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Yuan Gao, Robert Bregović, Member, IEEE, and Atanas Gotchev, Member, IEEE

Abstract—Shearlet Transform (ST) has been instrumental
for the Densely-Sampled Light Field (DSLF) reconstruction,
as it sparsifies the underlying Epipolar-Plane Images (EPIs).
The sought sparsification is implemented through an iterative
regularization, which tends to be slow because of the time spent
on domain transformations for dozens of iterations. To overcome
this limitation, this letter proposes a novel self-supervised DSLF
reconstruction method, CycleST, which employs ST and cycle
consistency. Specifically, CycleST is composed of an encoder-
decoder network and a residual learning strategy that restore
the shearlet coefficients of densely-sampled EPIs using EPI-
reconstruction and cycle-consistency losses. CycleST is a self-
supervised approach that can be trained solely on Sparsely-
Sampled Light Fields (SSLFs) with small disparity ranges (6 8
pixels). Experimental results of DSLF reconstruction on SSLFs
with large disparity ranges (16 - 32 pixels) demonstrate the
effectiveness and efficiency of the proposed CycleST method.
Furthermore, CycleST achieves ∼ 9x speedup over ST, at least.

Index Terms—Image-based rendering, light field reconstruc-
tion, self-supervision, shearlet transform, cycle consistency.

I. INTRODUCTION

DENSELY-Sampled Light Field (DSLF) is a discrete 4D
representation [1, 2] for the light rays from the scene

encoded by two parallel planes, namely image plane and cam-
era plane, where the maximum disparity between neighboring
views is one pixel at most [3, 4]. DSLF has a wide range of
applications, e.g., synthetic aperture imaging, depth estimation
and visual odometry [5]. DSLF-based contents can be rendered
on VR [6, 7], 3DTV [8, 9] and holographic [10]–[12] systems.
Capturing a DSLF of real scenes with wide field of view (FoV)
requires high number of densely-located cameras which is not
practical. For such scenes, only Sparsely-Sampled Light Fields
(SSLFs) can be captured in practice. SSLFs can have small
disparities between neighboring views in the range of 8 pixels,
moderate disparities in the range of 15-16 pixels, and large
disparities in the range of 30-32 pixels [13]. Real-world wide-
FoV DSLFs are typically reconstructed from SSLFs using
computational imaging approaches [14]–[18].
Related work. Video frame interpolation methods can be
adapted to solve the DSLF reconstruction problem because a
3D SSLF can be treated as a virtual video sequence. Niklaus
et al. have proposed Separable Convolution (SepConv), a
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learning-based video frame synthesis method using spatially
adaptive kernels [19]. Bao et al. have proposed a Depth-
Aware video frame INterpolation (DAIN) algorithm that lever-
ages optical flow, local interpolation kernels, depth maps and
contextual features [20]. Xu et al. have improved the linear
models adopted in Linear Video Interpolation (LVI) methods
[21, 22] and proposed Quadratic Video Interpolation (QVI)
approach considering the acceleration information in videos
[23]–[25]. Gao and Koch have extended SepConv for DSLF
reconstruction by proposing Parallax-Interpolation Adaptive
Separable Convolution (PIASC) [26].

The aforementioned methods tend to fail for the case of
DSLF reconstruction from large-disparity SSLFs of complex
scenes. To address the problem, Gao et al. have developed
a learning-based DSLF reconstruction method, termed Deep
Residual Shearlet Transform (DRST) [27]. It replaces the
original shearlet-domain interactive regularization [28]–[30]
with a learned one. The method however can only handle EPIs
with a small number of input views, i.e. three views. For more
views it has to be applied recursively, which reduces the speed.

To tackle this problem, a novel self-supervised [31] DSLF
reconstruction method, CycleST, is proposed in this paper.
Along with the shearlet transform, it leverages cycle consist-
ency [32], recently used for video frame interpolation [33, 34].
Specifically, since several DSLFs with different angular resolu-
tions can be reconstructed from the same input SSLF, the cycle
consistency is the technique that guarantees these DSLFs have
similar reconstruction results w.r.t. the same angular positions.

We summarize the main contributions of this letter as below:
• The proposed CycleST fully leverages the Deep Neural

Network (DNN) with cycle-consistency loss in shearlet
domain to perform EPI inpainting in image domain for
an input SSLF with an arbitrary number of views.

• CycleST is fully self-supervised and trained solely on
synthetic SSLFs with small disparity ranges (6 8 pixels);

• Experimental results on challenging real-world SSLFs
with large disparity ranges (16 - 32 pixels) demonstrate
the superiority of CycleST over ST for DSLF reconstruc-
tion in terms of accuracy and efficiency (> 8.9x speedup).

II. METHODOLOGY

A. Preliminaries

1) Symbols and notations: The symbols and notations used
in this letter are summarized in Table I. The target DSLF D
to be reconstructed from the input SSLF S has the same
spatial resolution (m× l) but different angular resolution. The
angular resolutions ṅ and n of D and S are related through the

https://civit.fi/
https://civit.fi/
mailto:yuan.gao@tuni.fi
mailto:robert.bregovic@tuni.fi
mailto:atanas.gotchev@tuni.fi


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Table I
SYMBOLS AND NOTATIONS.

Symbol Name Description

m× l Spatial resolution of S, S ′ and D width × height
n, n′, ṅ Angular resolutions of S, S ′ and D
dSmin Minimum disparity of S dSmin = min

(
disp(S)

)
dSmax Maximum disparity of S dSmax = max

(
disp(S)

)
dSrange Disparity range of S dSrange =

(
dSmax − dSmin

)
εi Sparsely-sampled EPI (SSEPI) εi ∈ Rm×n×3

εi SSEPI (for training) εi ∈ Rm×n′×3

ζi Densely-sampled EPI ζi ∈ Rm×ṅ×3

S Large-disparity-range SSLF S = {εi|1 6 i 6 l}
(16 < dSrange 6 32 pixels)

S ′ Small-disparity-range SSLF (for training) S ′ = {εi|1 6 i 6 l}
(1 < dS

′
range 6 8 pixels)

D Target DSLF to be reconstructed from S D = {ζi|1 6 i 6 l}
(dDrange 6 1 pixel)

τ Sampling interval (D → S) τ = ṅ−1
n−1

= 32

τ ′ Sampling interval (D → S ′) τ ′ = ṅ−1
n′−1

= 8

sampling interval τ such that τ = ṅ−1
n−1 , τ > dSrange. We con-

sider input S with large disparity ranges (16 < dSrange 6 32
pixels), hence τ = 32. Both S and D can be regarded as sets
of EPIs, i.e. S = {εi|1 6 i 6 l} and D = {ζi|1 6 i 6 l}.
The EPIs εi and ζi have different heights because of the
different angular resolutions. To train the CycleST network,
we utilize available SSLF datasets with small disparity ranges
(6 8 pixels). Let S ′ = {εi|1 6 i 6 l} denote one of these
training SSLFs, where dS

′

range 6 8 pixels and εi ∈ Rm×n′×3.
The sampling interval from D to S ′ is represented by τ ′, where
τ ′ > dS

′

range.
2) Shearlet Transform (ST): ST has been originally pro-

posed in [35]–[37] and extended for DSLF reconstruction in
[28]–[30], where an elaborately-tailored shearlet system with ξ
scales has been developed for the angular resolution enhance-
ment of any input S with two requirements: (i) dSmin > 0 and
(ii) dSmax 6 τ . The number of scales, i.e. ξ, is determined by
the sampling interval τ as ξ = dlog2 τe. The constructed ξ-
scale shearlet system is used by shearlet analysis transform
SH : Rγ×γ → Rγ×γ×η and shearlet synthesis transform
SH∗ : Rγ×γ×η → Rγ×γ , where γ × γ represents the size
of a shearlet filter and η = (2ξ+1 + ξ−1) denotes the number
of shearlets. For τ = 32, ξ = 5 and η = 68. Moreover, as
suggested in [28], for τ = 32, a good choice for γ is γ = 255.

B. CycleST

To resolve the challenging DSLF reconstruction problem
for large-disparity-range SSLFs using small-disparity-range
SSLF training data only, we propose a novel self-supervised
method that leverages a residual learning-based DNN with
EPI-reconstruction and cycle-consistency losses to restore
EPI coefficients in shearlet domain. The proposed approach
consists of five steps, namely (1) pre-shearing, (2) random
cropping, (3) remapping, (4) sparse regularization and (5) post-
shearing. Steps (1) - (4) form the self-supervised training part
of CycleST. Steps (1) and (3) - (5) constitute the prediction
part of CycleST. The details of these five steps are described
as following.

1) Pre-shearing: To satisfy the two requirements of the
elaborately-tailored shearlet system explained in Section II-A2,
a pre-shearing operation is designed to change the disparities

u
v

(a)

(c) (d) (f)

(b)

u
v

(e)(e)

Figure 1. Illustration of the preparation of training data for CycleST. An
EPI εi of the training SSLF S′ is presented in (a). In (b), the top row
shows εsheari , i.e. the result of the pre-shearing operation on εi, and the
bottom row shows εcropi , which is the result of the random cropping step
on εsheari . The remapped EPIs ε̃(3)i and ε̃(5)i from εcropi are exhibited in (c)
and (d), respectively. The corresponding reconstruction results of the sparse
regularization step, i.e. ζ̃(3)i and ζ̃(5)i , are displayed in (e) and (f), respectively.

of the input training SSLF S ′ using a shearing parameter ρS
′
,

where
(
dS

′

min −
(
τ ′ − dS′

range

))
6 ρS

′
6 dS

′

min. To be precise,

each row v of εi is sheared by (n′ − v)ρS
′

pixels, where
1 6 v 6 n′. One of the EPIs of the training SSLF S ′, i.e. εi,
is displayed in Fig. 1 (a). The pre-sheared EPI corresponding
to εi is represented by εsheari as illustrated in Fig. 1 (b).

2) Random cropping: To augment the number of training
samples, a random cropping operation is leveraged to ran-
domly cut an EPI εcropi from the above generated εsheari with
a smaller width b = (γ + 1) = 256 pixels. Note that this
operation does not crop any black border region of εsheari . An
example of the random cropping results is shown in Fig. 1 (b).

3) Remapping: To achieve self-supervision for CycleST,
the rows of the cropped EPI εcropi are rearranged with zero-
padding between neighboring rows, producing EPIs ε̃(t)i , i.e.

ε̃
(t)
i

(
1 : τ :

(
(t− 1)τ + 1

))
= εcropi

(
1 : n

′−1
t−1 : n′

)
, (1)

where ε̃
(t)
i ∈ Rb×b×3. As shown in Fig. 1 (c) and (d), two

different EPIs, i.e. ε̃(3)i and ε̃(5)i , are generated for each εcropi ,
so that the cycle consistency information from them can be
leveraged in the next sparse regularization step.

4) Sparse regularization: The remapped EPI ε̃(t)i is then
converted into shearlet coefficients via the shearlet analysis
transform SH(·). The sparse regularization step is essentially
refining these coefficients in shearlet domain to fulfill image
inpainting on ε̃

(t)
i in image domain. To this end, a deep net-

work using cycle-consistency loss with self-supervision setup
is designed for the reconstruction of the shearlet coefficients.
Network architecture. As shown in Fig. 2, a residual convolu-
tional neural network, based on the architectures of U-Net [39]
and the generator network of CycleGAN [32], is adapted to
perform the reconstruction of shearlet coefficients. The input
data are ε̃

(t)
i , t ∈ {3, 5}, in image domain, which can be

converted into coefficients SH
(
ε̃
(t)
i

)
with η = 68 channels in

shearlet domain. These coefficients are then fed to the encoder-
decoder network of CycleST, represented by R(·), to predict
the residuals for the input coefficients, i.e. R

(
SH
(
ε̃
(t)
i

))
. The

encoder component of R(·) has four hierarchies, of which
each is composed of one 3× 3 convolution, one Leaky ReLU
and one average pooling layers. The decoder part also has
four hierarchies. Each one consists of the same convolution
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: 3 × 3 convolution + 
  Leaky ReLU (    = 0.3)

: 1 × 1 convolution

: average pooling : bilinear upsampling

skip connection (concatenate) 

Shearlet Domain

Image Domain

68 96 128 128 128 128 128 96 96 68 68

Figure 2. Architecture of the encoder-decoder network of CycleST, referred
to as R(·). The U-Net-based R(·) and residual learning strategy [38] are
utilized to refine the shearlet coefficients of the remapped EPI ε̃(t)i in shearlet
domain to produce an inpainted densely-sampled EPI ζ̃(t)i in image domain.

and Leaky ReLU layers as that of the encoder, but a bilinear
upsampling layer instead of the pooling layer. The skip con-
nections concatenate the outputs of last three hierarchies of
both encoder and decoder. It can also be seen that the last layer
of R(·) is only a 1×1 convolution layer, without Leaky ReLU
placed behind it. Following the residual learning strategy [38],
the predicted coefficient residuals R

(
SH
(
ε̃
(t)
i

))
are merged

with SH
(
ε̃
(t)
i

)
via an element-wise addition operation and

then converted into reconstructed densely-sampled EPIs ζ̃(t)i .
For illustration, see Fig. 1 (e) and (f). Overall, the sparse
regularization can be written as

ζ̃
(t)
i = SH∗

(
SH
(
ε̃
(t)
i

)
+R

(
SH
(
ε̃
(t)
i

)))
. (2)

Loss function. Two kinds of losses are considered in the loss
function of CycleST network, i.e. the EPI-reconstruction loss
Ls(t) and cycle-consistency loss Lcyc. Both of them employ `1
norm, since recent research indicates that `1 norm is superior
over `2 norm for learning-based view synthesis and image
inpainting tasks [19, 40, 41]. The overall loss function L is a
linear combination of Ls(t), t ∈ {3, 5}, and Lcyc, i.e.

L = Ls(3) + Ls(5) + λLcyc . (3)

The EPI-reconstruction loss Ls(t) measures the reconstruction
errors between the ground-truth sparsely-sampled εcropi and
predicted densely-sampled ζ̃(t) in a self-supervised manner:

Ls(t) =
∥∥∥ζ̃(t)i (1 : (t−1)τ

n′−1 :
(
(t− 1)τ + 1

))
− εcropi

∥∥∥
1
. (4)

The cycle-consistency loss Lcyc calculates the reconstruction
differences between the predicted ζ̃(3) and ζ̃(5):

Lcyc =
∥∥∥ζ̃(3)i

(
1 : (2τ + 1)

)
− ζ̃(5)i

(
1 : 2 : (4τ + 1)

)∥∥∥
1
.(5)

Finally, λ is empirically set to 2.
5) Post-shearing: The post-shearing operation is only used

in the inference phase of CycleST. In terms of using CycleST
for reconstructing D from S, the input S has been sheared with
parameter ρS in the pre-shearing stage. The post-shearing step
compensates this through the same shearing operation on the

Table II
DETAILS ABOUT THE TRAINING AND EVALUATION DATASETS.

3D light fields m l n′ n̈ δ n ṅ

S ′j , 1 6 j 6 78 512 512 9 - - - -
Ψ1

j , 1 6 j 6 9 1280 720 - 97 16 7 193
Ψ2

j , j ∈ {1, 2} 960 720 - 97 16 7 193
Ψ2

j , j ∈ {3, 4} 960 720 - 97 32 4 97

top ṅ rows of ζ̃(n)i with a new shearing parameter −ρ
S

τ . The
post-sheared ζ̃(n)i is then cut by only keeping the top ṅ rows of
it to produce ζi of the target D. It is suggested that ρS = dSmin.

III. EXPERIMENTS
A. Experimental Settings

1) Training dataset: The Inria synthetic light field datasets
contains 39 synthetic 4D SSLFs with disparities from - 4 to 4
pixels [42]. These 4D SSLFs have the same angular resolution
9×9 and spatial resolution 512×512 pixels. For training, we
only pick the 5-th row and 5-th column 3D SSLFs from each
synthetic 4D SSLF. Therefore, the training data of CycleST
consists of S ′j , 1 6 j 6 78, l = 512, m = 512 and n′ = 9.
The pre-shearing operation in Section II-B1 is repeated three
times for each S ′j with different shearing parameters ρS

′
j ∈{(

d
S′
j

min−
(
τ ′−dS

′
j

range

))
,
(
d
S′
j

min− 0.5 ·
(
τ ′−dS

′
j

range

))
, d
S′
j

min

}
.

As a result, the number of the generated εcropi for each training
epoch is 78× l = 39, 936.

2) Evaluation Datasets: For evaluation, we consider two
datasets of light fields with tiny disparity ranges (6 2 pixels).
Though they are not DSLFs, they are otherwise suitable as they
have a wide FoV and wide baseline. The Evaluation Dataset
1 (ED1) is the tailored High Density Camera Array (HDCA)
dataset [43] using the same cutting and scaling strategy as in
[27]. Consequently, nine tiny-disparity-range light fields Ψ1

j ,
1 6 j 6 9, form ED1 with the same spatial resolution (m ×
l = 1280 × 720 pixels) and angular resolution (n̈ = 97).
For each Ψ1

j , an input SSLF S1j can be produced using an
decimation rate δ = 16. As a result, the angular resolution of
S1j is n =

(
n̈−1
δ + 1

)
= 7. The target D1

j to be reconstructed
from S1j has angular resolution ṅ = 193. The MPI light field
archive contains two tiny-disparity-range light fields (“bikes”
and “workshop”) and two DSLFs (“mannequin” and “living
room”) [44], which constitute the Evaluation Dataset 2 (ED2),
i.e. Ψ2

j , 1 6 j 6 4. The spatial and angular resolutions of
each Ψ2

j is m = 960, l = 720 and n̈ = 97. For the tiny-
disparity-range Ψ2

j , j ∈ {1, 2}, the decimation rate δ is set to
16, such that n = 7 and ṅ = 193. For the densely-sampled
Ψ2
j , j ∈ {3, 4}, the decimation rate δ is set to 32, such that

n = 4 and ṅ = 97. The angular and spatial resolutions of
the training and evaluation datasets are also summarized in
Table II. The minimum disparity and disparity range of S1j
and S2j are exhibited in Table III and Table IV, respectively.

3) Implementation details: The weights of all the filters
of the CycleST network R(·) are initialized by means of the
He normal initializer [45]. The AdaMax optimizer [46] is em-
ployed to train the model for 12 epochs on an Nvidia GeForce
RTX 2080 Ti GPU for around 33 hours. The learning rate is
gradually reduced from 10−3 to 10−5 using an exponential
decay rate during the first four epochs and then fixed to 10−5
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Table III
DISPARITY ESTIMATION, MINIMUM AND AVERAGE PER-VIEW PSNR RESULTS (IN DB) FOR THE PERFORMANCE EVALUATION OF DIFFERENT LIGHT FIELD

RECONSTRUCTION METHODS ON ED1. THE BEST TWO RESULTS ARE HIGHLIGHTED IN RED AND BLUE COLORS.

j
Disparity (pix) Minimum PSNR / Average PSNR (dB)

d
S1
j

min d
S1
j

range SepConv (L1) [19] PIASC (L1) [26] DAIN [20] LVI [23] QVI [23] ST [29] DRST [27] CycleST

1 25 19 19.988 / 21.769 19.978 / 21.760 29.042 / 32.664 32.382 / 33.397 32.164 / 33.475 32.133 / 35.185 32.452 / 35.027 34.288 / 35.918
2 27 22 20.777 / 23.978 20.782 / 24.015 22.563 / 24.516 24.828 / 26.073 24.854 / 26.090 25.877 / 27.953 23.811 / 25.512 25.409 / 26.712
3 28 27 24.081 / 26.969 24.089 / 27.013 25.077 / 27.794 27.940 / 29.660 28.292 / 29.724 26.672 / 29.403 26.725 / 28.622 28.614 / 30.841
4 25 30 24.648 / 28.486 24.660 / 28.584 27.125 / 28.765 28.482 / 30.225 28.552 / 30.115 29.153 / 32.639 29.162 / 31.179 29.320 / 31.470
5 25 29 26.942 / 29.060 26.954 / 29.135 28.330 / 29.739 30.129 / 31.095 30.361 / 31.173 30.780 / 33.111 30.737 / 31.637 31.177 / 31.913
6 25 29 26.965 / 29.620 26.977 / 29.692 31.003 / 34.817 32.588 / 34.198 31.796 / 34.126 33.853 / 36.354 34.118 / 36.712 36.006 / 37.513
7 26 17 21.223 / 24.750 21.224 / 24.784 22.645 / 24.718 24.488 / 26.202 24.760 / 26.252 25.458 / 27.876 24.458 / 26.423 25.428 / 27.024
8 28 21 21.152 / 24.309 21.158 / 24.360 22.320 / 24.633 24.627 / 26.122 24.724 / 25.974 26.137 / 28.451 24.500 / 26.549 26.301 / 28.046
9 28 27 26.455 / 29.750 26.468 / 29.839 26.791 / 30.658 30.451 / 31.636 30.829 / 32.069 29.721 / 32.252 29.169 / 31.513 31.745 / 33.963

Table IV
DISPARITY ESTIMATION, MINIMUM AND AVERAGE PER-VIEW PSNR RESULTS (IN DB) FOR THE PERFORMANCE EVALUATION OF DIFFERENT LIGHT FIELD

RECONSTRUCTION METHODS ON ED2. THE BEST TWO RESULTS ARE HIGHLIGHTED IN RED AND BLUE COLORS.

j
Disparity (pix) Minimum PSNR / Average PSNR (dB)

d
S2
j

min d
S2
j

range SepConv (L1) [19] PIASC (L1) [26] DAIN [20] LVI [23] QVI [23] ST [29] DRST [27] CycleST

1 -14 23.5 30.611 / 32.994 30.845 / 33.012 29.625 / 31.032 29.449 / 31.470 29.752 / 31.548 29.932 / 32.804 29.775 / 31.712 29.845 / 31.645
2 -6.5 23 34.155 / 37.138 34.324 / 37.363 33.186 / 34.341 34.013 / 35.254 34.300 / 35.410 33.911 / 37.286 34.107 / 35.887 34.773 / 36.138
3 -15 29 31.571 / 34.117 31.662 / 34.290 31.789 / 32.964 30.806 / 32.710 31.071 / 33.008 30.849 / 33.610 31.513 / 33.775 31.453 / 33.615
4 -12 28 37.106 / 41.760 37.371 / 42.797 37.198 / 40.341 36.849 / 39.368 36.793 / 39.616 36.069 / 40.104 36.444 / 40.415 36.924 / 40.610

for the rest eight epochs. The mini-batch for each training step
is composed of two different samples εcropi shown in Fig. 1 (b).
The number of the trainable parameters of R(·) is around
1.4 M. The implementation of ST is from [47].

B. Results and analysis

The proposed CycleST method is compared with the state-
of-the-art video frame interpolation approaches, i.e. SepConv
(L1) [19], DAIN [20], LVI [23], QVI [23], and DSLF re-
construction methods, i.e. PIASC (L1) [26], ST [29], DRST
[27]. The performance of all the algorithms is compared using
their minimum and average per-view PSNR values on each
evaluation light field. The performance results on ED1 are
exhibited in Table III. It can be seen from this table that all
the results of CycleST are either the best or the second best,
suggesting that the proposed method can effectively handle the
DSLF reconstruction on SSLFs with repetitive patterns and
large disparity ranges present in ED1. Specifically, the scenes
of ED2 have no repetitive-pattern objects and less occlusions
compared with ED1. The DSLF reconstruction results of all
the methods on ED2 are presented in Table IV. As can be seen
from the table, CycleST achieves the best minimum PSNR
result on Ψ2

2. In addition, it can also be seen that all the results
of PIASC are either the best or the second best; however,
in Table III, the results of PIASC and SepConv on ED1 are
significantly worse than the other baseline approaches. This
implies that the kernel-based PIASC and SepConv are not as
robust as CycleST for DSLF reconstruction, since they may
fail in DSLF reconstruction on large-disparity-range SSLFs
with repetitive patterns and complex occlusions. Moreover, the
proposed CycleST method outperforms the flow-based QVI
and LVI on ED1 and ED2 w.r.t. minimum and average PSNRs.
Finally, since CycleST and DRST are developed based on ST,
the computation time of all these three methods is compared
in Table V for the same computing platform. It can be seen
that CycleST is at least 8.9 times faster than ST and 2.1 times
faster than DRST.

Table V
THE AVERAGE COMPUTATION TIME AND SPEEDUP OVER ST OF

RECONSTRUCTING ζi FROM A SPARSELY-SAMPLED εi ∈ Rm×n×3 .

m n ST [29] DRST [27] CycleST

1280 7 3324 ms (1.0 x) 742 ms (4.5 x) 275 ms (12.1 x)
960 7 2257 ms (1.0 x) 598 ms (3.8 x) 253 ms (8.9 x)
960 4 1792 ms (1.0 x) 365 ms (4.9 x) 177 ms (10.1 x)

IV. CONCLUSION

This letter has presented a novel self-supervised DSLF
reconstruction method, CycleST, which refines the shearlet
coefficients of the densely-sampled EPIs in shearlet domain
to perform the inpainting of them in image domain. The pro-
posed CycleST takes full advantage of the shearlet transform,
encoder-decoder network with residual learning strategy and
two types of loss functions, i.e. the EPI-reconstruction and
cycle-consistency losses. Besides, CycleST is trained in a
self-supervised fashion solely on synthetic SSLFs with small
disparity ranges. Experimental results on two real-world evalu-
ation datasets demonstrate that CycleST is extremely effective
for DSLF reconstruction on SSLFs with large disparity ranges
(16 - 32 pixels), complex occlusions and repetitive patterns.
Moreover, CycleST achieves ∼ 9x speedup over ST, at least.
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