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Abstract: A novel phase retrieval algorithm for broadband hyperspectral phase imaging from
noisy intensity observations is proposed. It utilizes advantages of the Fourier transform
spectroscopy in the self-referencing optical setup and provides additional, beyond spectral
intensity distribution, reconstruction of the investigated object’s phase. The noise amplification
Fellgett’s disadvantage is relaxed by the application of a sparse wavefront noise filtering embedded
in the proposed algorithm. The algorithm reliability is proved by simulation tests and by results
of physical experiments for transparent objects. These tests demonstrate precise phase imaging
and object depth (profile) reconstruction.
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1. Introduction

Hyperspectral imaging (HSI) is a technique concerned with capturing 3D data where the first
two dimensions are spatial coordinates defining 2D images (slices of 3D data cube) and the third
coordinate is a spectral variable. This third dimension adds value to traditional imaging with
ability to recover from spectra extra information about an investigated object, as for example in
paintings investigations [1], disease detection (e.g. Alzheimer’s [2], Parkinson’s [3]), or for food
ripeness evaluation [4].

In straightforward approaches for 3D data spectral capturing, detectors with a number of
color filters are used, as for example in [5]. The hyperspectral digital holography (HSDH) is
an alternative approach with a single detector and no color filters, appeared in the 90’s years of
the previous century starting from the work [6], where HSDH has been developed employing
principles of incoherent holography and Fourier spectroscopy. The algorithm proposed by the
authors was implemented in a self-reference optical scheme and performed only amplitude
imaging with the phase information lost.

As long as HSI has been used mainly in geoscience and remote sensing [7], phase information
was not important for investigators. Nowadays, HSI spreads in the areas of biological and
medical applications [8,9], where phase becomes crucial and almost vital as it brings additional
information about the thickness and refractive index of cells and their behavior (e.g. [10,11])
without dyeing and additional sample preparations. To perform phase imaging in HSI, the novel
HSDH techniques were developed with various reference beams [12] .

It is possible to retrieve phase in the self-reference setup without any reference beam by
modulating one of the object’s beams and filtering, which keeps only zero-order diffraction and
suppresses all other orders as it is done in [13]. This solution requires a quite complex system
with special lenses and other optical components as well as a projection of imaging on a sensor
plane.

In this paper, we propose and study a different approach to phase imaging in the HSDH. The
system is lensless self-reference and much simpler in implementation as compared with [13],
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without lenses and projection on the sensor plane. To resolve the phase imaging for the object, the
original iterative HS phase retrieval algorithm was developed for HS quantitative phase imaging
from noisy intensity measurements. In this way, the complexity of the problem was shifted from
the optical hardware components to the software of the algorithm. The diversity needed for HS
phase retrieval is enabled by the joint processing of spectral wavefronts covering a broadband
range of wavelengths.

The developed algorithm and its verification by simulation and physical experiments are the
main contributions of this paper. The advantage of the proposed solution is the simplicity of
the lensless optical setup which provides large field-of-view and makes results free from color
aberrations which could be extremely corrupting for HS illumination.

2. Problem description

The self-reference optical scheme assumes that the basic light beam and its phase-shifted copy
go through or reflect from the object simultaneously. The interference of these two beams is
registered at the sensor plane. The phase-shift (phase-delay) is varying and known. It is usually
performed by an interferometric scheme with a moving mirror in one of the two arms, with N
steps of size Az covering the whole phase-delay distance Z = N - Az.

Let V(1) be the complex-valued spectrum of a broadband light beam after free propagation
through the object to the sensor plane, A € A, where A is a spectral range of illumination. Then
the recorded intensity for the mirror-shift distance z in the delay line is calculated as integral over

A:
J(z) = /A

The Fourier transform calculated for J(z) over z allows to get the intensity spectrum for V(1):
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where ¥ 7 stays for the Fourier transform.

As a result, we obtain a set of squared spectra |V(2)|? for a set of wavelengths A at the sensor
plane but the phase of V(1) is lost.

The intensities J(z) calculated over the spectral interval A are registered by a multi-pixel
detector and the same spectral calculations are valid for each pixel of the detector.

3. Algorithm

We present the phase retrieval algorithm in the context of thickness (profile) measurement for a
transparent object with HS illumination in the self-reference configuration of the optical system.
The coherent laser beam of the wavelength A propagates through the object. It results in the
phase delay, ¢,(x, y), between the input and output beams. The corresponding output wavefronts
A (x,y) = |A(x, y)| - exp(jea(x, y)) are different for different wavelengths, A € A, where A is a set
of the HS wavelengths. These wavefronts at the sensor plane are calculated as V(1) = P,{A(1)},
where P, stays for the forward propagation operators depending on wavelength.

For the finite discrete set of the shifts Az we can calculate the spectral distribution |V(1)|> only
for the corresponding finite set of the wavelength, i.e. for A = [4y,...,4.]. Then, integration in
(1)—(2) is replaced by summation and the integral Fourier transform - by the discrete Fourier
transform.

Therefore, according to (1) the measurements by the sensor are defined as

J(z) = Z

A

2

V() (1 + exp(jzjﬂz))
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This equation gives the intensity calculated over the spectrum range and registered by each pixel
of the sensor.

The developed hyperspectral phase retrieval (HSPR) algorithm is composed of two separate
stages. The first stage is the spectrum analysis defining the intensity spectral distributions | V()|
from the registered set of J(z). These calculations are based on discrete and fast Fourier transform
(FFT), for the details of this part of the algorithm we refer to [14].

The second stage is phase retrieval, i.e. areconstruction of the object complex transfer functions
A(x,y) from the already given spectra |V(1)|%, 1 € A. A flowchart of the proposed phase retrieval
algorithm is presented in Fig. 1. The algorithm is iterative using typical forward/backward
propagation between the object and sensor planes. The following points define the originality of
this algorithm:

(1) At step 2, the complex domain CDBM3D filter is used for denoising of object transfer
functions for each wavelength and in each iteration;

(2) Atstep 5, special filtering is produced for amplitudes of the wavefronts at the sensor plane.

In the case of HS illumination for a transparent object, it is common to rely on the assumption
that object wavefronts produced by neighboring wavelengths are similar [15]. It is quite a natural
assumption since neighboring wavelengths are close to each other and phase properties of the
object are smooth functions of wavelengths. We utilize this assumption and the state that object
thickness is the same for all wavelengths to provide a connection between neighboring wavelength
phases by introducing the coefficient

A1y, = 1)

T A, -0 @

such that ¢y, = ¢,, | - Us. Here n,, is the refractive index of the object. The connection of the
subsequent phases holds true always in the reflective setup, however, in the transmissive setup
the coefficients y; are eligible for homogeneous objects only.

In the flowchart of the algorithm in Fig. 1 as input, we have spectral amplitudes |V(1)| at
the sensor plane for the whole range of the HS wavelengths reconstructed at the first stage of
the algorithm. For the initialization of iterations, we create the first complex-valued wavefront
V1(2,) using for the amplitude the first component of the HS |V(1;)| with zeros guess for the
initial phase. After the initialization, we start the two consecutive “for” loops with running
variables ¢ and s for cube and wavelength iterations, respectively. Completed one cube iteration
means that all slices of HS cube were processed through the steps 1-5 of the algorithm. For
smooth cube iterations ¢, the loop on s should run consequently through all wavelengths with
start and stop at the first wavelength.

Step 1 is the backward propagation from the sensor plane to the object plane, as a result, we
obtain an estimate for the object wavefront A’(1). P, is a wavelength-dependent propagation
operator which is defined by the angular spectrum propagation model [16], the superscript
‘-1’ indicates the backward propagation. At step 2, we perform complex-domain sparse noise
suppression in A’(4;) by the CDBM3D filter [17], which processes amplitude and phase jointly
and additionally to sparsity utilizes the correlation between amplitude and phase.

At step 3, we make phase recalculation from s to s + 1 wavelength according to (4). This
spectral update is based on the following speculation. The phase delay of the object is varying
according to the object thickness. A link between the phase delay and object thickness is defined
by the equation:

palx,y) -1
2 - (ny—1)

Here, h,(x,y) is a thickness of the transparent object at the point (x, y).

h()(x’y) = (5)
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Fig. 1. HSPR algorithm flowchart.



Research Article Vol. 28, No. 12/8 June 2020/ Optics Express 17948 |

Optics EXPRESS i N

At step 4, we perform forward propagation of the object wavefront to the sensor plane, where
at step 5 keeping the phase of V’(1,,) unchanged we make amplitude update by filtering the
amplitude |V*(Ay41)|. This noise filtering is performed by the sensor noise suppression (SNS)
algorithm. This algorithm is derived based on the optimal solutions for maximum likelihood
criteria for Gaussian and Poissonian noise distributions. Both solutions are published in [18].
In this paper, we use the solution for the Gaussian noise. The obtained optimal estimate of
the amplitude locates between observations |V(1)| and the amplitude of the object wavefront
propagated to the sensor plane |V,'(1)|.

Next, in decision block, the stopping rule is applied, defined by the maximum number of
iterations on  and differences between the phase estimates in successive iterations.

The phase retrieval part of the developed HSPR algorithm shown in Fig. 1 has a structure
similar to the algorithms proposed earlier for multispectral phase retrieval (MPR) in the papers
[19,20]. Let us discuss briefly differences between HSPR and those MPR algorithms. First of all,
different optical setups considered in this and the mentioned papers. The observations in [19,20]
are obtained in experiments separate for each laser bands, when in this paper all wavelengths go
through the object simultaneously. Second, while the algorithms MPR and HSPR look similar
due to the standard iterative structure with forward and backward wavefront propagation as it is
originated from Gerchberg and Saxton [21], the efficient noise suppression in steps (2) and (5)
define the originality of the developed algorithm HSPR. These filtering steps enhance the HSPR
algorithm and help to obtain cleaner reconstructions with faster convergence since noise in the
iterative algorithm is predisposed for corruption and ruin the reconstruction.

Moreover the noise suppression becomes extremely significant in the case of HSPR because in
the proposed scheme all spectrum components are observed simultaneously and, therefore, in
presence of noise in one region of the spectrum it will be spread throughout the whole spectrum
(Fellgett’s disadvantage [22]).

4. Results
4.1. Simulations

For a demonstration of the algorithm performance, we provide modeling of the HS data obtained
by the system described in Section 2. We use the broadband light spectrum corresponding to a
broadband super-continuum laser source (see spectrum in Section 4.2) and modeled hyperspectral
data registration as interference observations according to (3) providing N = 2000 shifts in the
delay line which correspond to total Z = 200 um with Az = 100 nm. Since the laser spectrum is
not uniform, in regions of the low laser intensity, signal-to-noise ratio (SNR) is low and these
regions cannot be used for phase reconstruction. For our tests, we exploit the wavelengths from
the high laser intensity region [680 : 820] nm.

As objects under investigation, we model the transparent phase objects assuming that objects
transfer function A, (x,y) = |A (x, ¥)| - exp(fea(x, y)) with the amplitude |A,(x,y)| = 1 and the
phase images ¢, (x, y) given as the USAF test-target and Cameraman test-image. The distributions
of the object phase delays for each A are calculated according to (5) with maximum 4, = 317 nm.
Figure 2 demonstrates the USAF (a-b) and Cameraman (c-d) phase objects (depth distributions) as
2D and 3D images. The USAF test-target provides a binary object model, while the Cameraman
test-image has a more complex structure with a multilevel piece-wise continuous depth map.

To check algorithm robustness, we include noise in our modeling. The noise ¢ is additive
zero-mean i.i.d. Gaussian with the standard deviation 07;;se:

[l

Jnoisy(z) = J(2) + &(Tnoise)- (6)
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b) USAF's 3D depth map

a) USAF's 2D depth map
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Fig. 2. Simulated objects surface maps. a) and b) are 2D and 3D USAF depth maps; c) and
d) are 2D and 3D - Cameraman.

The accuracy of phase reconstruction is defined by the relative root mean square error (RRMSE)

criterion:
\[ | |¢est - Qotrue“%
RRMSE,, = —2, @)
||(Ptrue||2
where @, is the reconstructed phase and ¢y, is the noiseless true phase, ||.|| stays for the

Frobenius norm. RRMSE values less than 0.1 correspond to a good quality phase reconstruction.
For characterization of the noise level in observations at the sensor plane we introduce the
peak signal-to- noise ratio (PSNR) defined as

®)

max,.y - (J(z
PSNR;(, = 10log,, (M) :

noise

where max . -(J(z)) is the maximum of the registered intensity of the beam at the sensor plane
calculated by maximization on z and (x, y), where (x, y) are the spatial coordinate of 2D images;
Onoise 1S the standard deviation of the additive noise.

Figure 3 demonstrates phase RRMSE for the object reconstructions. In plots a) and ¢c): RRMSE
values depending on the noise level given by PSNR and the number of iteration ¢; in plots b)
and d) RRMSE values depending on wavelength A and iteration number for the given noise
Onoise = 0.5.

Descending RRMSE:s for growing ¢ indicate consecutive improvement of the reconstruction
from iteration-to-iteration. It can be concluded from RRMSE surfaces a) and c) that reliable
objects’ reconstruction might be obtained only for low noise level with high PSNR values (>18
dB) and iteration number #>15. It is caused by Felgett’s disadvantage with noise leakage from
one spectral component to others. Surfaces b) and d) are provided for 0,pi5. = 0.5, the RRMSE
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Fig. 3. RRMSE maps. a) USAF’s mean RRMSEs depending on the number of iteration ¢
and noise level in the observations PSNR. b) RRMSE:s for all wavelengths A of the USAF
HS cube depending on iteration number ¢ for the case of PSNR= 16.5 dB. c¢) Cameraman’s
mean RRMSEs depending on the number of iteration ¢ and noise level in the observations
PSNR. d) RRMSE:s for all wavelengths A of the Cameraman HS cube depending on iteration
number ¢ for the case of PSNR= 17.9 dB.

values in the region of A = 700 nm reflect that the lower illumination intensity results in worse
reconstruction quality. In general, the form of the RRMSE surfaces is similar for both objects
under investigation, however, RRMSE values for USAF are lower than those for Cameraman. It
appears that Cameraman is more complex for the considered algorithm than binary USAF.

Let us give some comments on the noise level in the intensity observations (4) and in the
spectra | V(A,)|%. These spectra are calculated using the fast Fourier transform (FFT) applied to
the sequence J(z) as |V(4,)|> = FFT(J(z))/N, where N is a length of this sequence, i.e. a number
of shifts in z. It follows, that noise in these estimates of |V(.1,)|* obtained by application of FFT
t0 Jy0isy(2) is zero-mean white Gaussian, as in the observations but with the standard deviation
equal to ypise/ VN, which is the same for all spectral estimates |V (A,)|>.

PSNR for observations is defined by (8), where in the nominator we have the maximum
intensity calculated as the weighted sum of intensities of the spectral components. It follows
that maximum spectral intensities |V(A,)|? different for different A take values lower than the
observed intensity. For instance, if |V(1,)|> have close values for all A, then we can say that
approximately |V(1,)|> ~ J(z)/N.

Inserting this value in (8), as well as the obtained above value for the noise standard deviation
for the spectral estimate, results in the following formula for PSNR calculated in the spectral

domain
max,, .(J(z)) )

9
Thnoise \/N ®

PSNRS]?ECD‘L{ ~ 1010g10 (
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a) PSNR for registered intensities and spectra
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Fig. 4. a) PSNR dependencies from noise standard deviation 07,5, for registered intensities
J(2), black squares curve, and for estimated spectra |V, 2, red circles. Latter is presented as
a mean value of PSNRs for the whole spectra A. Error bars correspond to the PSNR range
for A. b) PSNR map of the estimated spectra for different 07,;5, and wavelengths A.

Then, PSNRs calculated for the spectrum are smaller or much smaller than PSNRs calculated
for the observations. Thus, the noise level in the spectral domain is higher than that for the
observations. It makes the problem of the noise removal for large N quite demanding and of the
crucial importance for qualitative phase imaging.

This noise amplification phenomenon in the spectral domain is illustrated in Fig. 4 for our
simulation data obtained for the Cameraman phase object.

As spectra are varying as a function of wavelength, contrary to 9 we instead calculate PSNR
according to the next formula:

maxy,(|Va, |*)

. 10
a—noise/\/ﬁ {10

PSNR|V,1x IZ = 1010g10(

Here, the expression in the brackets is a ratio of the spectrum intensity for the wavelength A
to the standard deviation corresponding to the noise in the spectrum estimates. Thus, PSNR is
evaluated for each spectral component independently. Note that maximization in this definition
of PSNRy, |2 is restricted to the coordinates (x, y).

In Fig. 4, we show the mean value of PSNR o, |2 calculated for the whole range of the spectra
as well as the error bar showing variations of PSNR |y, |» from minimal to maximal values. It
is seen that PSNR in the spectral domain is much lower than that for the observations and this
statement holds for all values of 07,;5.. It once more illustrates the noise amplification effect
appeared in HS phase imaging. This effect is the interpretation of the well known in Fourier
spectroscopy Felggett’s disadvantage [22].

Figure 5 illustrates the crucial importance of iterations and filtering embedded in the developed
algorithm. In Figs. 5(a-b) we show the results obtained by backward propagation of the spectral
intensities obtained by FT from noisy observations. Actually, it is the initial iteration of our
algorithm giving the first approximation of the objects. The comparison with the corresponding
HSPR reconstructions in Figs. 5(c-d) is a clear demonstration of the performance of the algorithm
and efficiency of its iterations.

4.2. Physical experiments

We have developed the HS lensless self-reference optical system shown in Fig. 5(a). The
super-continuum laser, A = 470 — 2400 nm (YSL photonics CS-5), is used as a source of light.
The light beam is split equally into two beams by beamsplitter BS1. The first beam reflected
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Fig. 5. Phase reconstruction results for back propagation (BP) (a and b) and HSPR (c and
d), USAF and Cameraman objects, respectively, 4 = 730 nm.

by the mirrors M1 and M2 goes undisturbed to the beamsplitter BS2. The second beam goes
through the delay line M3-M4, obtaining the different optical paths with respect to the first beam.
BS2 merges the beams together and after BS2 beams go through the object “O” to the registering
camera “Cam” (FLIR Chameleon, 2448 x 2048, pixel size 3.45 um).

Laser

BS1

{Cam

BS2

M3

M4

Delay
a)

M1

M2

= =registered
—FT reconstructed

Intensity (a.u)

600 650 700 750 800 850 900 950 1000
A (nm)

b)

Fig. 6. (a) Hyperspectral phase retrieval setup. BS1-2 are beamsplitters, M1-4 are mirrors,
“0O” is a transparent object, “Cam” is a registering sensor, “B” is a light blocker. “Delay”
is a moving delay stage. (b) Used spectrum: a black dash curve is a registered spectrum
by a spectrometer and multiplied by camera quantum efficiency, a red solid curve is for the

Fourier transform reconstructed spectrum.
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The delay line is a piezo-based stage (Thorlabs NFL5DP20). The step-size of this stage defines
the spectral resolution of the setup: the minimal step of the delay line, Az, should be at least
twice smaller than the smallest wavelength, and the total moving distance of the delay line, Z,

defines the spectral resolution for wavenumber k as Ak = ﬁ =5 Alz_ ~-here Z=N-Azand N is
a number of steps of the stage.

In the provided experiments, the system parameters were Az = 59.7 nm and N = 1880, that
correspond to Ak = 44.6 cm™!. The distance between the object and the camera was d = 16
mm. The used laser spectrum is wide, however, due to camera sensitivity we utilize only part
of the spectral illumination, as it is shown in Fig. 6(b), the black dash curve demonstrates laser
spectrum registered by a spectrometer (Thorlabs CCS200) and multiplied by quantum efficiency
of the registration camera. The red curve in Fig. 6(b) is the spectrum |V(1)| reconstructed by
Fourier transform 2. This reconstruction is in a good agreement with the true spectral curve
registered by the spectrometer. As a test object, we used PhaseFocus test target [23], for which
the modulus and depth map are presented in Fig. 7(b,d), respectively, it is a phase object with
an etched surface in fused silica glass, the depth of the etched features is 127 nm. The smallest
groups from 6 to 9 have the smallest feature sizes of 10, 6.5, 3.5, 2.0 um, respectively.

a) HSPR modulus : b) Original test target modulus
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067 - GRP 2 |
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Fig. 7. Test target images. a) Modulus and c) depth map reconstructed by HSPR for slice
A = 687 nm; b) modulus and d) depth map provided by the manufacturer. Whole HS cube
reconstruction is in Visualization 1.

Reconstruction results by the HSPR algorithm are presented in Fig. 7(a,c), where modulus and
depth map of the phase test target corresponding to 4 = 687 nm are demonstrated. From these
images, it is seen that HSPR provides good quality reconstructions for both modulus and phase
for the whole test target. The HSPR reconstructed modulus image in Fig. 7(a) is coincide with
the image provided by the manufacturer (Fig. 7(b)) with clearly resolved modulus features and
almost not distinguishable features for phase regions. The difference of letters “K” and “F” in the
bottom right corner is explained by the manufacturer as they provide the same image with letter
“F” for all customers, however, each test target has its own distinguishing letter (“K” in our case).
Other parameters are the same. Whole HS cube reconstruction is presented in the video file in
Visualization 1.
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For clarity of the presented results, we provide Fig. 8 where the smallest groups 6,7,8,9 of
the object presented and compared with depth and modulus reconstructed by digital holography
(DH). Figure 8(a,b) shows the depth map and modulus of the object corresponding to 4 = 687
nm; Fig. 8(c, d) - DH reconstruction, and Fig. 8(e) - a plot of depth cross-sections for the groups
6-9 reconstructed by HSPR (red solid curve) and DH (black dash), cross-sections are taken from
lines with the same colors from Fig. 8(a) and Fig. 8(c), respectively. It is seen from the images
that HSPR reconstructions correspond to the DH reconstructions and provided cross-sections
show that reconstructed depth values equal to the real ones up to the elements 6 of the group 6 of
the test target (region of 450 um of cross-sections in Fig. 8(e)), which corresponds to 10 um.
Additionally, it is seen that the first four elements from group 8 appeared spatially resolved in
terms of the Rayleigh criterion, but phase values are not correct. In that case, we may conclude
that the given setup provides quantitative and qualitative phase estimations down to 10 um
resolution, and only qualitative results down to 4.5 pm.

b) HSPR modulus,A=687 nm

1 3456 123458 (110w 8
T GRP 9 65
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Fig. 8. Reconstruction results for the smallest 6 - 9 groups of the object. a) Depth map
reconstructed by HSPR for slice 4 = 687 nm; b) HSPR modulus for slice 4 = 687 nm;
¢) Depth map obtained by digital holography (DH); d) DH Modulus; e) Longitudinal
cross-sections corresponding to lines from images (a) and (c), red solid curve is for HSPR
687 nm, black dash curve is for DH.

Note, that the used for comparison DH system provides reference results based on a different
optical setup with the use of lenses and holographic phase reconstruction algorithm [24]. As
compared with the system studied in this paper, disadvantages of the reference DH system are in
utilization of objective with the magnification of 40x and therefore an extremely small field of
view ~ 0.15 mm? (even for provided small image of groups 6-9 (Fig. 7(c)) we made stitching of
28 frames) and in lack of spectral information.

5. Conclusion

A newly developed approach for hyperspectral phase retrieval in lensless self-referenced optical
setup is introduced. It is based on the principles of the Fourier transform spectroscopy and
iterative phase retrieval algorithms. The essential part of the algorithm is developed for noise
suppression based on sparse wavefront approximations. The provided approach is general for
phase retrieval with HS illumination and can be applied for various self-reference schemes as for
example [25], where self-referencing obtained by a birefringent delay line [26]. We provided a
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transmissive setup for investigation of transparent homogeneous objects, however, this approach
is applicable and for HS relief investigations in reflective setups.

As further work, we are planning to extend our phase retrieval technique to work with
non-homogeneous objects in the transmissive setups. For this purpose, a newly developed
complex-domain cube filter [27], which provides phase connections in the HS cube regardless of
physical parameters of the object, is planned to utilize.
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