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Abstract

The present work extends known finite-dimensional constrained optimal control realizations to the realm of well-posed reg-
ular linear infinite-dimensional systems modelled by partial differential equations. The structure-preserving Cayley-Tustin
transformation is utilized to approximate the continuous-time system by a discrete-time model representation without using
any spatial discretization or model reduction. The discrete-time model is utilized in the design of model predictive controller
accounting for optimality, stabilization, and input and output/state constraints in an explicit way. The proposed model pre-
dictive controller is dual-mode in the sense that predictive controller steers the state to a set where exponentially stabilizing
unconstrained feedback can be utilized without violating the constraints. The construction of the model predictive controller
leads to a finite-dimensional constrained quadratic optimization problem easily solvable by standard numerical methods. Two
representative examples of partial differential equations are considered.
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1 Introduction

The concept of regular linear systems came about at
the turn of 1990’s by the work of George Weiss [33-35].
This subclass of abstract linear systems is essentially
the Hilbert space counterpart of the finite-dimensional
systems described by the state-space equations:

i(t) = Az(t) + Bul(t),
y(t) = Ca(t) + Du(t),

x(0) = xo

where, however, the operators A, B and C may be un-
bounded. Regular linear systems are often encountered
in the study of partial differential equations (PDEs) with
boundary controls and boundary observations, and they
cover a large class of abstract systems of practical inter-
est.

The control of linear distributed parameter systems
(DPS) is a mature control field with seminal contribu-
tions given in [5, 13, 26, 30, 31]. The system theoretic
properties and controller designs were explored in these
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contributions with the emphasis on full state feedback,
boundary and/or in-domain stabilization, optimality
and robustness. In addition, classical control problems
such as state feedback regulation [21] and robust output
regulation [22, 23] have been considered, and regulator
theory has been developed for regular linear systems.
Above contributions fully explored the functional space
setting of the continuous-time system representation
and only minor considerations have been devoted to the
discrete-time counterparts. In addition, despite the myr-
iad of work on unconstrained stabilization, the design of
low order constrained optimal/suboptimal controllers
for DPS which accounts for input and state/output
constraints remained elusive.

Over the past decade, there have been several attempts
to address control of distributed parameter systems
within an input and/or state constrained optimal con-
trol setting. There are several works on dynamical
analysis and optimal control of hyperbolic PDEs, most
notably the work of Aksikas et al. on optimal linear
quadratic feedback controller design for hyperbolic
DPS. [1,2,29]. Other contributions considered optimal
and model predictive control applied to Riesz spectral
systems (parabolic and higher order dissipative PDEs)
with a separable eigenspectrum of the underlying dis-
sipative spectral operator and successfully designed
algorithms that account for the input and state con-
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straints [6, 14, 40]. In prior contributions, some type of
spatial approximation is applied to the PDE models to
arrive at finite-dimensional models utilized in the con-
troller design. As it will be claimed and demonstrated
in the subsequent sections, the linear distributed pa-
rameter system can be treated intact and controller
design can be accomplished without any spatial model
approximation or reduction.

The research area of model predictive control (MPC)
and contributions associated with this design method-
ology has flourished over past two decades [8,15,16,24].
The appealing nature of applying to the state the first
control input in a finite sequence of control inputs ob-
tained as a solution of an online constrained, discrete-
time, optimal control problem with explicit account for
the control and state constraints, and achieving stability
by adding a terminal cost or terminal constraints, or by
extending the horizon of the the optimal control prob-
lem, is well understood and explored [15,16,25] but could
not be easily extended to the DPS setting. Apart from
the aforementioned contributions [6,14,40] where some
type of model approximation has been applied, other
contributions explored unconstrained MPC with empha-
sis on the computational complexity of the optimization
problem [7]. However, the clear link between the discrete
constrained optimization based MPC design, the well-
understood modelling of distributed parameter systems
described by PDEs,; and the well-established control the-
ory of linear DPS has not yet been established apart
from the recent work by the authors [11,39].

Motivated by the preceding, in this contribution, the
model predictive control for regular linear systems is
developed. In particular, the essential feature of the
discrete-time infinite-dimensional representation neces-
sary in the MPC design preserving the continuous-time
system properties is established by applying the Caley-
Tustin (CT) [10] time discretization, implying that no
spatial discretization or model reduction is required. At
the core of the CT transformation, one can find the ap-
plication of a Crank-Nicolson type time discretization
scheme which is a well-know implicit midpoint integra-
tion rule that is symmetric, symplectic (Hamiltonian
preserving) [9], and guarantees structure preserving nu-
merical integration so that stability and controllability
are not altered by the discrete-time infinite-dimensional
model representation. Furthermore, boundary and/or
point actuation transformed to the discrete-setting
yields bounded operators.

As the first main contribution, the MPC design utilized
in [39] is generalized for stable regular linear systems
(Theorem 2). Under the assumption of infinite-time ad-
missibility of the observation operator, optimality and
stability of the proposed design is proved. The design
is demonstrated on a numerical example of the one-
dimensional wave equation.

As the second main contribution, an MPC-based control
design is presented to achieve constrained stabilization of
exponentially stabilizable systems (Theorem 4) and the
design is demonstrated on a simulation study of a tubu-
lar reactor. The proposed design belongs to the class of
dual-mode control [17,28] implying that the model pre-
dictive controller steers the state to the neighborhood of
the origin where local unconstrained stabilizing feedback
can be applied without violating the input constraints.
A stabilizing terminal penalty is added to the MPC for-
mulation to guarantee stabilizability while no terminal
constraints are imposed. Stabilization of a finite-number
of unstable eigenvalues is considered in the MPC set-
ting in [39], but here the proposed methodology can be
applied to arbitrary exponentially stabilizable systems.
Finally, the proposed work provides a foundation to link
regular linear systems to the well-established area of lin-
ear model predictive control designs.

The structure of the paper is as follows. In Section 2,
we present the notation, the mathematical preliminaries
concerning regular linear systems and the Cayley-Tustin
time discretization scheme. In Section 3, we present the
MPC problem, and in Sections 3.1 and 3.2, stability and
optimality results of the proposed MPC and dual-mode
control designs are presented. In Section 4, we present,
as an example of a stable system, the wave equation on a
one-dimensional spatial domain and compute the oper-
ators corresponding to the Cayley-Tustin transform and
their adjoints. Furthermore, in Section 4.3, we derive a
solution of the Lyapunov equation for the wave equation
as required by the proposed MPC design. The perfor-
mance of the MPC is demonstrated by numerical sim-
ulations of the controlled wave equation in Section 4.4.
In Section 5, the dual-mode controller design is demon-
strated on an unstable tubular reactor which is success-
fully stabilized by the proposed control strategy. Finally,
the paper is concluded in Section 6.

2 Mathematical Preliminaries
2.1 Notation

Here £(X,Y) denotes the set of bounded linear opera-
tors from the normed space X to the normed space Y.
The domain, range, kernel and resolvent of a linear op-
erator A are denoted by D(A), R(A), N(A) and p(A),
respectively. For a linear operator A : D(A) € X — X
and a fixed s9 € p(A), define the scale spaces X; :=
(D(A), [[(so—=A)-|) and X1 = (X, [[(so — A)~* - [}) [31,
Sec. 2.10]. The scale spaces are related by X; C X C
X _1 where the inclusions are dense and with continu-
ous embeddings. The extension of A to X_; is denoted
by A_;. The A-extension of an operator P is denoted by
Py (see (1)).




2.2  Regular Linear Systems

Consider a well-posed linear system (A, B, C, D), where
A:D(A) C X — X is the generator of a Cyp-semigroup,
B e L(U,X_1) is the control operator, C' € L(X;,Y) is
the observation operator, and D € L(U,Y). We assume
that the spaces X, U, and Y are separable Hilbert spaces
and that U and Y are finite-dimensional.

The operator B is called an admissible input oper-
ator for A if for some 7 > 0, the operator ¢, €
L(L?(0,00;U), X_1) defined as [31, Sec. 4.2]:

O.u= | T(r — s)Bu(s)ds,
/

satisfies R(®,) C X. Correspondingly, the operator C
is called an admissible output operator for A if for some
7 > 0, there exists a K, such that [31, Sec. 4.3]:

/||CT(s)a:||2ds < K, ||z, Ve D(A).
0

Furthermore, if there exists a K such that K, < K for
all 7 > 0, then C is called infinite-time admissible. The
A-extension of the operator C' is defined as [34]:

Caz = lim AC(A — A) ', (1)
A—00

and the domain of Cj consists of those elements z € X
for which the limit exists.

Let G denote the transfer function of the system
(A, B,C, D). The transfer function is called regular if
Alim GMu = Du (A € R) for all w € U [35, Thm.
—00

1.3], in which case (4, B, C, D) is called a regular linear
system.
The transfer function G of a regular system is given by:

G(s) :=Go(s) + D:=Cp(s— A)'B+ D,

and in the time domain the system is described by the
following equations:

‘f(Cvt) = ALE(CJ) + Bu(t), .’L‘(C, 0) = 370(() (23‘)
y(t) = Caz((,t) + Du(?). (2b)

Throughout this paper, we assume that we are dealing
with regular linear systems with admissible B and C.

2.8 Cayley-Tustin Time Discretization

Consider a system given in (2). Given a time discretiza-
tion parameter A > 0, the Tustin time discretization of
(2) is given by

z(jh) —x((G=1Dh) _  x(Gh) —x((G —1)h) ,
o ~ A | 2 + Bu(jh)

for 7 > 1, where we omitted the spatial dependence of
x for brevity. Let ug.h) /v/h be the approximation of u(t)

on the interval t € ((j —1)h, jh), e.g., by the mean value
sampling used in [10]:

jh
Ay
(G=Dh

It has been shown in [10] that the Cayley-Tustin dis-
cretization is a convergent time discretization scheme
for input-output stable system nodes satisfying dim U =
dimY = 1 in the sense that y}h)/\/ﬁ converges to y(t)
in several different ways as h — 0. The discussion in [10,
Sec. 6] further implies that the same holds for any fi-

nite dimensional U and Y. Thus, writing yﬁm /v/h and
ugh)/\/ﬁ in place of y(jh) and u(jh), respectively, sim-

ple computations yield the Cayley-Tustin discretization
of (2) as:

I(C’ k) = Adx(C, k— 1) + Bdu(k)a
y(k) = Cd£(<7 k— 1) + Ddu(k)7

where:
Ay By —I+20(6— A"t V26— A1) 'B
Cy Da| | V26C(6 - A)~! G(5)

and ¢ := 2/h. Clearly one must have § € p(A), so that
the resolvent operator is well-defined. Thus, for a large
enough J, the discretization can be applied to unstable
systems as well.

Remark 1 Due to the standing assumptions it is easy
to see that the discretized operators are bounded. In fact,
the boundedness of By and Cy already follows from B €
LU, X_1) and C € L(X1,Y), respectively, and for Dy
being bounded it would suffice that the system (2) is well-
posed rather than reqular.

3 Model Predictive Control

The moving horizon regulator is based on a similar for-
mulation emerging from the finite-dimensional system



theory (see e.g. [20]). A corresponding controller in the
infinite-dimensional case is presented, e.g., in [39]. At a
given sampling time k, the objective function with con-
straints is given by:

o
min > Wkt Quirs)y + (ks Rungs)u
j=k+1
s.t. Ty = Ad$j71 + Bde (3)
yj = Cazj_1 + Dau;
Umin < Uj < Umax
Ymin < Yj < Ymax;,

where Q and R are positive self-adjoint weights on the
outputs y; and inputs u;, respectively. Here it is assumed
for simplicity that U and Y are (finite-dimensional) real-
valued spaces. For consideration of the MPC with com-
plex input and output spaces, see [11], where the authors
considered MPC for the Schrédinger equation.

The infinite-horizon objective function (3) can be cast
into a finite-horizon objective function under certain as-
sumptions on the inputs beyond the control horizon.
Furthermore, a penalty term needs to be added to the
objective function to account for the inputs and outputs
beyond the horizon. We will present two approaches on
this depending on the stability of the original plant.

3.1 Stable systems

If A is the generator of a (strongly) stable Cp-semigroup,
we may assume that the input is zero beyond the con-
trol horizon N, i.e., ug+n+; = 0,V2 € N, and add a cor-
responding output penalty term. Under the assumption
that C is infinite-time admissible for A, the terminal out-
put penalty term can be written as a state penalty term,
so that the finite-horizon objective function is given by:

k+N
min > (w5 Quidy + (uj, Ruj)u + (wagn, Quesn)x
u

j=k+1

(4)
with the same constraints as in (3), and where N is the
length of the control horizon.

The operator Q can be calculated from the positive self-
adjoint solution of the following discrete-time Lyapunov

equation: ~ ~

AGQAq — Q@ = —C3QC,, ()
or equivalently (see e.g. [5, Ex. 4.30]) the continuous-
time Lyapunov equation:

A*Q+QA=-C*QC (6)
on the dual space of X_;. The assumption of C' being

infinite-time admissible for A is required as it is equiv-
alent to the continuous-time Lyapunov equation having

solutions [31, Thm. 5.1.1]. Furthermore, as A is assumed
to be stable, we have that the operator Q) € £(X) given
by:

T

Qv = lim / T (H)C*QCT(t)wdt, Vo € D(A), (7)
0

is the unique positive self-adjoint solution of the
continuous-time Lyapunov equation (6) (equivalently

(5))-

Now that we have established that the finite-horizon ob-
jective function (4) is well-defined, to further manipu-
late the objective function (4) we introduce the notation
Vi = (Ypan) ey € YV and Uy i= (upsn)_, € UV,
Hence, a manipulation of the objective function (4) leads
to the following quadratic optimization problem:

Hll]in<Uk7HUk'>UN + 2(Ug, Pzi)u~ + (wr, Qi) x, (8)
k

where H € L(U"V) is positive and self-adjoint given by:

D;QDy + B;QBd + R, . fori=j
hij = D5QCAT ' By + B5QA By, fori>j
h; ;. fori<j

and P € L(X,UN) is given by P = (D;QC4A; " +
BiQAG
The objective function (8) is subjected to constrains

Umin S Uk S Umax and Ymin S (SUk +Txk) S Ymax
which can be written in the form:

I UIIlaX
-1 _Umin
Uk S 9 (9)
S Ymax - Txk
-5 _Ymin + Txk

where S € L(UN,YN) is given by:

Dy, fori=j
Sij = CdAZ_]_le; fori > j
0, for i < j

and T € L(X, YY) is given by T = (CdAgfl)fcvzl.

Considering a finite-dimensional output space U = R™,
the inner products in the objective function given in (8)
are simply vector products, and we have a finite dimen-
sional quadratic optimization problem:

min J (Uy, z) = UrHU, + 2UF (Pzy).  (10)
k



Note that the term <xk, ka>x can be neglected as xj
is the initial condition for step k + 1 and cannot be
affected by the control input. Furthermore, as all the
operators related to the objective function and the lin-
ear constraints are bounded under the standing assump-
tions, the quadratic optimization problem is exactly of
the same form as the ones obtained for finite-dimensional
systems. Thus, we obtain the convergence and stability
results for free by the MPC theory on finite-dimensional
systems (see e.g. [28]). To highlight this observation, we
present the following result:

Theorem 2 Assume that A is the generator of a strongly
stable Cy-semigroup and that C' is an infinite-time ad-
missible observation operator for A. Then, the input se-
quence (Uy) (and hence the sequence (uy)) obtained as
the solution of the feasible quadratic optimization prob-
lem (10) with constraints (9) converges to zero.

PROOF. By the preceding argumentation, the result-
ing MPC' problem is equivalent to a finite-dimensional
one, and thus, the result follows from standard finite-
dimensional MPC theory.

Remark 3 Due to the assumed strong stability of the
semigroup generated by A, the state of the system under
the MPC control law goes asymptotically to zero for all
initial states xg € D(A) for which the problem is feasible
as the control inputs decay to zero by Theorem 2.

3.2 Ezponentially stabilizable systems

Let us now assume that the pair (A, B) is exponentially
stablizable, i.e., there exists an admissible feedback op-
erator K € £(X1,U) such that A + BK is the gener-
ator of an exponentially stable Cy-semigroup [36, Def.
3.1]. Optimal (in terms of minimizing the continuous
version of (3)) state feedback operator is obtained using
the maximal solution R € £(X) of the continuous-time
Riccati equation [18, Def. 10.1.2] (see also [37]) :

K*SK = A*R+ RA+ C*QC (11)

on D(A), where S := R+D*QD and K := —S~Y(B{ R+
D*QC) yields the optimal feedback operator. Moreover,
it follows from the proof of [4, Thm. 9] that the solutions
of (11) are equivalent to the solutions of the discrete-
time Riccati equation:

Kj;S.Kq = AjRA; — R+ C;QCy, (12)

where S; = B;RBd + R + D;QDy and Ky :=
—S;l(AdRBd + D;QCy) yields the optimal state feed-
back for the discrete-time system with the maximal R.
Furthermore, Ay + ByK, corresponds to the Cayley-
Tustin discretization of A + BK . Thus, as K is an ex-
ponentially stablizing feedback for (A, B), equivalently
Ak, = Aq+ BysKy is power stable.

Returning to the MPC problem, we assume that the op-
timal state feedback is utilized beyond the control hori-
zon, i.e., upyrN+; = KaTkinti—1,Vi € N. Thus, the
input and output terminal penalties can be expressed
as state terminal penalties by solving the discrete-time
Lyapunov equations:

Ak, Q1Ak, — Q1 = —KjRK,
Af,Q2Ak, — Q2= —(Cyq + KqDq)*"QCq + K4Dg)

or equivalently their continuous-time counterparts:

—K*RK
—(C+ DK)*Q(C + DK),

A5Q1 + Q1 Ak
ARQ2 4+ Q24K

where A := A+ BK,. Note that as Ag is the gen-
erator of an exponentially stable semigroup and K and
C are admissible for Ax by their admissibility for A
and [31, Thm 5.4.2], the positive self-adjoint solutions of
the Lyapunov equations are unique by [31, Thm. 5.1.1]
and obtained similar to (7).

Finally, the input and output terminal penalties are
given by (i1 n, Q1@+~ ) and (T4 N, Q2T k4 N ), rEspec-
tively. Thus, the quadratic formulation of the MPC prob-
lem is given as in the stable case, except that in H and
P the operator () must be replaced with Q1 + Q5.

Note that the full state feedback v = Kz optimally
solves the wnconstrained minimization problem (3).
Thus, in order to utilize it in the constrained setting,
we need to first assume that the system is stabilizable
by a sequence of inputs satisfying the input constraints.
Under this assumption, MPC is utilized to steer the sys-
tem into a region where upni, < Kz < Upax, at which
point we can switch from MPC to the state feedback
control. The existence of a constrained stabilizing in-
put sequence can be guaranteed by allowing sufficiently
high-gain inputs to cancel output the unstable dynamics
of the system.

Theorem 4 Assume that the system (2) is stabilizable
by a sequence of inputs satisfying the input constraints.
Then, the dual-mode control consisting of MPC and op-
timal state feedback optimally stabilizes the system while
satisfying the input constraints.

PROOF. As the stabilization cost is included in the
MPC problem, the optimal solutions of (10) asymptoti-
cally steer the state of the system towards zero. Once the
state reaches the region where state feedback satisfies the
input constraints, MPC can be switched to it to finalize
stabilization.

In practice, finding the optimal feedback K is rather
challenging as the Riccati equation (11) can rarely be



solved in analytic closed-form. Instead, some other sta-
bilizing feedback can be used as a terminal penalty and
stabilizing feedback as well. One possible option is to
use output feedback u, = K,y;. This is a valid choice as
well as regularity of the system is preserved under out-
put feedback (see [34]), and rather straightforward com-
putations using Sherman-Morrison-Woodbury formula
show that Ag+BgK,(I—DyK,) ' Cy corresponds to the
Cayley-Tustin discretization of A+ BK, (I —DK,)™'C,
i.e., A after output feedback. Apart from optimality, the
result of Theorem 4 holds for any stabilizing feedback.

4 Wave Equation

As an example of a stable system, consider the wave
equation on a 1-D spatial domain ¢ € [0, 1] with viscous
damping at one end and boundary control  and bound-
ary observation y at the other end given by:

S = 2 (T Rue) (3
0= T(C)%w(l,t) + %%w(l,t) (13b)

ult) = %w((),t) (13¢)

y(0) = £aw(0,1), (134)

where x > 0. For simplicity we assume that the mass
density p and the Young’s modulus T" are constants. We
further assume that x # +/pT, which will be needed in
Section 4.3.

In order to write (13) in a more compact form, let
us first define a new state variable x = [z1, z5]T =
[pOyw, Ocw]T with state space X = Lo(0,1;R?) and an
auxiliary matrix operator H(¢) := diag(p(¢)~t, T(¢)).
Now define the operator A by:

mmwﬁﬂam@wm>

with domain
D(A) = {x € X : Mz € H'(0,1;R?), Tas(1) = —gg;l(n} ,

so that the first two lines of (13) can be equivalently
written as £ = Ax. Finally, by defining operators B and
C as Bz := T5(0) and Cz := p~tx1(0), the system (13)
can be equivalently written as:

i(t) = Ax(t) (14a)
u(t) = Bx(t) (14b)
y(t) = Cax(t), (14c)

which corresponds to the port-Hamiltonian formulation
of the wave equation (see, e.g., [12, Ex. 9.2.1]).

In order to further write the system (14) in the usual
state-space form, define the operator A as the restric-
tion of A to the kernel of B, i.e., A := A|yp) with do-
main D(A4) = D(A) NN (B). Due to the definitions of A
and B, it can be shown using [32, Thm. II1.2] that A is
the generator of an exponentially stable Cy-semigroup.
Consequently, the double (A, B) is a boundary control
system in the sense of [31, Def. 10.1.1]. Thus, by [31,
Prop. 10.1.2, Rem. 10.1.4], there exists a unique opera-
tor B € L(U, X_1) such that (14) can be equivalently
written as

z(t) = Az(t) + Bu(t) (15a)
y(t) = Caz(t) + Duf(t) (15b)

where D := ’le Go(s) which is well-defined assuming

that the system is regular [12, Def. 13.1.11]. Note that
the transfer function of the system (15) is Go(s) = Ca(s—
A)~!B as the feedthrough D is not present in the original
boundary control system (14).

By [31, Rem. 10.1.5], the operator B can be found
by solving the abstract elliptic problem Af = sf,
Bf = u for any u € U and s € p(A), the unique so-
lution of which satisfies f = (s — A_;)"!Bu. Since
here A is the generator of an exponentially stable Cp-
semigroup, we can choose s = 0 and obtain the solution
f = (p/k, =T~YTu, and finally, the operator B is
defined as:

Bu:=A_;

21] u. (16)

4.1 Discretized Operators

Assume that p and T are constants and consider the
equation #(t) = Axz(t). Using the Laplace transform

yields
0 07T
SI(C,S)—I(C,O)—& ( p_l 0 SC(C,S)) )
that is,
0 | 0 ps p
aié-x(CﬂS) - T718 0] 33((,5)— T71 0 .I‘(C,O)

The above is an ordinary differential equation of the
form:

0

—=

aC (C?S) = ZI(C?‘S) 7§‘T(<7O)a



the solution of which is given by:

¢
2(65) = Xa(05) = [ A Bano)n  (17)
0

where:

eAC =

cosh (\/%s¢) V/pT sinh (\/gsg“)] '
(\/ﬁ)_l sinh (\/Zs¢)  cosh (y/Zs()

Recall that D(A) has the boundary conditions Tzo(1) +
2x1(1) = 0 and T'x2(0) = 0, based on which (0, s) in

(17) can be solved. Eventually, (17) is given by:

p

VT sinh (\/Zs) + k cosh (1/Zs)

1

z(C,s) =

cosh (\/T’a() }
(VAT) " sinh (y/sC)

\/';7 sinh (y/Zs(1 —n)) + cosh (y/Zs(1 — 77))) z1(n,0)

(ncosh (v/Zs(1 —n)) + v/pT sinh (/Zs(1 —n))) z2(n,0)dn

i

/ fslnh(fs 77/)) pcosh(\/%s(ffn))
J T~ cosh (\/Zs(¢ —n)) /& sinh (\/Es(¢ — 7))
= (s — A) " 'x(¢.0),

} z(n,0)dn

which yields the expression for the resolvent operator,
from which we also obtain the operator Ay = —T+2§(6—
AL

Based on the expression we derived for the operator B
n (16), we have:

P
(6—A1)"'B=~ [ 5
T

+6(6—A_) ! [ " ] ,

and a direct calculation yields that:

\/7 f—n smh(\/75) cosh (/Z4¢) }
T \/pT sinh (/Z6) +  cosh (1/Z0) (VpT)~ lsjnh(\/?(sc)

/% sinh ({/Z68¢) — £ cosh (\/25¢)
HVw L cosh (y/Z5¢) — 1\/E sinh (\/Z5¢)|

which can be further simplified using the properties of
hyperbolic: functions to

By = —v23 X
VpT sinh (\/£8) + r cosh (1/20)
[pcosh (\/%S(g — 1)) + /i\/gsinh (\/%5(4 + 1))
VB sinh (v/Z5(¢ — 1)) — & cosh (\/E5(¢ — 1))

Furthermore, we obtain:
V26
VT sinh (/%) kcosh (\/>0
(\/?6(1 — 77)) + cosh (\/g5(1 — 77))> z1(n)

(/@cosh (\Fﬁ (1 —n)) + /pT sinh (\/76 1-1))) z2(n)dn.

Cdx<C) =

Finally, based on the expression of By it is easy to see
that the operator Dy = Go(d) = CA(6 — A_1) !B is
given by:

Dy 1 rsinh (\/26) + v/pT cosh (\/20) (8)
VpT \/pT sinh (/%) +  cosh (\/£6)

We note that 6lim Go(8) = —(pT)~Y/? to verify that
— 00

(14) indeed is a regular linear system.

4.2 Adjoint Operators

In order to find the adjoints of the discretized operators
computed in the previous section, we equip the state-
space X with the L? inner product, and the input and
output spaces are equipped with the real scalar product.
In order to find A;‘{ we find the adjoint of the resolvent
operator (s — A)™+:

(6 —A) e, 2)x

cosh (1/Zs¢) } y

_ pz"(C)
O/\/ﬁsmh(\/ge) + rcosh (y/%s) (\/ﬁ)lsinh (VEs¢)

/(\/’:ﬁ (\/?5(177]))+Cosh(\/¥s(1fn))> 21(n)
(I{(,Ubh (vVEs(1 —n)) + vpTsinh (/Zs(1 — n))) z2(n)dnd(

/ / fsmh \/7s§ ) pcosh(fs —7])
J T~ cosh (\/Zs(¢ —n)) /Zsinh (\/Zs(¢ —n))

/l/lpz n) cosh (\/Zsn) + 23 (n) (\/7) sinh ( fsr])d

J VpT sinh (\/Zs) + r cosh (\/Zs)

E Ls(1— cosh (y/£s(1— ’

{ﬁ (VEs(1 =) + cosh (v/Fs( <>)} e
rcosh (/Es(1 — )+ VpTsinh ({/Zs(1 = ())

el

= (2, (s = A) " 2)x,

:| x(n)dnd¢

X

\fsmh s(n—¢)) peosh (/Zs(n—())
! cosh ( \/7977 Q)) /& sinh (y/Zs(n—())

} dna(Q)d¢

and now, A% is given by A5 = —I +26(6 — A)~*

For B; we have (Bqu, z)x = u(Bg, x)x = uBjjz, and in



a similar manner, we obtain for Cy that:

2
yCaz = yﬁ X

VT sinh (y/26) + r cosh (\/Z6)
1
.0/ (\/’;7 sinh (y/£6(1 — 1)) + cosh (\/Z46(1 — 7]))) z1(n,0)

+ (rcosh (\/Z8(1 —n)) + VpT sinh (v/Z6(1 — 1)) z2(n,0)dn.
= <C;y7 'L>X

Finally, D is self-adjoint.
4.8  Solution of the Lyapunov equation

In this section, we derive the positive solution for the
continuous Lyapunov equation (6), which is realized by
utilizing the spectral representation of A. Let us at first
find the eigenvalues and eigenvectors of the operator
A. A direct computation shows that the solution of the
eigenvalue equation A¢r = Ag¢y is of the form:

$1,1(¢) = avexp (\/3&&) + fexp (\/?MC)

P2,6(¢) =

Since ¢y, € D(A), we must have ¢2 ;(0) = 0, which yields
« = . Thus, the eigenvectors of A are of the form:

bu(0) = cosh (\/g/\kg)
¥ \/ifTsinh (\/?/\kC) ’

and the eigenvalues )\, are determined from the condi-
tion T¢27k(1) = _%d)l,k(l); i.e.,

[T . / K
;smh ( 5)%) + ; cosh (ﬂ)\k> =0.

Using the exponential form of the hyperbolic functions
we obtain that one of the eigenvalues is given by:

1 |/T T —
(),
2\ p T+ kK
which is real if kK < /pT. Finally, by the periodicity

of the exponential function along the imaginary axis,
we obtain that in general the eigenvalues are given by

A = Xo + /T'/pkmi for k € Z.

We note that damped wave equations have been consid-
ered, e.g., in [3] and [38, Sect. 4] - both referring to the
original work by Rideau [27] - where similar spectra were
obtained. Furthermore, it can be seen from (19) that the
assumption x # /pT is required to ensure o(A) # 0,

rem () ()

which is further required by [3, Thm. 3.5] to ensure that
the eigenvectors of A constitute a Riesz basis for X. In-
deed, we can define an invertible operator:

Ao cosh (\/£Ao¢) —+/pT sinh (/ZAoC)
isinh (\/ZAoC) —iv/pT cosh (\/ZAC) ]|

so that

cos(km()

k= |

sin(km()
is an orthonormal basis in X, and the biorthogonal se-
quence [31, Def. 2.5.1] (¢x) to (¢x) is given by ¢y =
M*M ¢y,

Let us now return to the Lyapunov equation and apply
it to an arbitrary = € D(A):

A*Qz + QAz +C*QCx = 0.

By [31, Prop. 2.5.2], we can write every = € X as:

x = Z (2, 01) Ok,

kEZ

which yields:

Z (A*Q(z, 1) i + QA(z, d1.) b + C*QC (x, ) ¢1) =0,

k€EZ

which by utilizing [31, Prop. 2.6.3] further yields:

Z (A" +X)Q (s di) S +C*QC (x, b1, p) = 0.

kEZ

The above especially holds if (A* + X\¢)Q (, dr) ¢ =
—C*QC <x, (Ek> ¢ for all k € Z. Thus, for an arbitrary
k € Z, we obtain:

Q(z,dr) dx = (=Ap — A*)7'C*QC (x, bi) ..
As A is densely defined and —\;, € p(A) since \;, €

a(A), we have by [31, Prop. 2.8.4] that (=, — A*)~! =
((—5\;.C — A)_l)*, so we obtain :

Q{z,dr) o = (= — A)fl)* C*QC (x, i) b
= (C(=X, — A QC (x, b1 ..

Finally, summation over k € Z yields the solution:

Qv =Y (2,6r) (C(—=Xe —A)7") QCér.  (20)

keZ

Note that as C¢r = 1 and C(—=A} — A)~! is uniformly
bounded for all k € Z, the series in (20) is convergent



(as it should since @ € £(X)). Thus, for any z € X we

may approximate:
M — —
Qr ~ Qpa = Z (z, 1) (C(—=M — A7) QCoy,
k=—M

and it holds that N}im |Qx — Q|| = 0, by which we
—00

can evaluate (20) to an arbitrary precision ¢ > 0 by
choosing a sufficiently large M. A suitable value for M
can determined, e.g., by numerical experiments.

4.4 Simulation results for the wave equation

Consider the wave equation (13) with the parameter
choices p =T =1 and x = 0.75. For the MPC, choose
the optimization horizon as N = 15 and choose the input
and output weights as R = 10 and @@ = 0.5, respectively.
For the Cayley-Tustin discretization, choose h = 0.075
so that § ~ 26.67. For numerical integration, an adap-
tive approximation of d¢ is used with 519 nodal points.
To approximate the solution of the Lyapunov equation
(20), we choose M = 100. The initial conditions for the
wave equation in the port-Hamiltonian framework are
given by d;w(¢) = cos(m() and dw(() = sin(37().

The input and output constraints —0.05 < ug < 0.05
and —0.025 < y; < 0.3 are displayed in Figure 1 along
with the control inputs u(k) obtained from the MPC
problem. The outputs of the system under the MPC and
under no control are displayed as well. It can be seen that
the MPC makes the output decay slightly faster in the
beginning. Then control is imposed to satisfy the output
constraints while the uncontrolled output violates them.
Finally, a minor stabilizing control effort is imposed be-
fore both the MPC input and the output decay to zero.
Naturally the uncontrolled output decays to zero as well
due to the exponential stability of the considered system.

0.05 -l L L A J
S
3
-0.05 - = ; - -
0.3 == L

—MPC
= = no control

0 10 20 30 40

Figure 1. Above: MPC inputs u(k) and the input constraints.
Below: MPC and uncontrolled outputs and the output con-
straints.

Figure 2 displays the velocity profiles of the system un-
der the model predictive control law and without con-
trol. No substantial differences can be observed in the

velocity profiles, which is rather expected as the outputs
in Figure 1 were rather close to one another. Relatively
small differences in the outputs are natural as well, since
the control inputs were constrained to rather small gain.

Figure 2. Above: the velocity profile of the wave equation
without control. Below: the velocity profile under the model
predicting control law.

5 Tubular reactor with recycle

As an example of an unstable system, consider a tubular
reactor with recycle given as:

0 0
E‘/L‘(Cv t) = _’Uaicx(<7 t) + Oé:l?((, t) (213)
x(0,t) = rz(1,t) + (r — Du(?) (21b)
y(t) = a(1,1) (21¢)

on ¢ € [0,1], where the parameters are chosen as v =
1,a =1/2 and r = 1/3 so that the system has its spec-
trum in the right half plane but is exponentially stabiliz-
able, e.g., by output feedback u(t) = —y(t). Under this
feedback, (21b) changes to x(0,t) = (2r — 1)z(1,¢) but
otherwise the system remains the same.

Similar to the wave equation in Section 4, we can com-
pute the resolvent operator and find the discretized op-
erator (A4, By, Cq, Dg) and their adjoints. Since output
feedback is used as a stabilizing terminal cost and in this
case D = 0, for the terminal penalty one needs to solve
the Lyapunov equation AXQ + QAs; = —C*(Q + R)C,
where A is the generator of the exponentially stable Cy-
semigroup corresponding to the boundary control sys-
tem (21) under output feedback u(t) = —y(t). This can
be done as in Section 4.3, except that the normalized
eigenvectors of A, already form an orthonormal basis in
X = L?%(0,1;R).

For the MPC problem formulation, the weights are cho-
sen as Q = 2 and R = 10, and the input constraints



are given by —0.15 < uy < 0.05 while no output con-
straints are imposed. The optimization horizon is cho-
sen as N = 10, and for approximation of the solution
of the Lyapunov equation, 201 eigenvectors of A are
used. For the Cayley-Tustin discretization, we choose
h = 0.1 so that 6 = 20. The initial condition is given by
20(¢) = % sin(n¢). For numerical integration, an adap-
tive approximation of d( is used with 510 nodal points.

In Figure 3, the dual-mode inputs and the outputs of
the system under the dual-mode control are presented.
For comparison, the output feedback control and the
output under the feedback control are also presented. It
can be seen that while the output feedback stabilizes the
system faster, it does not satisfy the input constraints
early on in the simulation. In the dual-model control,
the MPC inputs first steer the output close to zero while
satisfying the input constraints, and then at k£ = 80 it
is switched to output feedback u = —y which completes
the stabilization.

L r n
0 |
|
Z 044 | : L
S
T T T T T T T == - — output feedback |7
021 <) I ——MPC + feedback |
1
. : .
0.2 1 | - - output feedback |
. | ——MPC + feedback
0.1 : L
ES
|
0 - |
T I T
0 50 100 150

k

Figure 3. Above: dual-mode inputs, the input constraints
and the output feedback. Below: outputs of the system under
the dual-mode control and output feedback.

In Figure 4, the state profiles of the tubular reactor are
displayed under the dual-mode and the feedback con-
trols. The states behave according to what could be ex-
pected based on the outputs, that is, both states decay
asymptotically to zero and the state under output feed-
back decays faster.

6 Conclusions

In this work, a linear model predictive controller for reg-
ular linear systems was designed, and it was shown that
for stable systems, stability of the zero output regulator
follows from the finite-dimensional MPC theory. For sta-
bilizable systems, constrained stabilization was achieved
by dual-mode control consisting of MPC and stabiliz-
ing feedback. The MPC design was demonstrated on an
illustrative example where it was implemented for the
boundary controlled wave equation. Constrained stabi-
lization was demonstrated on a tubular reactor which
had solely unstable eigenvalues. The performances of the

10

z((,t)

Figure 4. Above: the state profile of the tubular reactor under
the-dual mode control. Below: the state profile under the
output feedback.

control strategies were illustrated with numerical simu-
lations.

It should be noted that the assumption of regularity was
not in fact needed at any point when considering stable
systems, but it was merely done for the convenience of
the state-space presentation of the systems. Thus, the
result of Theorem 2 can equivalently be formulated for
well-posed instead of regular linear systems. Further-
more, by the obtained stability result, tracking of con-
stant reference signals could be incorporated for MPC
of regular linear systems by the classical MPC theory of
finite-dimensional systems (see [24]). The result of The-
orem 4 could be extended to well-posed linear systems
as well, although state feedback stabilization and Ric-
cati equations are much more involved concepts for these
systems (see [18,19]).
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