (normalized by the country’s population). We also calculate the (12) average daily sentiment (in
range [−1, 1]) of English tweets (corresponding to over 80% of all tweets) by utilizing a pre-trained
sentiment classifier (DistilBERT [86]). We treat each day as an observation and represent each day with
these 12 attributes (n = 12) for structure learning, resulting in a feature matrix of dimensions 684× 12.
684 observations come from 12 countries times 57 days.

For the purpose of increasing interpretability, we discretize the daily numerical features by
mapping them to 2 categorical levels, namely High or Low. Features related to the pandemic (infections
and deaths) and Twitter activity employ a cut-off value of 75th percentile and remaining numerical
features employ a cut-off value of 50th percentile (corresponding to median). Such categorization, for
instance, turns the numerical value of “population-normalized increase in deaths of 1.7325× 10−7”
into a relatively calculated category of High for a given day. Sentiment scores are mapped to Positive
(≥0) or Negative (<0) as well.

3.3. Structure Learning and Causal Inference

In structure learning we would like to learn a directed acyclic graph, G, that describes the
conditional dependencies between variables in a given data matrix. A typical formulation of this
problem is a structural equation model (more generally a generalized linear model) in which a weighted
adjacency matrix, W ∈ Rn×n, defines the graph. This is essentially a parametric model that
enables operations on the continuous space of n × n matrices instead of discrete space of DAGs.
Such formulation enables a score-based learning of DAGs, that is,

min
W∈Rn×n

L(W)

subject to G(W) ∈ DAGs,
(1)

where G(W) is the n-node graph induced by the weighted adjacency matrix, W, and L is the score/loss
function to be minimized. Even though the loss function is continuous, solving Equation (1) is still a
non-convex, combinatorial optimization problem as the acyclicity constraint is discrete and difficult to
enforce. Note that acyclicity is a strict requirement for causal graphs. In order to tackle this problem
efficiently, we utilize the recently proposed NOTEARS (corresponding to Non-combinatorial Optimization
via Trace Exponential and Augmented lagRangian for Structure learning) algorithm for structure learning [87].

NOTEARS algorithm discovers a directed acyclic graph from the observational data by
re-formulating the structure learning problem as a purely continuous optimization. This approach
differs significantly from existing work in the field which predominantly operates on discrete space
of graphs. Re-formulation is achieved by introducing a continuous measure of “DAG-ness”, h(W),
which quantifies the severity of violations from acyclicity as W changes. Consequently, the problem
formulation becomes

min
W∈Rn×n

L(W)

subject to h(W) = 0,
(2)

which enables utilization of standard numerical solving methods and scales cubically, O(n3), with the
number of variables instead of exponentially as in other structure learning methods. We have chosen
the score to be the least squared loss (can be any smooth loss function) with l1-regularization term
to discover a sparse DAG and use a gradient-based minimizer to solve Equation (2). In our context,
we discover such an adjacency matrix that the graph it defines encodes the dependencies between our
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features in a close-to-optimal manner (finding the global optimum is NP-hard [88,89]) and is a DAG.
Efficiency of this approach enables structure learning in a scalable manner.

As NOTEARS algorithm allows incorporation of expert knowledge, we also put certain constraints
on the structure in our experiment. These constraints correspond to prohibited causal attributions
based on simple logical assumptions, for example, Twitter activity on a given day can not have a causal
effect on number of deaths from COVID-19 on that day. Full list of these constraints can be found
in Table A1 in the Appendix A. Once the structure is learned (both by data and logical constraints),
we treat it as a causal model and learn the parameters of a Bayesian network on it with the training
data in order to capture the conditional dependencies between variables. During inference on test data,
probabilities of each possible state of a node with respect to the given input data is computed from the
conditional probability distributions.

Our approach allows straightforward querying of the model with varying observations.
For instance for a given day, the probability of Twitter activity being High, when total number of
infections are Low and new deaths are High, that is,

Pr(Twitter Activity = H | Total Infections = H, New Deaths = L), (3)

can be computed by propagating the impact of these queries through the nodes of interest. By utilizing
this property of our approach, we compute marginal probabilities for gaining further insights on
likelihoods of various events.

Essentially, we expect two observations from our experiment. First, we expect the structure
learning algorithm to discover the causal relations verified by domain/expert knowledge (e.g., % of
single-person households and % of 65+ people affecting infections) and common sense/elementary
algebra (e.g., new deaths affecting percentage change in deaths). Second, we expect the calculated
likelihoods from the Bayesian network are in parallel with domain knowledge as well, for example,
high % of people over 65 increasing the marginal likelihood of deaths instead of decreasing it or high
% of single households (better social isolation) decreasing the marginal likelihood of infections instead
of increasing it. Realization of these expectations will show that the proposed method can indeed
capture causal relationships and will increase our confidence in discovered relationships between the
pandemic attributes and Twitter activity as well as confidence in corresponding likelihoods.

3.4. Evaluation

We validate our approach first by inspecting whether the expected causal relationships (e.g.,
domain knowledge on COVID-19) are captured or not. Then, we infer the Twitter activity of each
day from the learned Bayesian Network. Essentially, this corresponds to a binary classification task,
that is, predicting the Twitter activity as High or Low from the rest of the variables. We utilize a
Leave-One-Country-Out (LOCO) cross-validation scheme in which each fold consists of training set
from 11 countries (627 samples) and test set (57 samples) from the remaining country. We do not
perform standard k-fold cross-validation as we would like to measure the generalization performance
across countries and prevent overly optimistic results. Therefore, we ensure that the observations from
the same country fall in the same set (either training or test) for every fold. We evaluate the performance
of our approach by calculating the average Area Under the Receiver Operating Characteristic curve
(AUROC) of the cross-validation runs. For quantifying the causal effect of characteristics of pandemic
and relevant country statistics on Twitter activity, we report likelihoods from the model by querying
various conditions.

4. Results

The jointly (with statistical learning from data and user-defined logical constraints) discovered
causal model by the structure learning algorithm can be examined from Figure 3. Different families of
attributes are colored differently for ease of inspection—blue for COVID-19 pandemic related variables,
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yellow for country-specific statistics, green for government interventions, and red for representing
variables related to public attention and sentiment in Twitter. Daily Twitter activity is affected by 4
variables, namely Twitter usage statistics of that country, new infections on that day, new deaths on
that day, and whether national lockdown is announced or not. Similarly, 4 variables affecting the
average daily sentiment in Twitter are new infections on that day, new deaths on that day, total deaths
up to that day, and again lockdown announcements. Total number of infections did not show any
causal effect on Twitter activity or on average public sentiment.

Twitter Activity

Total Deaths

New Deaths

Total Infections

New Infections

Change in Deaths
(%)

Change in Infections
(%)

Population Over 65 
(%)

Twitter Usage
(%)

Single
Household (%)

Lockdown 
Announcement

Attributes of 
COVID-19 Pandemic

Country Statistics

Attributes of Public 
Attention on Twitter

Attributes of 
Government 
Interventions

Sentiment
Causal Relationship

Figure 3. Discovered graph depicting causal relationships between various attributes.

Leave-One-Country-Out cross-validation results in terms of AUROCs can be seen in Table 1.
Each row in the table corresponds to a cross-validation fold in which the Twitter activity in that
particular country was tried to be predicted. The Bayesian network model achieves an average AUROC
score of 0.833 across countries when trying to infer the Twitter activity from the rest of the variables for
a given day. Daily Twitter patterns of Germany, Italy, and Sweden show very high predictability with
AUROC scores above 0.97. United Kingdom shows the worst predictability with an AUROC of 0.68.

Calculation of marginal probabilities for several queries are presented in Table 2. Public attention
and sentiment-related target variables and states are set to High Twitter Activity and
Negative Sentiment.

Table 1. Area Under the Receiver Operating Characteristic curve (AUROC) result for each fold of
Leave-One-Country-Out cross-validation.

Cross Validation Test Country AUROC

Austria 0.798
Belgium 0.728
Denmark 0.831

France 0.776
Germany 0.992

Italy 0.976
Netherlands 0.746

Norway 0.907
Spain 0.766

Sweden 0.998
Switzerland 0.789

United Kingdom 0.684

Average 0.833
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Table 2. Examples of queries and computed marginal probabilities for Twitter activity and
average sentiment.

Query Variable and State Pr()

Single-person household (%) = H Total Infections = H 0.178
65+ (%) = L

Single-person household (%) = L Total Infections = H 0.241
65+ (%) = H

New Infections = H Twitter Activity = H 0.496
New Deaths = H

New Infections = L Twitter Activity = H 0.184
New Deaths = L

New Infections = H
New Deaths = H Twitter Activity = H 0.800

Twitter Usage = H
Lockdown Announcement = Yes

New Infections = L
New Deaths = L Twitter Activity = H 0.120

Twitter Usage = L
Lockdown Announcement = No

New Deaths = H Sentiment = Neg 0.624

New Deaths = L Sentiment = Neg 0.277

Total Deaths = H Sentiment = Neg 0.344

Total Deaths = L Sentiment = Neg 0.290

Lockdown Announcement = Yes Sentiment = Neg 0.501

Lockdown Announcement = No Sentiment = Neg 0.286

5. Discussion

By analyzing observational data, we attempt to discover causal associations between national
COVID-19 patterns and Twitter activity as well as public sentiment during the early stages of
the pandemic. Some of our findings are expected associations such as popularity of Twitter in a
country (Twitter usage) affecting Twitter activity. Other expected causal relationships were new
deaths affecting change in deaths and new infections affecting change in infections, due to trivial
mathematical definitions. These were captured successfully as well. It is important to note that
no causal relationship between infection statistics and death statistics was discovered which might
seem against intuition. This is because in this study we treat each day as an observation in our
modeling and do not create time-lagged version of variables. While some of our results imply expected
associations, we also observe more interesting implications that are in alignment with recent scientific
literature on COVID-19. For instance, percentage of single-person households affects the total number
of COVID-19 infections. Similarly, the percentage of 65+ population affects the percentage change in
deaths (essentially corresponding to rate of deaths). When the queries regarding domain knowledge
are examined, we see that low percentage of single-person households (less social isolation) and high
percentage of 65+ population increases the probability of total infections being high when compared
to the opposite settings. This is in line with recent scientific literature on COVID-19 transmission
characteristics [76–81].

By inferring Twitter activity, we show the generalization ability of causal inference across
12 countries with reasonable accuracy. Factors affecting Twitter activity and sentiment are
discussion-worthy as well. By observing correlations, Wong et al. hints that there may be a link
between announcement of new infections and Twitter activity [17]. Our results in Figure 3 and Table 2
suggest the same with a causal point of view. Similarly, our finding of negative impact of declaration of
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government measures on public sentiment is also in parallel with recent research. By analyzing Chinese
social media, Li et al. show that official declaration of COVID-19 (epidemic at that time) correlates with
increased negative emotions such as anxiety, depression, and indignation [56]. When new infections,
new deaths, total deaths are high and an announcement of lockdown is made, Twitter activity on
that day becomes more than 6 times more likely than when the situation is opposite (probabilities
of 0.8 vs. 0.12). High number of new deaths for a given day causes the sentiment to be much more
negative than low number of new deaths (probabilities of 0.624 vs. 0.277). Similarly, an announcement
of lockdown is causally associated with an increase in negative sentiment in Twitter (probabilities of
0.501 vs. 0.286).

As it is important to observe the countries that are ahead in terms of pandemic timeline and
learn the behaviour of the pandemic, it is equally important to understand also the public attention
and sentiment characteristics from those countries. Wise et al. show that risk perception of people
and their frequency of engagement in protective behaviour change during the early stages of the
pandemic [90]. Inference of such patterns in a causal manner from social media can aid us in the
pursuit of timely decisions and suitable policy-making, and consequently, high public engagement.
After all, primary responsibility of risk management during a global pandemic is not centralized to
a single institution, but distributed across society. For example, Zhong et al. shows that people’s
adherence to COVID-19 control measures is affected by their knowledge and attitudes towards it [91].
In that regard, computational methods such as causal inference and causal reasoning can help us
disentangle correlations and causation between the observed variables of the adverse phenomenon.

In real-world scenarios, it is virtually impossible to correctly identify all the causal associations due
to presence of numerous confounding factors. As in with all methods in machine learning, a trade-off
between false positive associations and false negative ones exists in our approach as well. While we
rely on official COVID-19 statistics, testing and reporting methodologies as well as policies can change
during the course of the pandemic. Furthermore, in the context of this study, ground truth causal
associations do not exist even for a few variables, preventing the direct measurement of performance
of causal discovery methods. We would like to emphasize that we acknowledge these and other
relevant limitations of our study. Our study has further limitations regarding the simplifications on our
problem formulation and data. For instance, we do not attempt to model temporal causal relationships
in this study, for example, high deaths numbers having an impact on the public sentiment possibly for
several following days. We have not taken into account remarks by famous politicians, public figures,
or celebrities which may indeed impact social media discussions. We have not incorporated “retweets”
or “likes” into our models either. We would also like emphasize that with this study we wanted
to introduce an uncomplicated example of causal modeling perspective to social media analysis
during COVID-19.

Future work includes investigating the effect of dynamics of the pandemic on the spreading
mechanisms of information, including relevant health topics in Twitter and other social media.
As social media can be exploited for deliberately creating panic and confusion [92], causal inference on
patterns of misinformation and disinformation propagation in Twitter will be studied as well. Finally,
country-specific models with more granular statistics of the country and time-delayed variables will
be investigated for a longer analysis period.

6. Conclusions

Distinguishing epidemiological events that correlate with public attention from epidemiological
events that cause public attention is crucial for constructing impactful public health policies. Similarly,
monitoring fluctuations of public opinion becomes actionable only if causal relationships are identified.
We hope our study serves as a first example of causal inference on social media data for increasing our
understanding of factors affecting public attention and sentiment during COVID-19 pandemic.
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Abbreviations

The following abbreviations are used in this manuscript:

AUROC Area Under the Receiver Operating Characteristic curve
COVID-19 Coronavirus Disease 2019
BN Bayesian Network
DAG Directed Acyclic Graph
LOCO Leave-One-Country-Out
NOTEARS Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for

Structure learning

Appendix A

Prohibited causal associations are listed in Table A1 below. For example, Twitter activity can not
cause any other variable for a given day. Similarly, Twitter usage percentage or lockdown announcement
can not have a causal relationship with new deaths for a given day.

Table A1. Prohibited causal associations (constraints) for structure learning.

From To

Population Over 65 (%)
Any node Twitter Usage (%)

Single Household (%)

Twitter Activity Any node
Sentiment

Total Infections
New Infections

Twitter Usage (%) Change in Infections (%)
Lockdown Announcement Total Deaths

New Deaths
Change in Deaths (%)

Population Over 65 (%) Twitter Activity
Single Household (%) Sentiment

Twitter Usage (%) Sentiment
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